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Abstract

Investors want to be able to evaluate the true and complete risk of the

financial assets they hold in a portfolio. Yet, the current analytic meth-

ods provide only partial risk measures. In a different approach, by viewing

a portfolio of securities as a cooperative game played by the assets that

minimize portfolio risk, investors can calculate the exact value each secu-

rity contributes to the common payoff of the game. This is known as the

Shapley value. It is determined by computing the contribution of each asset

to the portfolio risk, by looking at all the possible coalitions in which the

risky asset would participate. I develop this concept in order to decompose

the risk of mean-variance optimal portfolios and mean-Gini portfolios. This

decomposition lets us better rank of risky assets by their comprehensive

contribution to the risk of optimal portfolios. Such a procedure allows in-

vestors to make unbiased and true decisions when they analyze the inherent

risk of their holdings. In an application, the Shapley value is calculated

for asset allocation and for portfolios of individual securities. The empirical
∗I am grateful to Ofer Zevin for directing me to the Shapley value in finance.
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results are contrary to some of the findings of conventional wisdom and beta

analysis.

1 Introduction

It is well known that investment managers are concerned with the risk impact of

adding securities have to portfolios. Since the inception of modern portfolio theory,

investors have measured how securities affect each other. The simplest risk as

expressed by asset variance is not sufficient to establish sound investment decisions.

Financial theoreticians and practitioners now also take into account correlations,

covariances, and betas to establish the cross-effects among investments.

My claim is that these risk measures although sufficient to build efficient port-

folios are prone to error in measurement of the true impact of a risky asset upon an

optimal portfolio. Hence, when presumably rational and efficient efforts misjudge

the true risk of assets in optimal portfolios, a totally new approach is required.

My purpose in response is to apply the concept of Shapley value (Shapley, 1953)

to financial management theory and practice. Shapley value theory emerged from

cooperative game theory in order to measure the exact contribution of agents

playing the game. In a cooperative game, players interact to optimize a common

objective whose utility is transferable. The Shapley value concept has been applied

successfully in economic theory, politics, sports, and income inequality, to cite a

few examples. Its use in financial investments has been limited, and the approach

is practically nonexistent in optimal portfolio theory.

The idea behind the Shapley value is to look at all the possible coalitions of

players in a cooperative game, and calculate the benefits each player contributes

to the various coalitions. As each contribution depends upon the order in which

players join the coalition, the Shapley value is calculated by averaging the marginal

contributions from the arrival of the various players to the specific coalitions.
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In a sense, a portfolio of risky assets is a cooperative game played in order to

maximize return or minimize risk. This is a natural way to look at portfolios, and

the Shapley value is similarly a natural concept to decompose optimal portfolio

risk into its various components. The contribution of assets to the portfolio is true

since contributions are derived from all the possible optimal portfolios constructed

by the various coalitions. I apply this major insight to standard mean-variance

(MV) portfolio management and to the newer mean-Gini portfolio optimization.

In an analytic sense, MV portfolio optimization, least-squares minimization, and

cooperative game theory share common ground, and the tools used in one field

can easily be applied in the others.

The paper is laid out as follows: First, I use Roth’s (1988) essay to introduce

the Shapley value theory. The notion of applying the Shapley value to decompose

some attribute by sources of contribution was formulated by Shorrocks (2013) in

a working paper circulated since 1999. Shorrocks presented a general framework

to decompose poverty and inequality measures by sources of income using the

Shapley value. The same approach was further elaborated by Sastre and Trannoy

(2002). Applying the decomposition theory to financial risk and portfolios would

follow naturally because inequality measures and risk measures are closely related.

Mussard and Terraza (2007) (2008) were the first to use the Shapley value to

decompose the risk of given portfolios, although their methodology does not to

consider optimal portfolios.

Then, I use Merton’s (1972) derivation of the mean-variance efficient frontier to

calculate the contribution of each security to the various portfolio coalitions and

formulate the Shapley value in optimal portfolios. Finally, I calculate Shapley

values for mean-Gini (MG) portfolios. I use Shalit and Yitzhaki’s (2005) ana-

lytic derivation of the MG efficient frontier to obtain Shapley values that follow

stochastic dominant optimal portfolios.
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2 On Shapley Value

First, I describe the concept of Shapley value decomposition for use in the mean-

variance portfolio and the mean-Gini portfolio. This section draws considerably

from Shorrocks (2013) who developed an unified framework to decompose an at-

tribute by its factors. In the standard investment model, I present the portfolio of

stocks as an n-person cooperative game with transferable utility where the finan-

cial assets are players in the game. The aim is to measure the exact contribution of

each player to the general outcome. For a portfolio of securities, the optimization

outcome is the risk inherent in the portfolio. Hence, the Shapley value allows us

to extract the true and exact contribution of each stock to the portfolio’s total

risk.

