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Abstract

We consider semivalues on pM1 �a vector space of games with a continuum

of players (among which there may be atoms) that possess a robust di¤erentia-

bility feature. We introduce the notion of a derivative semivalue on pM1; and

extend the standard Banzhaf value from the domain of �nite games onto pM1

as a certain particularly simple derivative semivalue. Our main result shows

that any semivalue on pM1 is a derivative semivalue. It is also shown that

the Banzhaf value is the only semivalue on pM1 that satis�es a version of the

composition property of Owen (1978) and that, in addition, is non-zero for all

non-zero monotonic �nite games.

JEL Classi�cation Numbers: C71, D72.

Keywords: Games with a continuum of players, nonatomic games, mixed

games, semivalues, Banzhaf value, compound game, composition property.

1 Introduction

The e¢ ciency of the Shapley (1953) value is one of its central properties. The need

for e¢ ciency is obvious in most applications, where the Shapley value is viewed as a

tool for distributing the proceeds of full cooperation in the game between its players.

�Department of Economics, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel. E-

mail: orih@exchange.bgu.ac.il
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However, there are contexts in which the value is not (or, at least, not obviously) a

sharing mechanism. As suggested by Roth (1977a, 1988), the value can be viewed as

an evaluation of the prospect of playing the game by the various players, in which case

possible inconsistency in subjective evaluations may stand in the way of e¢ ciency. In-

deed, the famous Banzhaf value,1 which is non-e¢ cient in general, may appropriately

describe a case of strong "strategic risk aversion" (see Roth (1977b, 1988)), where all

players have an unduly pessimistic view of their bargaining abilities. In the context

of simple (voting) games, the restriction of the Shapley and Banzhaf values to that

domain (which leads, respectively, to the Shapley and Shubik (1954) power index and

a version of the Banzhaf (1965, 1966, 1968) power index) intends to capture an even

more vaguely de�ned "voting power" of the various players, in which case the a priori

assumption of e¢ ciency is also strongly questionable. It was for these reasons that

Dubey et al. (1981) commenced the �rst systematic study of semivalues �solution

concepts with value-like properties (namely, linearity, symmetry, positivity, and being

a projection on additive games) with e¢ ciency excluded.

Dubey et al. (1981) fully characterized all semivalues on the space of �nite games

(with a �nite or in�nite universe of players), and all semivalues on pNA �a space of

games with a nonatomic continuum of players that was introduced in Aumann and

Shapley (1974) (which they discovered to be su¢ ciently rich and also amenable to

mathematical analysis for producing insightful and sharp results). In the context of

�nite simple games, an identical characterization of all semivalues was later obtained

by Einy (1987).

Among the non-e¢ cient semivalues, the Banzhaf value has received the most

attention. Nevertheless, it has only been formally de�ned and treated in the context

of �nite games. The de�nition of the Banzhaf value of a player in a �nite game

is simple and clean, and is expressed as the expected marginal contribution of that

player to a random coalition which each other player joins � independently of the

rest �with probability 1
2
: In a simple game, this yields one of the classical de�nitions

of voting power (see Banzhaf (1965), Dubey and Shapley (1979)) as the probability

that the given voter "swings" the vote in a random coalition of Yes-voters, under the

1De�ned in Owen (1975), based on the rendering in Dubey and Shapley (1978) of the earlier

de�nitions (Penroe (1946), Banzhaf (1965), Coleman (1971)) of voting power in simple games.
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assumption that all voters cast their votes independently, with probability 1
2
for Yes

and for No.

An attempt to extend the Banzhaf value to games with in�nitely many players

immediately runs into two di¢ culties, both of which might explain why it has never

been carried out. First, the natural counterparts of marginal contributions in �nite

games are directional derivatives of the (appropriately extended) characteristic func-

tions when games with a continuum of players are concerned, but these directional

derivatives need not always exist even for games in pNA; which is the closure in the

bounded variation norm of the vector space of polynomial functions of nonatomic

measures.2 Second, there is no natural way to extend the existing axiomatizations of

the Banzhaf value for �nite games into the framework with a nonatomic continuum

of players, as at least one central axiom seems to be meaningful only for �nite games.

This particularly stands out in the famous axiomatization of Lehrer (1988). The cen-

tral axiom, superadditivity, states that no two players will be harmed if they "merge"

and act as a single player; this axiom does not apply to sets, but only to singletons.

As no player is individually signi�cant in the nonatomic continuum setting, the game

in which two players have merged into one is identical to the original game, and thus

the superadditivity axiom loses all its bite.

In one of the earliest axiomatizations of the Banzhaf index, by Owen (1978), the

main axiom would also become inadequate in the nonatomic continuum scenario.

Owen�s main axiom, the composition property, uses a compounding of games played

on two tiers, and is de�ned as follows. Consider a game v with player set N =

f1; 2; :::; ng; and, additionally, let there be n other games w1; :::; wn with disjoint
player sets S1; :::; Sn; such that wi(S) 2 [0; 1] and wi(Si) = 1 for every i: Player i

is viewed as the delegate of Si into the �rst-tier game v that describes the payo¤s

to all possible coalitions of delegates in N: In the second-tier game wi; wi(S) is the

probability that a coalition S � Si "controls" Si�s delegate i in N; i.e., forces him

to act entirely on S�s behalf (in particular, S = Si controls i with certainty). The

2The existence of a directional derivative was established by Aumann and Shapley (1974) for

almost every point of the "diagonal" (i.e., the set of all "perfect samples" of the grand coalition),

which is su¢ cient for the de�nition of the Aumann-Shapley value on pNA. However, de�ning the

Banzhaf value requires di¤erentiability at the exact midpoint of the "diagonal" (corresponding to

the perfect 12 -sample). Games in pNA do not necessarily possess this property:
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compound game v [w1; :::; wn] has [ni=1Si as its player set. Given S � [ni=1Si; each
i 2 N is controlled by S with probability wi (S \ Si) ; and it is assumed that the
events of taking control of di¤erent delegates are independent.3 The payo¤ to S in

v [w1; :::; wn] is then de�ned as the expected worth (according to v) of the random

coalition composed of all S-controlled delegates: The composition property of Owen

(1978) is stated for all compound games v [w1; :::; wn] where, in addition, the second-

tier games w1; :::; wn are constant-sum.4 This property requires the prospect of a

player j 2 Si in v [w1; :::; wn] to be determined based on his prospect in his second-

tier game wi and the prospect of his delegate i in the �rst-tier game v: Speci�cally,

j obtains the prospect of i in v with probability equal to his own prospect in the

"control game" wi:

The idea of compounding appears to be much less suitable in the framework with

a nonatomic continuum of players. When there are no atoms, the �rst-tier game v

must have a continuum of individually negligible but collectively powerful delegates

as its player set. Putting aside the question of whether a continuum of delegates

(and hence, a continuum of disjoint delegate-selecting groups Si; each of which is

itself a continuum) may be a reasonable approximation of any realistic scenario, an

immediate problem is that the expected worth of a coalition obtained by randomly

and independently selecting delegates from a continuum cannot be de�ned in a natural

manner.5

In this paper we will use a framework that overcomes the aforementioned dif-

�culties that are inherent in extending the domain of the Banzhaf value to games

with a continuum of players. As in Aumann and Shapley (1973), we shall consider

games that are polynomial functions of measures, but, in passing to limits of such

functions, we will replace the bounded variation norm by a stronger k�k1 norm, �rst
de�ned in Monderer and Neyman (1988). It was shown in Monderer and Hart (1997)

3When w1; :::; wn are simple games, the setting becomes deterministic: delegate i 2 N is being

controlled by S if and only if S \ Si is a winning coalition in the game wi:
4This means that the probabilities of i being controlled by S (� Si) and SinS are complementary.
5Assuming that the player ("delegate") set of v is the interval [0; 1] together with the �-algebra