Harsanyi (1977) has enunciated the postulates that lead to the Shapley value

theorem as the solution to a cooperative game, where a joint payoff is the specific

characteristic function. Here, the joint payoff function defined is the risk borne by

the players (i.e., the stocks) in the game. Shapley value theory ensures that the

risk decomposition attributed to the various shares in the portfolio is anonymous

(or symmetric), so that the marginal contributions are independent of the order

in which the shares are added to the portfolio and exact in the sense that all the

securities bear the entire portfolio risk.

Consider a portfolio of securities that play a cooperative game whose purpose

is to minimize the risk of the portfolio. For a set N of n securities, the Shapley

value calculates the contribution of each and every security in the portfolio. To

capture the symmetric and exact way each security contributes to the portfolio,

we compute the risk v for each and every subset S ⊂ N . In total we have 2n

coalitions including the empty set.

Computations proceed by looking at the marginal contribution of each security

to the risk of a portfolio it is a member of. For a given coalition (portfolio) a
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security k in S contributes marginally to the portfolio by v(S)−v(S \{k}) , where

v(S) is the risk of portfolio S, and v(S \ {k}) is the risk of the portfolio composed

of S minus the security k. Portfolios are arranged in some given order, and all the

orderings are equally probable. Hence, S \ {k} is the portfolio of securities that

precedes k, and its contribution to coalition S is computed when all the orderings

of S are accounted for. Thus, given all the equally probable orderings, one can

calculate their expected marginal contribution.

For that purpose, one needs the probability that, for a given ordering, the

portfolio S ⊂ N , k ∈ S is seen as the union of security k and the securities

that precede it. Two probabilities are used here: First, the probability that k

is in s (s being the number of stocks in S) which equals 1/n, and second, that

S \ {k} arises when s − 1 securities are randomly chosen from N \ {k}, that is

(n− s)!(s− 1)!/(n− 1)! .

The Shapley value for security k is obtained by averaging the marginal contri-

butions to the risk of all portfolios for a set of N securities and the risk function

v, which in mathematical terms is written:

Shk(N, v) =
∑

S⊂N,k∈S

(n− s)!(n− 1)!
n! [v(S)− v(S \ {k})] (1)

or

Shk(N, v) =
∑

S⊂N,k∈S

s!(n− s− 1)!
n! [v(S ∪ k)− v(S)]) . (2)

Naturally, the sum of all the Shapley values of the assets equals the total risk

of the portfolio that comes from all the securities:

v(S) =
n∑
k=0

Shk(N, v) . (3)

These equations are the basic formulas for the Shapley value computation. In

what follows I show how to to define a cooperative game in portfolio optimization
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and how to set up the common payoff of that game whenever it is played in

mean-variance or mean-Gini.

3 On Risk Decomposition of Optimal Mean-Variance

Portfolios

Second, I develop the Shapley value for the stocks that constitute an optimal mean-

variance portfolio. Given that Shapley value theory considers a single attribute to

be allocated among all game participants, I use the Markowitz (1952) MV model

by looking mainly at optimal portfolios. Furthermore, Shapley value theory was

developed primarily to allocate benefits, i.e., returns, and less to distribute costs,

i.e., risk. Hence, by looking at efficient portfolios and minimizing their variance,

one ensures that expected returns are always at their best à la Markowitz.

To proceed, I calculate first the Shapley value of securities that constitute the

global minimum-variance portfolio (MVP). This is a easier task as it requires only

minimizing portfolio risk regardless of the required expected return. Thereafter, I

address the entire set of frontier portfolios delineated in the MV space. Frontier

portfolios are generated by minimizing the portfolio variance for a given expected

return. MVP is the frontier portfolio that has the least variance. Once the optimal

portfolios are calculated, Shapley values are produced for all the assets along the

efficient frontier.

To construct a portfolio frontier in the MV space, I consider N risky assets

with returns r that are assumed to be linearly independent. This ensures that the

variance-covariance matrix of asset returns Σ is non-singular. We denote by µ the

vector of the asset’s expected returns, and by w the vector of portfolio weights,

such that ∑N
i=1 wi = 1 . We assume w Q 0, hereby allowing for short sales. A

frontier portfolio is obtained by minimizing the variance portfolio σ2
p subject to
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a required mean µp. We minimize 1
2w
′Σw subject to µp = w′µ and the portfolio

constraint 1 = w′l, where l is an N -vector of ones. As Huang and Litzenberger

(1988) show, the solution is obtained by minimizing the Lagrangian that includes

the two constraints and deriving the first-order conditions (FOC) for a minimum,

and the second-order conditions are satisfied by the non-singularity of Σ.

For the sake of presentation, let us define the quadratic forms: A = l′Σ−1µ,

B = µ′Σ−1µ, C = l′Σ−1l, and D = BC − A2. All these scalars are positive since

the matrix Σ is positive-definite. From the FOC for a minimum variance the

optimal portfolio weights for a given mean µp are derived as:

w∗p = 1
D

[B ·Σ−1l − A ·Σ−1µ] + 1
D

[C ·Σ−1µ − A ·Σ−1l]µp. (4)

The frontier portfolios delineate an hyperbola in the standard deviation-mean

space. Thus, the frontier portfolio variance for a given µp is formulated by:

σ2
p = w′pΣwp = C

D
(µp −

A

C
)2 + 1

C
. (5)

Equation (5) is the basic formula for representing the frontier of optimal MV

portfolios used to calculate the Shapley value of the stocks. I examine two specific

cases: (1) the MVP, and (2) the portfolios for a given mean. The reason for

this distinction is that for MVP, the expected value equals A/C, and therefore

the variance of MVP equals 1/C. This simplifies the computation of the Shapley

value for the securities in the MVP as outlined below:

1. Establish all the 2N subsets of the securities in set N .

2. Compute the variance-covariance matrix Σ and C = l′Σl for all the subsets

in set N .

3. The variance of the MVP for each subset is σ2
MV P = 1/C.
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4. Following Equation (2), the Shapley value for each stock i in MVP is ob-

tained as:

Shi(MV P ) =
N−1∑
s=1

∑
S⊂N\i

(N − s− 1)!s!
N !

( 1
CS∪i

− 1
CS

)
(6)

5. The sum of the Shapley values for all the stocks in the MVP is:

N∑
i=1

Shi(MV P ) = 1
CN

. (7)

Although this formulation seems simple enough when applied to the MVP, it is

algorithmically demanding as the number of subsets increases exponentially with

the number of financial assets. Because we are using portfolios that fulfill the

optimality conditions, Shapley values will measure the exact contributions of the

stocks to the risk inherent in the MVP.

Now, we can develop the Shapley value for the stocks of all optimal portfolios

on the frontier. Since the MV efficient frontier is a function of the required mean

return µp the variance of a frontier portfolio is provided by Equation (5), which

can be written equivalently as:

σ2
p = 1

D
(Cµ2

p − 2Aµp +B). (8)

The Shapley value is now computed as follows:

1. Establish all the 2N subsets of the securities in set N .

2. Compute the variance-covariance matrix Σ, A = l′Σ−1µ, B = µ′Σ−1µ,

C = l′Σ−1l, and D = BC − A2 for all the subsets.

3. Establish an arbitrary set of required mean returns µp > AN/CN where AN

and CN are the quadratic forms for the entire set N. Compute the frontier
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portfolio variance for each subset S ⊆ N and for all mean returns µp using

Equation (8).

4. Following Equation (2) the Shapley value for each stock i in an optimal

frontier portfolio subject to a given µp is obtained as:

Shi(µp) =
N−1∑
s=1

∑
S⊂N\i

(N − s− 1)!s!
N ! [σ2

p(µp, S ∪ i)− σ2
p(µp, S)] . (9)

5. For a given expected return µp, the sum of the Shapley values adds to the

optimal portfolio variance at µp:

N∑
i=1

Shi(µp) = σ2
p(µp) . (10)

To validate the Shapley value decomposition of efficient portfolios variance, I com-

pare it to the conventional methods used today, namely “natural” decomposition

of portfolio variance by its securities. This “natural” decomposition would seem to

be tautological unless we address the basic notion of risk in combining securities

and the need to build portfolios in order to reduce that risk.1 The fundamental

idea behind portfolio analysis according to Samuelson (1967) is that diversification

pays as it reduces risk. I use the standard analysis to decompose σ2
p of Equation

(5) into components that attribute the variation to the assets in the portfolio as

follows:

σ2
p =

N∑
i=i

δi =
N∑
i=1

N∑
j=1

wiwjcov(ri, rj) . (11)

Hence, the variation attributed to asset i is :

δi = wi
N∑
j=1

wjcov(ri, rj) = wicov(ri, rp) . (12)

1Shorrocks (1982) coined the “natural decomposition” terminology when he developed the
decomposition of income inequality by its factors.
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The share of the variance attributed to asset i becomes:

ϕi = δi
σ2
p

= wi
cov(ri, rp)

σ2
p

= wiβi (13)

which sums to unity. This variance decomposition is a function of the stock weights

in the portfolio and their betas. This is the basic result when decomposing the

risk of optimal portfolios. If, on the other hand, Equation (13) were concerned

with the variance of the MVP, then ϕi = wi since cov(ri, rp) = σ2
p for any portfolio

or asset. This is valid only as a special case for the MVP.