B of Borel sets (i.e., a standard measurable space as in Aumann and Shapley (1974)), the event that

the random process of independently choosing delegates generates a coalition S 2 B (which ensures
that v(S) is de�ned) will typically be nonmeasurable w.r.t. the product �-algebra that is behind

the random process; see, e.g., Judd (1985).
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that k�k1-limits preserve di¤erentiability, and hence the k�k1-closure of the space of
polynomials in measures (that are di¤erentiable) will consist of di¤erentiable games,

paving the way for de�ning the Banzhaf value along with a host of other derivative-

based semivalues. Furthermore, we will not con�ne ourselves to nonatomic measures

as those works did, but consider the space of polynomials in mixed measures which

have a nonatomic and a purely atomic part (as in Hart (1973)). The k�k1-closure
of that space, denoted pM1; can thus be referred to as the space of di¤erentiable

mixed games.6 It contains both pNA1 (i.e., the k�k1-closure of the space of poly-
nomials in nonatomic measures) and the space of all �nite games (i.e., games with

a �nite support in the continuum). The inclusion of all �nite games in pM1 is of

great utility since this fact allows the composition property to be stated for games

in pM1; indeed, when the �rst-tier game v; for which the �niteness of the player set

is a natural assumption, is indeed assumed to be �nite (and hence, in particular, in

pM1), its compounding with second-tier games in pM1 gives rise to a well-de�ned

game in pM1:

The �rst contribution of this work is to introduce the notion of a derivative semi-

value on pM1: To describe derivative semivalues, �rst �x a point (t1; t2) 2 [0; 1]2 : Any
game v 2 pM1 has a well-de�ned (at most) countable set A(v) of atoms �individu-

ally signi�cant players �in the player continuum I. Now envision an ideal coalition7

I (t1; t2) that is attended by every atom in A(v) with probability t2 (independently

of other atoms); and contains fraction t1 of the nonatomic continuum I n A(v): The
(t1; t2)-induced semivalue '(t1;t2) will attribute to every atom a 2 A(v) its (expected)
marginal contribution to I (t1; t2). Determining the prospect of a nonatomic coali-

tion S is less straightforward, and requires a unifying derivative-based approach (that

suits nonatomic coalitions as well as atoms). In brief, the prospect attributed to any

given S by '(t1;t2) will be given by the derivative of an appropriate extension
8 of v

6The space pM1 was introduced in Haimanko (2000) who characterized partially symmetric (and,

in particular, fully symmetric) values on pM1 and on pM (the closure in the bounded variation

norm of the space of polynomials in mixed measures).
7Formally, as in Aumann and Shapley (1974), an ideal coalition is a measurable function f : I !

[0; 1]; as opposed to a real coalition that can be viewed, in this context, as an indicator function

f : I ! f0; 1g: For an atom a 2 A(v); f(a) can be thought of as its probability of being active, while
f jInA(v) describes the "fractional participation" of the nonatomic continuum I nA(v):

8Constructed in Mertens (1988).
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onto the domain of all ideal coalitions, evaluated at I (t1; t2) in the direction S: In

the particular case of t1 = t2 =
1
2
, when the participation rate of nonatomic players

and the participation probability of atoms are identical and equal to 1
2
, a semivalue

� = '( 12 ;
1
2)
is obtained, which naturally extends the Banzhaf value for �nite games

onto the domain pM1: We will refer to � as the Banzhaf value on pM1.

When t1 6= t2; the semivalue '(t1;t2) does not violate the symmetry assumption

(i.e., covariance under all automorphisms of the player set) despite that the atomic

and the nonatomic part of the game are treated di¤erentially. This is because the

automorphisms move atoms into atoms and nonatomic players into nonatomic players,

creating no link between the prospects of the two parts. Furthermore, the following

generalization of '(t1;t2) will also preserve symmetry. Let us allow the nonatomic

and the atomic players to have (possibly inconsistent) probabilistic assessments of

the participation rate t1 of the nonatomic continuum / participation probability t2 of

atoms, and denote by � (respectively, �) the probability distribution over all possible

pairs (t1; t2) 2 [0; 1]2 that represents the assessment held by the nonatomic players
(respectively, by atoms). The expectation of '(t1;t2); taken w.r.t. � for nonatomic

coalitions and w.r.t. � for atoms, gives rise to a semivalue '�;�; which is the general

form of a derivative semivalue.

Our main result is that derivative semivalues exhaust the set of all semivalues

on pM1; namely, any semivalue on pM1 turns out to have the form '�;� for some

distributions �; � on [0; 1]2 (see Theorem 1). The method of proof is partially borrowed

from Haimanko (2000), who characterized the values (i.e., e¢ cient semivalues) on

pM1 and pM with type-restricted symmetry by constructing an isomorphism between

these values (on pM1 or pM) and partially symmetric values of �nite games with

an in�nite universe of players, based on the fact that multilinear games9 are dense in

these spaces. Here, too, for any semivalue ' on pM1 we will construct an operator �

on the domain of �nite games in pM1 that is uniquely identi�able with ' and that

is a semivalue except for a restricted symmetry feature �the covariance of � will be

limited to automorphisms that preserve some partition of the player space into two

in�nite sets (the restricted symmetry of � is an expression of the disconnect between

nonatomic and atomic players that may be exhibited by the original semivalue '

9De�ned in Monderer and Neyman (1988).
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on pM1 despite its symmetry). An auxiliary result that characterizes such a �

by means of two distributions �; � on [0; 1]2 ; which extends Dubey�s et al. (1981)

characterization of (fully symmetric) semivalues on �nite games,10 will then be used

to show that the semivalue ' (to which � corresponds) has the form '�;�:

We will also provide a counterpart to Owen�s (1978) result for �nite games, and

show that the Banzhaf value is the only semivalue on pM1 that satis�es a version

of the composition property (see Proposition 1 and Theorem 2). As was mentioned

earlier, our notion of compounding requires a �rst-tier game v to be a �nite game

in pM1 (whose atoms will be the "delegates" of the second-tier games); but places

no restriction on the second-tier games in pM1 other than those dictated by the

nature of compounding and the premises of the composition property.11 Our result

requires an additional, though minor, assumption that the semivalue is non-zero for

all non-zero monotonic �nite games.

The paper is organized as follows. Section 2 recalls the central concepts and

notation pertaining to games with a continuum of players, combined with a synopsis

of relevant basic facts. In particular, the section formally de�nes the space pM1, the

extension of a game in pM1 to ideal coalitions, and the directional derivatives of the

game. Section 3 introduces our new concept of derivative semivalues on pM1: It then

de�nes the Banzhaf value on pM1, states the composition property for semivalues

on pM1; and veri�es that the Banzhaf value has that property. It is also shown that

Hart�s (1973) values on pM1 are representable as derivative semivalues. Section 4

contains our main result, Theorem 1, that characterizes a general semivalue on pM1

as a derivative semivalue. Section 5 is devoted to the characterization of the Banzhaf

value as a semivalue that satis�es the composition property, which is the content of

Theorem 2. The concluding Appendix contains the proofs of two auxiliary lemmas.

10Speci�cally, it will be shown that each player is assigned his expected marginal contribution to a

random coalition that the other players are joining in a conditionally independent manner, with the

same conditional probability for the members of the same "type" (i.e., a set in the partition). �; �

will be the mixing distributions of the parameters (t1; t2) of the two-type i.i.d. process of forming

the random coalition, that describe the (possibly di¤erent) probabilistic assessments held by the two

player types.
11The possibility to include nonatomic and purely atomic probability measures among the second-

tier games is instrumental in our proof.
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2 Preliminaries

The concepts and notation introduced in Aumann and Shapley (1974) form the basis

of our setting. It also contains some subsequent additions that are rooted in the

works of Monderer and Neyman (1988), Monderer (1990), and Haimanko (2000).