Applying the Shapley Value to Asset Allocation

To demonstrate the advantages of the Shapley value in portfolio analysis, I con-

struct the efficient frontier for six classes of US assets using Ibbotson SBBI’s aggre-

gate data on stocks, bonds, and bills. The data consist of 1060 monthly nominal

returns from January 1926 through April 2014 for six indices of US assets: large-

company stocks (LCS), small-company stocks (SCS), long-term corporate bonds

(LCB), long-term government bonds (LGB), intermediate-term government bonds

(IGB), and U.S. Treasury bills (TB). The summary statistics are presented in Ta-

ble 1, together with two normality tests, the standard Jarque-Bera statistic and

the newer Kolmogorov-Smirnov statistic for the ordinary least-squares (OLS) test

by Shalit (2012).

Table 1: Ibbotson’s Monthly Returns 1926-2014

Statistic LCS SCS LCB LGB IGB TB

Mean 0.95% 1.29% 0.51% 0.48% 0.44% 0.29%

Std Dev 5.47% 8.29% 2.16% 2.41% 1.26% 0.25%

Gini (GMD) 2.78% 4.07% 1.08% 1.25% 0.64% 0.14%

JB-stat 3979.6 7201.1 2283.8 1128.7 3655.1 262.5

KS-OLS 0.129 0.803 0.557 0.207 0.312 0.091

10



The means and the variance-covariance matrix are computed using these data,

and the MV efficient frontier is calculated from Equation (5) and depicted in

Figure 1. The minimum variance portfolio (MVP) allocation weights are provided

in Table 2 for µMV P = 0.2884% and σMV P = 0.2521%. For that allocation, most

of the weights go to T-bills and only a very small part of the portfolio to other

bonds.

The Shapley values for the MVP assets are computed using Equation (6).

These values are reported in terms of standard deviations in Table 2 together with

the share of the Shapley value of each class toward the total standard deviation

of the MVP. Large stocks have a Shapley value of 0.80% and contribute 317% of

the MVP risk; small stocks have a Shapley value of 1.37% and contribute 543%

to the risk of the MVP. T-bills have a negative Shapley value of 1.42%, meaning

that they reduce the total risk exposure by 563% in terms of standard deviation.

These staggering results could not be predicted by looking only at the assets’

standard deviation and their composition in the MVP. As Equation (13) shows,

the share of variance attributed to assets in the MVP is given by their holdings

in the MVP. This is exhibited in the last two rows of Table 2. T-bills, being the

main MVP component, also bear 99% of the risk, which provides a completely

different picture when considering the results for the Shapley value in the MVP.

Table 2: MVP: Weights, Shapley Values, and Variance Decomposition

LCS SCS LCB LGB IGB TB µ = 0.29%

MVP weights 0.02% 0.16% 1.30% -0.35% -1.06% 99.93% 100%

SV 0.80% 1.37% -0.03% 0.02% -0.50% -1.42% 0.25%

SV Share 317% 543% -13% 10% -195% -563% 100%

Stdev Dcmp 0.004% 0.01% 0.03% -0.01% -0.03% 0.25% 0.25%

Stdev Share 0.02% 0.16% 1.30% -0.35% -1.06% 99.93% 100%

Figure 1: Mean-Variance Efficient Frontier for Asset Classes

11



Let us next explore the Shapley values of portfolio assets on the efficient fron-

tier. For five arbitrary given means, I minimize the portfolio variance and compute

the assets’ optimal weights as reported in Table 3. As the required mean return

increases, the results show a short position in government bonds and in T-bills

and an increasing position in large stocks, small stocks, and corporate bonds. It

appears that the main positive weight is allocated to corporate bonds.

Table 3: Optimal Weights of Assets for Each of the MV Frontier Portfolios

Prtfl Mean Std Dev Weight Weight Weight Weight Weight Weight

# LCS SCS LCB LGB IGB TB

1 0.29% 0.25% 0.02% 0.16% 1.30% -0.35% -1.06% 99.93%

2 0.49% 1.15% 5.42% 5.68% 17.54% -29.13% 83.76% 16.74%

3 0.69% 2.26% 10.81% 11.20% 33.79% -57.92% 168.57% -66.45%

4 0.90% 3.38% 16.20% 16.71% 50.03% -86.70% 253.39% -149.64%

5 1.09% 4.50% 21.59% 22.23% 66.28% -115.48% 338.20% -232.82%

6 1.29% 5.62% 26.99% 27.75% 82.52% -144.26% 423.02% -316.01%

The Shapley values for the assets on the optimal frontier are computed follow-

ing Equation (9). They are reported in Table 4, together with their shares from

total risk as shown in Table 5. In terms of standard deviation, the Shapley values

of large and small stocks decline as one moves along the efficient frontier from
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lower risk to higher risk portfolios.

Table 4: Shapley Values of Assets on the Efficient Frontier

Prtfl Mean Std Dev SV SV SV SV SV SV

# LCS SCS LCB LGB IGB TB

1 0.29% 0.25% 0.90% 1.37% 0.30% 0.45% -0.48% -2.28%

2 0.49% 1.15% 0.80% 1.36% -0.03% 0.11% -0.51% -0.58%

3 0.69% 2.26% 0.55% 1.05% 0.34% 0.69% 0.05% -0.43%

4 0.90% 3.38 0.44% 0.85% 0.89% 1.43% 0.48% -0.72%

5 1.09% 4.50% 0.41% 0.74% 1.45% 2.18% 0.85% -1.11%

6 1.29% 5.62% 0.42% 0.65% 1.99% 2.92% 1.20% -1.55%

Table 5: Shares of Shapley Values of Assets on the Efficient Frontier

Prtfl Mean Std Dev SV% SV% SV% SV% SV% SV%

# LCS SCS LCB LGB IGB TB

1 0.29% 0.25% 352% 546% 117% 178% -191% -903%

2 0.49% 1.15% 69.85% 118.00% -2.78% 9.54% -44.29% -50.00%

3 0.69% 2.26% 24.32% 46.57% 15.07% 30.62% 2.25% -18.83%

4 0.90% 3.38% 13.08% 25.27% 26.37% 42.38% 14.14% -21.23%

5 1.094% 4.50% 9.12% 16.23% 32.13% 48.39% 18.86% -24.73%

6 1.29% 5.62% 7.41% 11.49% 35.47% 51.89% 21.26% -27.53%

This unexpected result is also reflected in the shares of Shapley values shown

in Table 5. In general, bonds, whether corporate, government, or T-bills, become

more important with higher-variance portfolios.2 These portfolios being on the ef-

ficient frontier also yield higher expected return. When we compare these results

with the “natural” decomposition of risk as seen on Tables 6 and 7, we get an en-

tirely opposite picture. The standard deviation attributed to stocks and corporate
2For conservative portfolios, popular advice recommends to allocate more wealth to bonds and

cash, and less to stocks. For aggressive portfolios popular advice recommends more stocks and
less bonds and cash. Using Ibbotson SBBI’s data for an earlier period, these recommendations
were found to be not inefficient by Shalit and Yitzhaki (2003).
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bonds increases along the frontier although their shares stay the same possibly due

to the way the betas in Equation (13) are computed for each portfolio.

It would be difficult to assert that the natural decomposition measures the

true contribution of each asset to portfolio risk since it ignores the basic fact that

individual assets can alter risk in a series of alternative portfolios. Shapley values

reflect the true contribution of assets to the risk of the portfolio because all these

alternatives are considered. The comparison of Tables 5 and 7 clearly shows the

superior advantage of Shapley values in evaluating risky assets and pricing them

accordingly.

Table 6: Standard Deviation Decomposition of Assets on the MV Frontier

Prtfl Mean Std Dev Std Dev Std Dev Std Dev Std Dev Std Dev Std Dev

# LCS SCS LCB LGB IGB TB

1 0.29% 0.25% 0.004% 0.01% 0.03% -0.01% -0.026 % 0.25%

2 0.49% 1.15% 0.48% 0.60% 0.51% -0.61% 0.92% 0.09%

3 0.69% 2.26% 0.95% 1.19% 0.98% -1.19% 1.81% -0.15%

4 0.90% 3.38% 1.42% 1.78% 1.46% -1.78% 2.70% -0.17%

5 1.09% 4.50% 1.90% 2.37% 1.93% -2.37% 3.60% -0.09%

6 1.29% 5.62% 2.37% 2.96% 2.41% -2.95% 4.49% 0.19%

Table 7: Shares of Std Dev Decomposition of Assets on the MV Frontier

Prtfl Mean Std Dev sv % sv % sv % sv % sv % sv %

# LCS SCS LCB LGB IGB TB

1 0.29% 0.25% 0.02% 0.16% 1.30% -0.35% -1.06% 99.93%

2 0.49% 1.15% 17.22% 27.24% 19.26% -27.70% 63.35% 0.61%

3 0.69% 2.26% 17.69% 27.72% 18.82% -27.84% 64.04% -0.43%

4 0.90% 3.38% 17.76% 27.73% 18.57% -27.73% 63.91% -0.24%

5 1.09% 4.50% 17.77% 27.71% 18.43% -27.65% 63.78% -0.04%

6 1.29% 5.62% 17.78% 27.68% 18.33% -27.59% 63.68% 0.11%
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Thus, if one believes that asset classes will continue to behave as in the past

90 years, it is my contention that the most valuable assets in building optimal

portfolios are the classes of government and corporate bonds and not as one would

expect the large- and small-stock classes. It’s not like US professional sports;

the Most Valuable Player is determined not by voting but by an actual true

contribution to the portfolio game. Because optimal portfolio composition depends

on the level of asset required mean return, Shapley valuation of financial assets

changes accordingly. For lower portfolio mean returns and therefore lower-variance

portfolios, it is the class of small stocks that is the most valuable. For the higher-

mean returns and higher-variance portfolios, it is the class of government bonds.