2.1 Games with a continuum of players

Let (I; C) be a standard measurable space (i.e., one that isomorphic to ([0; 1]; B),

where B is the �-�eld of Borel subsets of [0; 1]). The elements of I are called players,

the elements of C � coalitions, and real-valued functions on C that vanish at ? �

games. Given a game v and T 2 C, we denote by vT the restriction of v to T; namely,
the game given by vT (S) = v(S \ T ) for every S 2 C: Coalition T is a support of v

if v = vT : Player a 2 I is an atom of v if it belongs to every support of v. If a game

v possesses a minimal support, we denote it by Supp (v) : For any U � I, the vector

space of all games v that have a �nite support and Supp(v) � U , referred to as �nite

games on U; will be denoted by GU :

A game v is monotonic if v (S) � v (T ) whenever S � T 2 C: The vector space

of all games that are di¤erences of two monotonic games is denoted by BV: The

subspace of BV containing all �nitely additive games (i.e., measures) is denoted by

FA. We will be primarily interested in the following subspaces of FA : M , which

contains all countably additive measures; NA, which contains all nonatomic measures

in M ; and A, which contains purely atomic measures in M . M1 (resp., NA1), will

stand for the sets of probability measures in M (resp., NA): Any � 2 M possesses

a unique decomposition � = �NA + �A; where �NA 2 NA and �A 2 A: If, more

generally, � = (�1; :::; �n) 2 (M)n ; we will denote �NA =
�
�NAi

�n
i=1

; �A =
�
�Ai
�n
i=1

;

and A (�) = [ni=1Supp(�Ai ).
The set of all (bi-measurable) automorphisms of (I; C) will be denoted by �. Each

� 2 � induces an operator � : BV ! BV; where �v is given by (�v)(S) = v(�S) for

every v 2 BV: A subspace Q of BV will be called symmetric if � (Q) = Q for every

� 2 �.
The bounded variation norm on BV is de�ned by

kvkBV = inffu (I) + w (I) j u;w 2 BV are monotonic and v = u� wg:
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The space BV is a Banach algebra w.r.t. the norm k�kBV :
Given games v and w; v is said to be a Lipschitz game w.r.t. w (written v � w)

if w � v is monotonic. Denote by AC1 � BV the set of all games v satisfying

�� � v � � for some positive � 2M: The norm

kvk1 = sup fv (S) j S 2 Cg+ inff�(I) j � 2M is positive and� � � v � � g

turns (AC1; k�k1) into a Banach algebra, and kvkBV � kvk1 for every v 2 AC1:

Denote by pM (resp., pM1) the closure w.r.t. the norm k�kBV (resp., k�k1) of the
linear span of all games of the form q ��; where q is a polynomial vanishing at 0; and
� 2 M: The spaces pNA and pNA1 are de�ned likewise using measures � 2 NA.

Clearly, GI � pM1 � pM; and the spaces are symmetric. If f 2 C1 ([0; 1]n) and

� 2 (M1)
n then v = f � � 2 pM1 (and hence also f � � 2 pM), as follows from the

proof of Proposition 7.1 in Aumann and Shapley (1974).

2.2 Extension of games to ideal coalitions

Let B(I; C) be the space of all bounded, measurable, real-valued functions on (I; C),

and consider B1
+(I; C) = ff 2 B(I; C) j 0 � f � 1g �the set of ideal coalitions.

Each coalition S 2 C can viewed as the ideal coalition �S (the indicator function

of the set S); and we will identify S with �S whenever convenient: A real-valued

function on B1
+(I; C) that vanishes at 0 is called an ideal game. An ideal game v is

called monotonic if for each f; g 2 B1
+(I; C) such that f � g pointwise; v(f) � v(g):

The space IBV of ideal games of bounded variation is de�ned as the space of all

di¤erences of two monotonic ideal games.

For any � 2 M and g 2 B(I; C); denote � (g) =
R
I
g (a) d� (a) : Mertens (1988)

constructed a linear operator on a large subspace of BV; containing pM; that extends

every game from the domain C (identi�ed with the set of indicator functions of

coalitions in C) onto the entire set B1
+(I; C) of ideal coalitions. For any vector

measure game v = f � � (2 pM1) with f 2 C1 ([0; 1]n) and � 2 (M1)
n for some

n � 1; its well-de�ned Mertens extension v is given as follows. Consider a family

fZaga2A(�) of random variables that are uniform i.i.d. on [0; 1] : Then

v (g) = E

24f
0@�NA (g) + X

a2A(�)

�A (a)�fZa�g(a)g

1A35 ; (1)
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where g 2 B1
+(I; C); �B is the indicator function of an event B; and E is the expec-

tation operator. Intuitively (though by no means formally12), v (g) can be thought

of as the expected worth of a random coalition S which each player x 2 I joins,

independently of others, with probability g (x). The players from the nonatomic con-

tinuum I n A(�) that join S are regarded as a deterministic perfect g-sample of the
continuum, while the atoms in A(�) that join S are a genuinely random coalition.

The Mertens extension is de�ned, in particular, on the space GI of �nite games

on I: It is just the familiar multilinear extension of Owen (1972). Given v 2 GI and
a nonempty �nite support T of v; de�ne fv;T 2 C1

�
[0; 1]T

�
by

fv;T
�
(xa)a2T

�
=
X
S�T

v (S) �
Y
a2S

xa �
Y
a2TnS

(1� xa); (2)

then

v (g) = fv;T
�
(g(a))a2T

�
(3)

for any g 2 B1
+(I; C): It is easy to see that if T

0 � T is another �nite support of v

then

fv;T
�
(xa)a2T

�
= fv;T 0

�
(xa)a2T ; (ya)a2T 0nT

�
(4)

for any (ya)a2T 0nT ; and hence v (g) is independent of the choice of T:

The Mertens extension v 7! v is linear and positive (i.e., it maps monotonic games

into monotonic ideal games). It is also symmetric, i.e., �v (g) = v
�
g � ��1

�
for every

v 2 BV; � 2 �; g 2 B1
+(I; C): If v 2 pM is constant-sum, that is, v(S)+v(InS) = v(I)

for every S 2 C; then v is also constant-sum: v(g) + v(1 � g) = v(1) for every g 2
B1
+(I; C) (see Section 1.2 in Mertens (1988)).

Remark 1. The Mertens extension is continuous, being of operator norm 1: for

every v 2 pM; kvkIBV � kvkBV ; where k�kIBV is the bounded variation norm on IBV;
de�ned for any ideal game in IBV as the supremum of its variation over all increasing

�nite sequences 0 � f1 � f2 � ::: � 1 in B1
+(I; C): In particular, if v 2 pM and

S 2 C is a set disjoint from some support of v; then v (g) is independent of the values
of the ideal coalition g for players in S. Indeed, since v can be k�kBV -approximated
by polynomials in measures, it can also be k�kBV -approximated by polynomials in
measures for which S is a null set: By (1), the extensions of approximating games are

12See Judd (1985).
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independent of g jS; and by the continuity of the Mertens extension the limit v (g) is
also independent of g jS :

2.3 Di¤erentiability of games

Given any v 2 pM1 and any g 2 B1
+(I; C); there exists a well-de�ned directional

derivative dv (g; �) ; satisfying

dv (g; h) = lim
"!0+

v (g + "h)� v (g)

"
(5)

for every nonnegative h 2 B(I; C) such that g + "h 2 B1
+(I; C) for some " > 0; and

dv (g; h) = lim
"!0+

v (g)� v (g � "h)

"
(6)

for every nonnegative h 2 B(I; C) such that g � "h 2 B1
+(I; C) for some " > 0;

moreover, dv (g; h) is additive in h: This was established in Section 2 of Hart and

Monderer (1997) for v 2 pNA1; but similar arguments apply for v 2 pM1.