Why should we care about this valuation? Because as we compute the benefits

of a specific asset to the optimal portfolio, we evaluate its true theoretical price and

compare that to the market price, revealing some possible arbitrage opportunities.

The true risk valuation ranking of financial assets would follow accordingly.

It is well established in financial economics literature that to be valid with

expected utility the MV model is limited to assets that follow a normal probability

distribution. As we see in Table 1, none of the Ibbotson’s asset classes are like

this. Indeed, the Jarque-Bera test and the OLS-Shalit test both reject normality at

the highest significance level available. The alternative is to use a two-parameter

investment model that follows stochastic dominance such as mean-Gini.

4 On Risk Decomposition of Optimal Mean-Gini

Portfolios

Finally, I develop the Shapley value for assets that make up an optimal mean-

Gini (MG) portfolio. In constructing MG portfolios, investors use Gini’s mean

difference (GMD) as a measure of risk. GMD is defined as half the expected
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absolute difference between the returns of two randomly drawn amounts invested

in the portfolio. The Gini may be more conveniently defined as the covariance

between returns and cumulative probability distribution function (CDF):

Γ = 2cov[r , Fr(r)], (14)

where Γ is the Gini, Fr(r) is the CDF, and r the returns. In practice to estimate

Equation (14), we rank the returns in ascending order and calculate the sample

covariance between the returns and their relative position. The use of the Gini

in financial economics is rooted in its advantage over the variance as a measure

of risk. With the mean, the Gini provides necessary and sufficient conditions for

second-degree stochastic dominance (SSD) as proved by Yitzhaki (1982). Indeed,

for two portfolios with means µ1, µ2 and Ginis Γ1, Γ2 , µ1 = µ2 and µ1−Γ1 = µ2−Γ2

are necessary conditions for SSD and for portfolios whose CDF intersect at most

once, these conditions are also sufficient. MG theory in finance was established by

Shalit and Yitzhaki (1984), and the MG efficient frontier was delineated by Shalit

and Yitzhaki (2005) and further illustrated by Cheung et al. (2007).

The MG portfolio frontier is obtained by minimizing the Gini of the portfolio

Γp subject to a required portfolio mean return and a portfolio constraint. Let rpbe

the portfolio return defined as rp =
N∑

i=1

wiri = w′r, where ri are asset returns. The

portfolio Gini:

Γp = 2cov[rp , Fr(rp)] = 2
N∑
i=1

wicov[ri, Fp(rp)] (15)

is minimized subject to µp = w′µ, 1 = w′l, and w Q 0. The solution to this

problem is more complex to solve than the MV optimization outlined in Section 3

because one needs to calculate the covariance between each asset’s return and the

portfolio CDF, which is not a trivial task. Furthermore, contrary to the variance

of a sum of two variables that produces one covariance and one Pearson coefficient
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of correlation, the Gini of two variates generates two coefficients of correlation,

namely, the Gini correlations:



ρij = cov[i , Fj(j)]
cov[i , Fi(i)]

ρji = cov[j , Fi(i)]
cov[j , Fj(j)]

(16)

Schechtman and Yitzhaki (1999) in a study of the properties of Gini correla-

tions and determined that if the variates are exchangeable up to a linear transfor-

mation, the Gini correlations are equal to each other.3 This simplifies the portfolio

optimization problem as the MG optimal frontier can derived analytically as in

Shalit and Yitzhaki (2005). Under exchangeability, we define the Gini squared of

the portfolio as:

Γ 2
p =

N∑
i=1

N∑
j=1

wiwjρijΓiΓj, (17)

where ρii = 1. Denote as R the matrix of Gini correlations, as Γ the diagonal

matrix of asset Ginis, and as V the matrix V = ΓRΓ . Then, the Gini-squared

of the portfolio in Equation (17) can be written as Γ 2
p = w ′V w. The optimization

problem becomes:

Min w′V w

s.t. µp = w′µ (18)

1 = w′l

The first-order conditions (FOC) for a minimum Gini portfolio are similar to

those presented in Section 3 for the MV optimization model. Hence, an analytical
3A set of random variables is said to be exchangeable if, for every permutation of the variates,

the joint distributions are identical.
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solution to problem (18) can be produced if one uses the quadratic forms A =

l′V −1µ, B = µ′V −1µ, C = l′V −1l, and D = BC − A2. All these scalars are

positive because matrix V is positive-definite. From the FOC for a minimum

portfolio Gini square, the optimal weights for a given µp are obtained as:

wΓ∗p = x + µpy (19)

where x = [B(V −1l)−A(V −1µ)]/D and y = [C(V −1µ)−A(V −1l)]/D. Equation

(19) is used to generate the MG portfolio frontier delineated as a hyperbola in the

mean-Gini squared space:

Γ 2
p = w′pV wp = 1

D
(Cµ2

p − 2Aµp +B) (20)

The Gini-square equation (20) helps us determine the Shapley value of assets

on the optimal MG frontier. Assuming exchangeability simplifies the procedure.

An analytical solution is provided as follows:

1. Establish all the 2N subsets of the securities in set N .

2. For all these subsets, compute the matrix R of Gini correlations, the diag-

onal matrix of asset Ginis Γ , and the matrix V = ΓRΓ . Calculate the

appropriate quadratic forms A = l′V −1µ, B = µ′V −1µ, C = l′V −1l, and

D = BC − A2.

3. For an arbitrary set of required mean returns µp, compute the frontier port-

folio Gini-squared for each subset S ⊆ N and for all mean returns µp as

Γ 2
p = 1

D
(Cµ2

p − 2Aµp +B).

4. Following Equation (2) the Shapley value for each stock i in an optimal
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frontier portfolio, given µp , is obtained as:

Shi(µp) =
N−1∑
s=1

∑
S⊂N\i

(N − s− 1)!s!
N ! [Γ 2

p(µp, S ∪ i)− Γ 2
p(µp, S)] (21)

5. For a given return µp the sum of Shapley values adds to the optimal portfolio

Gini-squared at µp:
N∑
i=1

Shi(µp) = Γ 2
p (µp) . (22)

To validate the importance of Shapley values in MG optimal portfolios I compare

them to the current Gini decomposition called the “natural decomposition” by

Shorrocks (1982). For MG portfolios, this decomposition was established by Shalit

and Yitzhaki (1984) as Equation (15) here above. This implies that the risk

attributed to asset i is:

δΓi = 2wi cov[ri , Fp(rp)] (23)

and the relative risk attributed to asset i is:

ϕΓi = 2wi cov[ri , Fp(rp)]
Γp

= wi β
Γ
i , (24)

where βΓi is the MG beta of asset with respect to portfolio p. Hence, the “ MG

natural decomposition of risk” is basically identical to what was seen with MV

portfolios but including MG betas.

Computing the Shapley Value for MG portfolios

We again use Ibbotson’s data on six US assets classes as presented in Table 1 to

construct mean-Gini efficient portfolios under the assumption of exchangeability.

This postulation simplifies the procedure, as an analytic solution can be provided,

and the optimization results facilitate calculation of the Shapley values. The Ginis
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of each asset are exhibited in Table 1. 4

The weights expressed in Equation (19) delineate the MG efficient frontier in

the space mean-Gini square. The first step is to compute the Shapley values of the

global minimum Gini portfolio (MGP). The MGP allocation weights are obtained

for the mean µMGP = 0.2884% and the Gini ΓMGP = 0.137% shown in Table 8.

As in the case of the MVP most of the weight goes to the T-bills, and only

a very small part of the portfolio goes to other bonds and stocks. The Shapley

values for the assets at MGP are computed using Equation (21) and are reported

with the shares of the Shapley values from the Gini at MGP. Hence, large stocks

contribute 300% of the portfolio Gini at MGP, small stocks 491% of the risk, and

T-bills reduce the total risk exposure by 515%. These results are similar to the

ones obtained for the MVP, therefore supporting the superiority of the Shapley

value decomposition of risk over the use of the “natural” decomposition of optimal

portfolio variance.

Table 8: The Minimum Gini Portfolio: Weights and Shapley Values

MGPµ = 0.29% LCS SCS LCB LGB IGB TB Γ

MGP weights 0.03% 0.17% 1.42% -0.26% -0.79% 99.43% 100%

Shapley Value 0.413% 0.674% -0.018% 0.022% -0.247% -0.706% 0.137%

Shapley Share 301% 491% -13% 16% -180% -515% 100%

The weights of the optimal MG portfolios are reported in Table 9. The posi-

tions and behavior of asset classes along the MG efficient frontier are similar to

the positions recorded for the MV optimal frontier in Table 3. As the required

expected return rises the portfolio Gini is increased and the optimal shares of large

stocks, small stocks, corporate bonds, and intermediate-term bonds increase. The

government bonds and T-bills exhibit short positions that become more negative

as one moves along the efficient frontier.
4If the asset returns exhibited a normal distribution, their Gini values would have been near

the standard deviation divided by the square root of π, which is not the case with our data.
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Table 9: Optimal Weights of Assets for Each MG Frontier Portfolio