For v = f �� (2 pM1); where f 2 C1 ([0; 1]n) and � 2 (M1)
n for some n � 1; the

directional derivative dv (g; h) is given by the following formula that easily follows

from (1) and (5), (6). For a nonnegative h 2 B(I; C) with h jA(�)� 0 such that either
g + "h 2 B1

+(I; C) or g � "h 2 B1
+(I; C) for some " > 0;

dv (g; h) = E

*
rf

0@�NA (g) + X
a2A(�)

� (a)�fZa�g(a)g

1A ; � (h)

+
; (7)

where h�; �i denotes the scalar product on Rn and fZaga2A(�) are as in the premise for
(1); while for h = c � �fbg; where b 2 A (�) and c � 0;

dv (g; h) = c � E

24 f
�
�NA (g) +

P
a2A(�);a 6=b � (a)�fZa�g(a)g + � (b)

�
�f
�
�NA (g) +

P
a2A(�);a 6=b � (a)�fZa�g(a)g

� 35 : (8)

In words, for a nonatomic ideal coalition h the directional derivative dv (g; h) is the

expected derivative of f in the direction � (h) ; evaluated at a random coalition that

includes a perfect g-sample of the nonatomic players and is joined by each atom a

with probability g (a) : If h is supported on A (�), then dv (g; h) is the expected sum

of h-weighted marginal contributions of the atoms to that random coalition.
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2.4 Compound games

The notion of a compound game was introduced by Shapley (1964) in the context of

simple �nite games, and extended by Owen (1964) to general �nite games. We will

generalize the notion of compounding for games in pM1:

Let v 2 GI be a game with some �nite support T: Consider a collection (� (a))a2T
of disjoint sets in C and a collection

�
w�(a)

�
a2T of games in pM1 such that, for every

a 2 T; the game w�(a) � 0 is supported on � (a) and w�(a) (I) = 1: (As each game

w�(a) is indexed by a set � (a) ; the games
�
w�(a)

�
a2T can be viewed, in accord with

our notation, as restrictions of some w 2 pM1 to disjoint sets (� (a))a2T .) The game

u 2 pM1 is said to be the compounding of v with
�
w�(a)

�
a2T if

u(S) = fv;T (
�
w�(a)(S)

�
a2T ) (9)

for every S 2 C; where fv;T is the multilinear extension of v de�ned in (2). Notice

that u 2 pM1 since pM1 is a Banach algebra.

When
�
w�(a)

�
a2T are �nite simple games (i.e., eachw�(a) is, additionally, monotonic

and f0; 1g-valued) and (� (a))a2T are �nite sets, one can think of u as describing a
two-tier voting process in which only the players in [a2T� (a) are entitled to take
part. First, there is a simultaneous vote among the players within each of the groups

(� (a))a2T . The outcome of the vote in � (a) is determined via w�(a). The vote then

moves to the council of delegates. The delegate of each group � (a) is a 2 T; and his
vote must concur with the plebiscite in � (a). Outcomes of the council vote among

the delegates in T are given by v. Clearly,

u(S) = fv;T (
�
w�(a)(S)

�
a2T ) = v(fa 2 T j w�(a) (S) = 1)

describes the outcome of the compound voting.

The compound game fv;T (
�
w�(a)

�
a2T ) has meaning, however, even in the general

scenario, when the supports (� (a))a2T are in�nite sets, possibly containing nonatomic

parts and atoms, and the (not necessarily �nite) games
�
w�(a)

�
a2T obtain general

values in [0; 1] : Each game w�(a) can be thought of as determining the probability

that a subcoalition of the group � (a) "controls" its delegate a in the �rst-tier game

v (e.g., this may mean that the subcoalition successfully accomplishes a project a

that was assigned to � (a), at which point that project begins its "interaction" with

projects in T accomplished by other groups, determining the �nal payo¤ via v).

12



The following fact, stated as a lemma and proved in the Appendix, will be of use

in the sequel.

Lemma 1. Let v; T; (� (a))a2T and
�
w�(a)

�
a2T be as in the premise for (9), and

consider the compound game u = fv;T (
�
w�(a)

�
a2T ): For any g 2 B

1
+(I; C) that obtains

�nitely many values, and any S 2 C which is a subset of � (b) for some b 2 T;

du (g; S) =
dfv;T
dxb

(
�
w�(a) (g)

�
a2T ) � dw�(b) (g; S) :

2.5 Multilinear Games

In treating multilinear games we will adopt the de�nitions in Monderer and Neyman

(1988) and Haimanko (2000) with some minor modi�cations, and will use the (con-

veniently available) notation of the previous section pertaining to compounding. Let

� 2M1 be a measure for which �NA(I) > 0 and the set A(�) (= Supp(�A)) is in�nite.

A game u will be called �-multilinear if13 u = fv;T

��
��(a)
�(�(a))

�
a2T

�
; where v 2 GI ; T

is a �nite support of v, and (� (a))a2T is a collection of disjoint sets in C; such that

� (a) = fag if a 2 A(�); and �NA(� (a)) > 0 and � (a) � I n A(�) if a 2 I n A(�):
The set14 ML(�) of �-multilinear games is dense in pM (�)1 (=the space de�ned in

the same way as pM1 but with an additional requirement that the measure � in a

polynomial generator q � � is absolutely continuous w.r.t. �); see Proposition 8 in
Haimanko (2000).15

Remark 2. Any semivalue on ' on pM1 is uniquely determined by its restriction

' jML(�) to games in ML(�) for � 2 M1 as above. Indeed, since any semivalue on

pM1 is continuous and ML(�) is dense in pM (�)1, ' jML(�) uniquely determines

' jpM(�)1
: Moreover, as pM1 =

[
�2�

� (pM (�)1) ; ' is uniquely determined by

' jpM(�)1
due to its symmetry.

13Recall that, for any S 2 C; �S stands for the restriction of � to the set S; given by �S(S0) =
�(S0 \ S) for every S0 2 C:
14It can easily be shown that ML (�) is, in fact, a vector space.
15Although Proposition 8 of Haimanko (2000), and Theorem 4 of Monderer and Neyman (1988)

upon which it is based, are stated for convergence in k�kBV ; both results hold (with the same proofs)
for convergence in the norm k�k1 on pM (�)1 :
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3 Semivalues

3.1 The general de�nition

Given a symmetric subspace Q of BV , we say that a linear operator ' : Q! FA is:

(i) symmetric if �'(v) = '(�v) for every v 2 Q and � 2 �;
(ii) positive if '(v) is nonnegative whenever v is monotonic;

(iii) a projection if the restriction ' jFA\Q is an identity function on FA \Q:
A linear projection ' : Q ! FA that is symmetric and positive is called a

semivalue on Q:

Our main interest will be in semivalues on pM1: Any positive linear projection

operator ' on pM1 is continuous of k�k1-norm 1 (see the proof of the Lemma in

Section 9 of Monderer and Neyman (1988)). Moreover, ' (v) 2M for every v 2 pM1;

as for every positive � 2 M such that �� � v � � the positivity and projection

properties of ' yield �� � ' (v) � �; implying that ' (v) is countably additive.

Hence, in particular, any semivalue ' on pM1 is continuous and ' (pM1) =M .

3.2 Derivative semivalues

In what follows we introduce a class of semivalues on pM1 (that, as will be made

clear in Section 4, contains all possible semivalues on pM1): Denote by M ([0; 1]2)

the set of Borel probability measures on [0; 1]2: Given �; � 2 M([0; 1]2); de�ne an

operator '�;� as follows. For every v 2 pM1; denote by A(v) the (at most countable)

set of atoms of v: Then, for every S 2 C; let

'�;� (v) (S) =

Z
[0;1]2

dv (t1 (I n A(v)) + t2A(v); S n A(v)) d� (t1; t2) (10)

+

Z
[0;1]2

dv (t1(I n A(v)) + t2A(v); S \ A(v)) d� (t1; t2) (11)

As each dv (t1 (I n A(v)) + t2A(v); �) is additive, '�;� (v) 2 FA; and hence (10) de�nes
an operator '�;� : pM1 ! FA:

Note that the integrals in (10)-(11) remains unchanged if A (v) is replaced by any

countable superset of A (v), since dv (g; h) does not depend on the values of g and h on

any given countable sets of nonatomic players in v (see Remark 1): Thus, due to the

14



linearity of the Mertens extension in v, and the linearity of the directional derivative

in v; '�;� is linear in v. The operator '�;;� is symmetric since so is the Mertens

extension and A(�v) = ��1 (A(v)) for any v 2 pM1 and � 2 �: The operator '�;�
is also positive since so is the Mertens extension, and the directional derivatives in

a direction S 2 C are nonnegative for any monotonic ideal game. Finally, '�;� is

a projection on FA \ pM1 = M; as d� (t1 (I n A(�)) + t2A(�); S) = � (S) for any

� 2M; (t1; t2) 2 [0; 1]2; and S 2 C:
Consequently, '�;� is a semivalue on pM1 for any pair �; � 2 M([0; 1]2): We

shall call it �; �-induced derivative semivalue. If both � and � are the Dirac measure

concentrated on some (t1; t2) 2 [0; 1]2; the corresponding derivative value will be

denoted '(t1;t2).

3.3 The Banzhaf value on pM1

The Banzhaf value, which is one of the most prominent semivalues in the context of

�nite games, can be extended to the entire pM1 as a particular derivative semivalue.

Let us denote � = '( 12 ;
1
2)
and call it the Banzhaf value on pM1: From (10)-(11),

applied to the measures � and � that are concentrated on
�
1
2
; 1
2

�
; we obtain

� (v) (S) = dv

�
1

2
; S

�
(12)

for every v 2 pM1 and S 2 C:
For v = f � � (2 pM1); where f 2 C1 ([0; 1]n) and � 2 (M1)

n for some n � 1;

the combination of (12) with (7) and (8) yields the following explicit formula: if

S � I n A(v);

� (v) (S) = E

*
rf

0@1
2
�NA (I) +

X
a2A(�)

� (a)Ya

1A ; � (S)

+
;

where fYaga2A(�) are f0; 1g-valued i.i.d. random variables with mean 1
2
; and if a0 2

A(v);

� (v) (fa0g) = E

24 f
�
1
2
�NA (I) +

P
a2A(�);a 6=a0 � (a)Ya + � (a0)

�
�f
�
1
2
�NA (I) +

P
a2A(�);a 6=a0 � (a)Ya

� 35 :
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This boils down to the standard de�nition of the Banzhaf value for �nite games: if

v 2 GI and a 2 Supp(v) (= A(v)), then

� (v) (fag) =
X

S�Supp(v)nfag

1

2jSupp(v)j�1
[v(S [ fag)� v(S)] ; (13)

and � (v) (S) = 0 for any S 2 C with S \ Supp(v) = ?:
It has been shown by Owen (1978) that the Banzhaf value for compound �nite

games has a strikingly simple multiplicative decomposition, which translates in our

general context into the following de�nition. We say that a semivalue ' on pM1 has

the composition property if, given any v 2 GI with some �nite support T; a collection
(� (a))a2T of disjoint sets in C and a collection

�
w�(a)

�
a2T of games in pM1 such

that, for every a 2 T; w�(a) � 0 is supported on � (a) and is constant-sum with

w�(a) (I) = 1; the following holds for the compound game u = fv;T (
�
w�(a)

�
a2T ) :

' (u) (S) = ' (v) (fag) � '
�
w�(a)

�
(S) (14)

for every a 2 T and S 2 C that is a subset of � (a).

The composition property provides a simple computational link between the semi-

value of the compound game and the semivalues of the �rst- and second-tier games.

Namely, a subgroup of � (a) is assigned the semivalue of its delegate a in the �rst-tier

game with a certain probability. That probability is equal to the semivalue evaluating

the subgroup�s contribution in the second-tier game to the success of controlling its

delegate.

Proposition 1. The Banzhaf value � satis�es the composition property.

Proof. For each a 2 T the game w�(a) is constant-sum by assumption, and

the Mertens extension preserves this constancy. Therefore w�(a)
�
1
2

�
+ w�(a)

�
1
2

�
=

w�(a) (1) = w�(a) (I) = 1; and hence w�(a)
�
1
2

�
= 1

2
: Thus, for each b 2 T and S � � (b) ;

� (u) (S) = du

�
1

2
; S

�
[by Lemma 1] =

dfv;T
dxb

��
w�(a)

�
1

2

��
a2T

�
� dw�(b)

�
1

2
; S

�
=

dfv;T
dxb

�
1

2
; :::;

1

2

�
� dw�(b)

�
1

2
; S

�
[by (3)] = dv

�
1

2
; fbg

�
� dw�(b)

�
1

2
; S

�
= � (v) (fbg) � �

�
w�(b)

�
(S) : �
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3.4 Values on pM1 as a particular case of derivative semival-

ues

Given a symmetric subspace Q of BV , an operator ' : Q ! BV is e¢ cient if

' (v) (I) = v (I) for every v 2 Q: An e¢ cient semivalue on Q is called value. It is

well known that there is a unique value on GI and on pNA. These are the Shapley

value and the Aumann-Shapley value, respectively; see Dubey et al. (1981), Aumann

and Shapley (1974). However, when mixed games, which have both nonatomic and

atomic parts, are allowed, which is the case with pM1; the uniqueness phenomenon

is lost. Indeed, Hart (1973) constructed a large family of distinct values on pM1.

(Haimanko (2000) showed that Hart values are the basic building blocks of the values

on pM and pM1; as any such value must be a probabilistic mixture of Hart values.)

In what follows we shall note how to represent Hart values as derivative semivalues.

In describing Hart values we follow the "path approach" of Haimanko (2000).

Given two continuous and monotonic functions F1; F2 : [0; 1] ! [0; 1] satisfying

F1(0) = F2(0) = 0; F1(1) = F2(1) = 1; consider two measures � = � (F1; F2) 2
M([0; 1]2) and � = � (F1; F2) 2M([0; 1]2) that are supported on the set f(F1(s); F2(s)) j 0 � s � 1g
(i.e., the image set of the path s 7! F1(s); F2(s)), and are determined by the equalities

� ([F1(s1); F1(s2)]� [F2(s1); F2(s2)]) = F1(s2)� F1(s1)

and

� ([F1(s1); F1(s2)]� [F2(s1); F2(s2)]) = F2(s2)� F2(s1)

for every 0 � s1 � s2 � 1: The induced derivative semivalue, '�(F1;F2);�(F1;F2), is then
given by

'�(F1;F2);�(F1;F2) (v) (S) =

Z 1

0

dv (F1 (s) (I n A(v)) + F2 (s)A(v); S n A(v)) dF 01(s)

+

Z 1

0

dv (F1(s) (I n A(v)) + F2(s)A(v); S \ A(v)) dF 02(s)

for every v 2 pM1 and S 2 C: This is precisely the de�nition of the symmetric

(F1; F2)-path value of Haimanko (2000). It is shown in Haimanko (2000) that the

set of symmetric path-values coincides with the set of Hart values, and that their

probabilistic mixtures generate all values on pM1:
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4 Characterization of semivalues on pM1

Our �rst theorem will show that derivative semivalues exhaust the set of all semivalues

on pM1: Its proof draws on the ideas of Haimanko (2000), who constructed an

isomorphism between the sets of (partially symmetric) values on certain subspaces of

pM1 and (partially symmetric) values of �nite games. The construction that we will

present is simpler, and more explicit and detailed. Given a semivalue ' on pM1; we

will show that it induces an operator � on GI that, despite not being a true semivalue,

satis�es a restricted form of symmetry, namely, covariance under automorphisms

that preserve a certain partition of I into two types of players. (Intuitively, the two

types of players in GI will represent the nonatomic and atomic players of games in

pM1; that may be treated di¤erentially by ' despite its symmetry.) It will then be

shown that � has a measure-based representation akin to some �; �-induced derivative

semivalue. Importantly, the connection between ' and � is such that the measure-

based representation of � can be translated back to obtain the �; �-induced derivative

semivalue form for ':

Theorem 1. For any semivalue ' on pM1 there exists a uniquely determined

pair of measures �; � 2M([0; 1]2) such that ' = '�;�:

Proof. Fix � 2 M1 for which �NA(I) > 0 and the set A(�) (= Supp(�A))

is in�nite. Let � = fI n A(�); A(�)g: An operator  : GI ! FA will be called

�-symmetric if � (v) =  (�v) for every v 2 GI and every � 2 � that preserves

the partition �; i.e., that satis�es � (A(�)) = A(�): A positive �-symmetric linear

projection  : GI ! FA \GI will called a �-symmetric semivalue on GI .
Now consider a semivalue ' on pM1: It induces a �-symmetric semivalue � on

GI in the following fashion. Given a game v 2 GI and its �nite support T that

satis�es T nA(�) 6= ?; choose a countable measurable partition � of I that re�nes16

� and, in addition, satis�es the following: jf� 2 � j � � I n A(�)gj = jT n A(�)j ;
f� 2 � j � � A(�)g = ffag j a 2 A(�)g; and �NA (�) > 0 for all � 2 � with

� � I n A(�): Take any one-to-one and onto mapping � : T [ A (�) ! � such

that � (a) � I n A(�) if a 2 T n A(�) and � (a) = fag if a 2 A(�): We will de�ne

� (v) 2 FA \GT by involving an appropriate �-multilinear game: let
16Namely, � � I nA(�) or � � A(�) for every � 2 �:

18



� (v) (fbg) = '

�
fv;T

��
��(a)

� (� (a))

�
a2T

��
(�(b)) (15)

for every b 2 T .
We shall �rst show that � is well-de�ned. Indeed, consider another support T 0 for

the game v (w.l.o.g., T � T 0), and let �0; � 0 be some appropriate counterparts of �; �

above, leading to �0 (v) 2 FA \GT 0 that is given by

�0 (v) (fbg) = '

�
fv;T 0

��
�� 0(a)

� (� 0 (a))

�
a2T 0

��
(� 0(b))

for every b 2 T 0: Since fv;T 0
��

�� 0(a)
�(� 0(a))

�
a2T 0

�
= fv;T

��
�� 0(a)
�(� 0(a))

�
a2T

�
by (4), in fact

�0 (v) (fbg) = '

�
fv;T

��
�� 0(a)

� (� 0 (a))

�
a2T

��
(� 0(b)) (16)

for every b 2 T 0:
Let a0 be some dedicated atom in T n A(�) 6= ?: Since each uncountable � 2

�[�0 together with the corresponding measurable subsets is a standard measurable
space, for any a 2 T n A(�); a 6= a0; there exists17 a bi-measurable isomorphism

�a : � (a) ! � 0 (a) such that
��(a)
�(�(a))

=
�a�� 0(a)
�(� 0(a)) on � (a) ; and there also exists a bi-

measurable isomorphism �a0 : � (a0) ! � 0 (a0) [
�
[a2T 0nT � 0 (a)

�
such that

��(a0)
�(�(a0))

=
�a0�� 0(a0)
�(� 0(a0))

on � (a0) : By letting � (x) = �a (x) whenever x 2 � (a) for some a 2 T nA(�);
and � (x) = x for every x 2 A(�); an automorphism � 2 � is constructed; it satis�es
��(a)
�(�(a))

=
��� 0(a)
�(� 0(a)) for every a 2 T: Thus, when b 2 T; b 6= a0;

'

�
fv;T

��
��(a)

� (� (a))

�
a2T

��
(�(b)) = '

�
fv;T

��
��� 0(a)
� (� 0 (a))

�
a2T

��
(�(b))

= '

�
�fv;T

��
�� 0(a)

� (� 0 (a))

�
a2T

��
(�(b))

[by the symmetry of '] = '

�
fv;T

��
�� 0(a)

� (� 0 (a))

�
a2T

��
(� (�(b)))

= '

�
fv;T

��
�� 0(a)

� (� 0 (a))

�
a2T

��
(� 0(b)) ;

The right-hand terms in (15) and (16) are therefore identical when b 2 T; b 6= a0; and

hence � (v) (fbg) = �0 (v) (fbg) in this case.
17Use, e.g., Proposition 1.1 and Lemma 6.2 in Aumann and Shapley (1974).
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For b = a0; the symmetry of ' similarly implies that

'

�
fv;T

��
��(a)

� (� (a))

�
a2T

��
(�(a0)) = '

��
fv;T

�
�� 0(a)

� (� 0 (a))

�
a2T

���
� 0 (a0) [

�
[a2T 0nT � 0 (a)

��
:

(17)

Notice that, for some A > 0;

�A
X
a2T

�� 0(a) � fv;T

��
�� 0(a)

� (� 0 (a))

�
a2T

�
� A

X
a2T

�� 0(a);

and hence

�A
X
a2T

�� 0(a) � '

�
fv;T

�
�� 0(a)

� (� 0 (a))

�
a2T

�
� A

X
a2T

�� 0(a) (18)

because ' is a positive projection. When b 2 T 0 n T; (18) implies that

'

�
fv;T

��
�� 0(a)

� (� 0 (a))

�
a2T

��
(� 0(b)) = 0: (19)

It follows that '
�
fv;T

��
�� 0(a)
�(� 0(a))

�
a2T

�� �
[a2T 0nT � 0 (a)

�
= 0; and thus (17) leads to

'

�
fv;T

��
��(a)

� (� (a))

�
a2T

��
(�(a0)) = '

�
fv;T

��
�� 0(a)

� (� 0 (a))

�
a2T

��
(� 0 (a0)) ;

which shows (via (15) and (16)) that � (v) (fa0g) = �0 (v) (fa0g) : Therefore � (v) (fbg) =
�0 (v) (fbg) for every b 2 T:
When b 2 T 0 nT; �0 (v) (fbg) = � (v) (fbg), as these are, respectively, the left-hand

and the right-hand sides of (19). Hence �0 (v) (fbg) = � (v) (fbg) for every b 2 T 0,

and we have thereby shown that � is well de�ned.

It is obvious that � : GI ! FA \ GI is linear, as ' is linear and fv;T is linear
in v 2 GT for any �nite T � I. The operator � is also a positive projection, since

fv;T

��
��(a)
�(�(a))

�
a2T

�
is a monotonic game for a monotonic v 2 GI and is a measure for

an additive v 2 GI ; and ' is a positive projection.
Finally, we will show that � is �-symmetric. Indeed, let v 2 GI and consider

any � 2 � such that � (A(�)) = A(�): Pick a �nite T � I such that Supp(v) � T;

Supp (�v) = ��1 (Supp(v)) � T; and T n A(�) 6= ?; and let � and � be as in the

de�nition of � in (15). For any a 2 ��1 (Supp(v)) nA(�) there exists a bi-measurable
isomorphism �a : � (a) ! � (� (a)) such that

��(a)
�(�(a))

=
�a��(�(a))
�(�(�(a)))

on � (a) ; now take
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some b� 2 � that coincides with �a on the set � (a) for every a 2 ��1 (Supp(v))nA(�);
and with � on the set A(�): Thus b���(�(a))

� (� (� (a)))

!
a2��1(Supp(v))

=

�
��(a)

� (� (a))

�
a2��1(Supp(v))

: (20)

It is also easy to verify that

fv;T

��
��(a)

� (� (a))

�
a2T

�
= f�v;T

��
��(�(a))

� (� (� (a)))

�
a2T

�
: (21)

Hence, due to (4),

f�v;T

��
��(a)

� (� (a))

�
a2T

�
= f�v;T

 �
��(a)

� (� (a))

�
a2��1(Supp(v))

!

[by (20)] = f�v;T

0@ b���(�(a))
� (� (� (a)))

!
a2��1(Supp(v))

1A
= b�f�v;T  � ��(�(a))

� (� (� (a)))

�
a2��1(Supp(v))

!