Prtl Mean GMD Weight Weight Weight Weight Weight Weight

# LCS SCS LCB LGB IGB TB

1 0.289% 0.0002% 0.03% 0.17% 1.42% -0.26% 0.79% 99.43%

2 0.491% 0.003% 2.80% 7.51% 16.99% -30.24% 85.93% 17.00%

3 0.692% 0.013% 5.57% 14.85% 32.56% -60.21% 172.65% -65.42%

4 0.894% 0.029% 8.34% 22.19% 48.14% -90.19% 259.37% -147.85%

5 1.095% 0.051% 11.11% 29.53% 63.71% -120.17% 346.09% -230.28%

6 1.297% 0.079% 13.88% 36.87% 79.29% -150.15% 432.83% -312.71%

The Shapley values of assets on the MG efficient frontier are computed follow-

ing Equation (21) and are reported in Table 10. Their shares of total GMD are

reported in Table 11. The results show a similar picture as with the MV Shapley

values, as stocks become less valuable as required returns increase.
Table 10: Shapley Values of Assets of Portfolios on the MG Efficient Frontier

Prtfl Mean GMD SV SV SV SV SV SV

# LCS SCS LCB LGB IGB TB

1 0.289% 0.0002% 0.229% 0.486% -0.109% -0.072% -0.211% -0.323%

2 0.491% 0.003% 0.229% 0.487% -0.118% -0.082% -0.207% -0.307%

3 0.692% 0.013% 0.218% 0.476% -0.110% -0.064% -0.196% -0.310%

4 0.894% 0.029% 0.198% 0.451% -0.089% -0.021% -0.179% -0.331%

5 1.095% 0.051% 0.167% 0.414% -0.053% 0.050% -0.156% -0.372%

6 1.297% 0.079% 0.126% 0.365% -0.002% 0.147% -0.126% -0.432%
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Table 11: Shares of Shapley Values of Assets on the MG Frontier

Prtfl Mean GMD SV% SV% SV% SV% SV% SV%

# LCS SCS LCB LGB IGB TB

1 0.289% 0.0002% 121451% 258248% -57770% -38233% -111856% -171741%

2 0.491% 0.003% 6829% 14562% -3498% -2438% -6177% -91776%

3 0.692% 0.013% 1701% 3709% -862% -5036% -1530% -2416%

4 0.894% 0.029% 690% 1577% -311% -72% -626% -1158%

5 1.095% 0.051% 329% 816% -104% 99% -307% -733%

6 1.297% 0.079% 159% 461% -2.32% 186% -159% -545%

As with the MV portfolios there is a need to explore the “natural” decompo-

sition of MG optimal portfolio in order to compare the Shapley value results with

other methods in MG space. We reserve this for future work.

5 Concluding Remarks

Theoretical methods and analytical tools have migrated from the field of income

inequality to financial economics. These include use of the Gini to improve the op-

timization of financial portfolios and generalization of the Lorenz curve to expand

the use of stochastic dominance in finance, leading eventually to conditional-value-

at-risk. These are major advances because, unfortunately, financial returns do not

follow a normal distribution.

Applying the Shapley value to portfolio analysis is more intricate because it

requires the mental calculus to look at portfolio selection as a cooperative game

where assets act to reduce risk while increasing expected return. Once this notion

is accepted, risk decomposition comes naturally, in the sense that one looks at the

contribution of each security in the portfolio to the overall risk reduction.

But Shapley value theory adds much more than the standard beta analysis

when it comes to decomposition of portfolio risk because it looks at the contri-
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bution of each asset to all the possible coalitions. Hence, when financial analysts

propose adding or eliminating specific securities from present positions the true

impact is already expressed within the Shapley value. The brilliance of Lloyd Shap-

ley is that he looked at all available configurations and averaged their marginal

effects to obtain a multidimensional contribution that is much meaningful than

the standard beta.

The analysis and the results presented here are the offshoots of a new theory of

capital asset pricing. It is my contention that as research on the subject evolves,

results will arise to contradict common financial wisdom. For sake of simplicity,

my analysis has used the first-order conditions of optimal portfolio selection al-

lowing for short sales, in order to compute Shapley values without the need for

specific optimization techniques. Many avenues of future research should open

to generalize mean-variance portfolio optimizations and to allow for generalized

probability distributions to find mean-Gini efficient portfolios. This means that

portfolio frontiers will be optimized for each and every coalition and Shapley values

calculated accordingly.

As standard Shapley values computation requires huge memory allocation,

there will be a need to improve calculation in order to accommodate the risk

decomposition of large portfolios that follow market indices. This is the trend of

future research if Shapley values are to replace standard beta theory and leave the

flat universe of our current financial analysis behind.
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