= b�f�v;T �� ��(�(a))
� (� (� (a)))

�
a2T

�
[by (21)] = b�fv;T �� ��(a)

� (� (a))

�
a2T

�
;

and we conclude that

f�v;T

��
��(a)

� (� (a))

�
a2T

�
= b�fv;T �� ��(a)

� (� (a))

�
a2T

�
: (22)

Thus, for every b 2 ��1 (Supp(v)) ;

� (�v) (fbg) = '

�
f�v;T

��
��(a)

� (� (a))

�
a2T

��
(�(b))

[by (22)] = '

�b�fv;T �� ��(a)
� (� (a))

�
a2T

��
(�(b))

[by the symmetry of '] = '

�
fv;T

��
��(a)

� (� (a))

�
a2T

���b� (�(b))�
= '

�
fv;T

��
��(a)

� (� (a))

�
a2T

��
(�(�(b)))

= � (v) (f� (b)g) :

As � (�v) (fbg) = 0 = � (v) (f� (b)g) for any b =2 ��1 (Supp(v)) by the de�nition of �,
we have established that � is �-symmetric.
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To summarize, it has been shown that � is a �-symmetric semivalue on GI : The

following lemma, in the spirit of Theorem 1(a) of Dubey et al. (1981), provides a

complete characterization of such semivalues. It is proved in the Appendix.

Lemma 2. Any �-symmetric semivalue on GI has the form ��;� for a uniquely

determined pair �; � 2M([0; 1]2); where

��;� (v) (fag) =
Z
[0;1]2

dv (t1 (I n A(�)) + t2A(�); fag) d� (t1; t2) (23)

if a 2 I n A(�); and

��;� (v) (fag) =
Z
[0;1]2

dv (t1 (I n A(�)) + t2A(�); fag) d� (t1; t2) (24)

if a 2 A(�):

According to Lemma 2, the �-symmetric semivalue � on GI that is induced by

the given ' is equal to ��;� for some uniquely determined �; � 2M([0; 1]
2):

Now consider any v 2 GI ; together with any set T; partition � and mapping �

de�ned as in the premise of (15), and denote u = fv;T

��
��(a)
�(�(a))

�
a2T

�
: Notice that for

every g 2 B1
+(I; C) that is constant on I n A(�) and on A(�), and for every b 2 T;

du (g; � (b)) =
dfv;T
dxb

  
��(a) (g)

� (� (a))

!
a2T

!

=
dfv;T
dxb

��
��(a) (g)

� (� (a))

�
a2T

�
=
dfv;T
dxb

�
(g(a))a2T

�
= dv (g; fbg) ;

where the �rst equality follows from Lemma 1 (and the obvious fact that d
�

��(b)
�(�(b))

�
(g; � (b))

= 1), and the last equality holds by (3). It follows that

du (g; �) = dv
�
g; f��1 (�)g

�
(25)

for every � 2 �(T ) and every g as above; if � 2 � n �(T ); (25) still holds as both
derivatives in it are then equal to 0.

If � 2 � and � � I n A(�); then

' (u) (�) = � (v)
�
f��1 (�)g

�
= ��;� (v)

�
f��1 (�)g

�
=

=

Z
[0;1]2

dv
�
t1 (I n A(�)) + t2A(�); f��1 (�)g

�
d� (t1; t2)

[by (25)] =
Z
[0;1]2

du (t1 (I n A(�)) + t2A(�); �) d� (t1; t2)

[by Remark 1] =
Z
[0;1]2

du (t1 (I n A(u)) + t2A(u); �) d� (t1; t2) = '�;� (u) (�) ;
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and, similarly, ' (u) (�) = '�;� (u) (�) if � 2 � and � � A(�) (i.e., � = fag for some
a 2 A (�)). Thus

' (u) (�) = '�;� (u) (�) (26)

for every � 2 �: Note that �u = u for every � 2 � that preserves the measure �NA

and satis�es � (�) = � for every � 2 �: Therefore, by a slight change in the proof
of Proposition 6.1 in Aumann and Shapley (1974), using the symmetry of ' and

'�;� we obtain that ' (u) (S) =
��(S)
�(�)

� ' (u) (�) and '�;� (u) (S) =
��(S)
�(�)

� '�;� (u) (�)
for any nonatomic � 2 � and any S 2 C; S � �: From this and (26) it follows that

' (u) = '�;� (u) : But, clearly, any �-multilinear game can be represented as the above

u for some v, T; � and � , and hence ' jML(�)= '�;� jML(�) : By Remark 2, ' and '�;�

coincide on the entire pM1: �

Remark 3 (Semivalues on pNA1 and pNA). If the domain of a semivalue is

restricted to be pNA1; a much simple characterization is obtained. As v 2 pNA1

has no atomic part; any �; �-induced derivative semivalue '�;� on pNA1 is identical

to '�; where � 2 M([0; 1]) is the marginal distribution of t1 induced by �; and '� is
given by

'� (v) (S) =

Z
[0;1]

dv (tI; S) d� (t)

for any v 2 pNA1 and S 2 C: Any semivalue on pNA1 is equal to '� for some

� 2 M([0; 1]): To prove this fact, one may repeat the arguments in the proof of

Theorem 1, dropping all reference to the atomic part of the measure �; and using

Theorem 1(a) of Dubey et al. (1981) instead of Lemma 2.18 If semivalues on pNA

are considered instead, '� is still well-de�ned if � has a bounded Radon-Nikodym

derivative w.r.t. the Lebesgue measure on [0; 1] ; and any semivalue on pNA is of this

form (see Theorem 2 in Dubey et al (1981)).

5 Characterization of the Banzhaf Value

Our second theorem singles out the Banzhaf value on pM1 based on two requirements:

the composition property, and being non-zero for every non-zero monotonic �nite

game.
18Alternatively, this characterization is implied by a more general result in Theorem 22 of

Haimanko (2000).
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Theorem 2. The Banzhaf value � is the only semivalue ' on pM1 that has

the composition property and satis�es ' (v) 6= 0 for every monotonic v 2 GI with

v(I) > 0:

Proof. The composition property of � was established in Proposition 1. If v 2 GI
is a monotonic game and v(I) > 0; then at least one a 2 Supp(v) has a positive

marginal contribution to some S � Supp(v) n fag; and it follows from (13) that

�(v)(fag) > 0: Thus, it remains to show that any semivalue ' on pM1 that has

the composition property and that transforms non-zero monotonic �nite games into

non-zero measures must coincide with �: Fix one such ' for the duration of the proof.

Denote by SGI the set of simple games in GI , i.e., the set of monotonic and

f0; 1g-valued games v 2 G that satisfy v(I) = 1: The restriction of ' to SGI ; ' jSGI ;
obviously satis�es the composition property on the restricted domain. As ' is linear,

' jSGI satis�es the transfer axiom (see Dubey et al. (2005)). By the positivity of

' and the non-zero assumption, ' jSGI is nonnegative and non-zero on SGI : By the
Theorem of Dubey et al. (2005), the mentioned properties of ' jSGI ensure that
' jSGI= � jSGI : The linearity of both ' and � implies ' jGI= � jGI :19

Now �x � 2 M1 for which �NA(I) > 0 and A(�) (= Supp(�A)) is in�nite, and

consider any �-multilinear game u = fv;T

��
��(a)
�(�(a))

�
a2T

�
; for some v 2 GI ; �nite

support T of v, and a collection (� (a))a2T of disjoint sets in C such that � (a) = fag
if a 2 A(�); and �NA(� (a)) > 0 and � (a) � I n A(�) if a 2 I n A(�): By the
composition property of '; for every a 2 T and every S 2 C that is a subset of � (a) ;

' (u) (S) = ' (v) (fag) � '
�

��(a)
� (� (a))

�
(S) = � (v) (fag) � �(S)

� (� (a))
;

where the second equality holds since ' jGI= � jGI and ' is a projection. Since,
obviously, the equalities also hold for the Banzhaf value � instead of ', we have shown

that ' (u) = � (u) ; and as u is an arbitrary �-multilinear game, ' jML(�)= � jML(�) :

By Remark 2, ' = �: �

Remark 4 (On the necessity of the non-zero assumption in Theorem 2 ). Consider

the semivalue '(0;0) on pM1: It can be shown (just as in the proof of Proposition 1)

19An alternative way of showing ' jGI
= � jGI

is by a direct appeal to the results of Owen (1978)

(Theorems 4 and 8) that, in conjunction with our non-zero assumption and the projection property

of the semivalue establish uniqueness of the Banzhaf value for �nite games.
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that '(0;0) satis�es the composition property. As '(0;0) (v) (fag) = v(fag) for every
v 2 GI and a 2 I; it is obvious that '(0;0) (v) = 0 if v 2 GI is any game for which

v(fag) = 0 for every a 2 I: Thus, the requirement that ' (v) 6= 0 for every monotonic
v 2 GI with v(I) > 0 cannot be dispensed with in the statement of Theorem 2. Note
also that the requirement cannot be strengthened to include games v 2 pM1 nGI ; as
the Banzhaf value � would not satisfy the strengthened version. Indeed, consider any

nondecreasing and continuously di¤erentiable function f : [0; 1]! [0; 1] that satis�es

f (0) = 0; f (1) = 1; and f
��
1
2
� "; 1

2
+ "
��
= f1

2
g for some " > 0; and let � 2 NA1:

By the de�nition of the Banzhaf value, � (f � �) = 0:

6 Appendix

Proof of Lemma 1. We will �rst show that

u = fv;T (
�
w�(a)

�
a2T ): (27)

Observe that, since fv;T in (2) is a sum of products, it su¢ ces to show that v1 � v2 =
v1 �v2 for any v1; v2 2 pM with disjoint supports S1; S2: It is easy to see, based on (1),

that the equality holds when v1 = f � �; v2 = g � �; where �for some m; k � 1 �f 2
C1 ([0; 1]m) ; g 2 C1

�
[0; 1]k

�
; and all components of the vector measures � 2 (M1)

m

and � 2 (M1)
k are supported on S1 and S2; respectively. But general v1; v2 2 pM

with disjoint supports S1; S2 are k�kBV -approximable by the vector measure games
v1; v2 as above, and thus the equality v1 � v2 = v1 �v2 holds in general, by the continuity
of the Mertens extension and the continuity of the product function in BV and IBV .

By (27),

du (g; S) = dfv;T

��
w�(a)

�
a2T

�
(g; S) ; (28)

and by an elementary chain rule argument20

dfv;T

��
w�(a)

�
a2T

�
(g; S) =

D
rfv;T (

�
w�(a) (g)

�
a2T );

�
dw�(a) (g; S)

�
a2T

E
: (29)

20In order for the chain rule argument to work, either (5) or (6) must hold, requiring that either

g + "S or g � "S be in B1+(I; C) for some " > 0: As g obtains �nitely many values, (29) can be

proved separately for coalitions S on which the value of g is constant (and hence g + "S or g � "S
are as required), and then extended by additivity of the directional derivative to any S 2 C:
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It follows from Remark 1 that dw�(a) (g; S) = 0 for a 6= b since S � � (b) ; and hence

the required equality is immediate from (28) and (29). �

Proof of Lemma 2. Let N � I be a �nite set with jN n A(�)j = m > 0; and

jN \ A(�)j = n > 0: Generalizing the notion in the proof of Theorem 1, we will say

that  : GN ! FA\ GN is a �-symmetric semivalue on GN if it is a linear positive

projection that in addition satis�es � (v) =  (�v); for every v 2 GN and every

� 2 � for which � (A(�)) = A(�) and �(N) = N: Let pm;n = (pm;ns;t )0�s�m�1;0�t�n and

qm;n = (qm;ns;t )0�s�m;0�t�n�1 be two nonnegative matrices such that

m�1X
s=1

nX
t=1

�
m� 1
s

�
�
�
n

t

�
� pm;ns;t = 1;

mX
s=1

n�1X
t=1

�
m

s

�
�
�
n� 1
t

�
� qm;ns;t = 1:

For any S � N; denote m (S) = jS n A(�)j and n (S) = jS \ A(�)j : De�ne  Npm;n;qm;n :
GN ! FA\ GN by

 Npm;n;qm;n (v) (fag) =
X

S�Nnfag

pm;nm(S);n(S) [v(S [ fag � v(S)] (30)

if a 2 I n A(�); and

 Npm;n;qm;n (v) (fag) =
X

S�Nnfag

qm;nm(S);n(S) [v(S [ fag � v(S)]

if a 2 A(�): Similarly to the proof of the Lemma in Dubey at al. (1981) the following
can be established:

Claim. For each pm;n; qm;n as above,  Npm;n;qm;n is a �-symmetric semivalue on

GN : Moreover, every �-symmetric semivalue on GN is of this form, and the mapping

(pm;n; qm;n) 7!  Npm;n;qm;n is one-to-one.

We proceed by mainly adopting the arguments in the Alternative Proof of The-

orem 1(a) in Dubey at al. (1981). Let � be a �-symmetric semivalue on GI : Fix

a 2 I n A(�); and consider an increasing sequence
�
Nk
	1
k=1

of subsets of I n fag
with limk!1m

�
Nk
�
= limk!1 n

�
Nk
�
= 1: For each k; � induces a �-symmetric

semivalue � jG
Nk[fag

on GNk[fag; and hence, by the Claim, it also induces a prob-

ability measure cNk on the subsets of Nk such that cNk (S) = p
m(Nk)+1;n(Nk)
m(S);n(S) for
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every S � Nk (where pm(N
k)+1;n(Nk) is the p-matrix corresponding to � jG

Nk[fag
).

By considering the natural embedding of GNk[fag into GNk+1[fag; we have, for every

S � Nk;

cNk (S) =
X

S�T�Nk+1;T\Nk=S

cNk+1 (T ) :

The measures on the subsets of the various Nk are therefore "consistent", and thus

by Kolmogorov�s consistency theorem there exists a collection fYbgb2[1k=1Nk of f0; 1g-
valued random variables such that

Pr
�
fb 2 Nk j Yb = 1g = S

�
= cNk (S) = p

m(Nk)+1;n(Nk)
m(S);n(S)

for every k � 1 and S � Nk: Thus fYbgb2[1k=1Nk is partially exchangeable: its

(uniquely determined) distribution is invariant under all permutations of [1k=1Nk

that move �nitely many elements of [1k=1Nk and preserve the sets [1k=1Nk n A(�)
and [1k=1Nk \A(�): By the de-Finetti partial exchangeability principle for two types
(see, e.g., Diaconis (1988)), the distribution of fYbgb2[1k=1Nk is a unique mixture of

sets fXbgb2[1k=1Nk of independent random variables such that both fXbgb2[1k=1NknA(�)

and fXbgb2[1k=1Nk\A(�) are i.i.d. As all variables are f0; 1g-valued, this means that
there exists a unique � 2M

�
[0; 1]2

�
such that for any k � 1 and S � Nk;

p
m(Nk)+1;n(Nk)
m(S);n(S) = Pr

�
fb 2 Nk j Yb = 1g = S

�
=

Z
[0;1]2

t
m(S)
1 � (1� t1)

m(Nk)�m(S) � tn(S)2 � (1� t2)
n(Nk)�n(S)d� (t1; t2) :

Substituting thus obtained formula for p
m(Nk)+1;n(Nk)
m(S);n(S) into (30) shows with the aid

of (8) that � (v) (fag) is identical to ��;� (v) (fag) de�ned in (23), for every k � 1

and v 2 GNk[fag (note that ��;� (v) (fag) does not depend on �; yet to be de�ned, as
a 2 I n A(�)). By the �-symmetry of �; � (v) (fag) = ��;� (v) (fag) for every v 2 GI
and every a 2 I nA(�): It is also obvious from the �-symmetry that the distribution

of fYbgb2[1k=1Nk would have been the same had a di¤erent sequence fNkg1k=1 or a
di¤erent a 2 I nA(�) been chosen, and thus � is determined uniquely by the given �:
By �xing a 2 A(�); analogous arguments can be made to show that there exists

a unique � 2 M
�
[0; 1]2

�
such that � (v) (fag) = ��;� (v) (fag) for every v 2 GI and

a 2 A(�): This establishes the lemma. �
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