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Abstract

We show that in a common-value classic Tullock contests with incomplete informa-

tion a player�s information advantage is rewarded. Interestingly, in two-player contests

both players exert the same expected e¤ort. We characterize the equilibrium of two-

player contests in which a player has information advantage, and show that this player

exerts a larger e¤ort and wins the price with a larger probability the larger is the re-

alized value of the prize, although he wins the prize less frequently than his opponent.

In addition, we �nd that players may exert more e¤ort in a Tullock contest than in an

all-pay auction.
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1 Introduction

Tullock contests (see Tullock 1980) are perhaps the most widely studied models in the

literature on imperfectly discriminating contests. In a Tullock contest a player�s probability

of winning the prize is the ratio of the e¤ort he exerts and the total e¤ort exerted by all

players. This paper belongs to a relatively recent but growing strand of this literature

that concerns Tullock contests with incomplete information. Speci�cally, we study Tullock

contests in which the players�common-value for the prize as well as their common marginal

cost of e¤ort depend on the state of nature. Players have a common prior belief, but upon

the realization of the state of nature (and before taking action) each player observes some

event that contains the realized state. The interim information endowment of each player at

the moment of taking action is described by a partition of the set of states of nature, and

these partitions may di¤er across players. (This representation is equivalent to the Harsanyi

types model of Bayesian games, but is more natural in the present context.)

In this setting, we show that Tullock contests reward information advantages: if some

player i has information advantage over another player j (i.e., the information partition of

player i is �ner than that of player j), the expected payo¤ of player i is greater or equal

to that of player j; see Proposition 1. This result holds for any two players with rankable

information partitions, regardless of the information endowments of the other players. The

proof of this result relies on the theorem of Einy et al. (2002), which establishes that in any

Bayesian Cournot equilibrium of an oligopolistic industry a �rm�s information advantage

is rewarded provided the �rms have linear costs. We establish the result by observing the

formal equivalence between a Tullock contest and an oligopoly with asymmetric information.

We then proceed to study other properties of the equilibria of two-player contests. We

�rst show that in such contests players exert the same expected e¤ort in any equilibrium,

provided their marginal costs is independent of the state; see Proposition 2. This result

requires no relation between the players�information endowments. We then explicitly calcu-
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late the unique Bayesian Nash equilibrium of a two-player contest in which one of the players

has information advantage over his opponent; see Proposition 3. We �nd that the player

with information advantage exerts a larger e¤ort and wins the prize with a larger probability

the larger is the realized value of the prize, although he wins the prize less frequently than

his opponent; see Proposition 4. We also examine how the asymmetry of the information

a¤ects the players�e¤orts and their payo¤s in relation to a symmetric scenario. Assuming

that the distribution of the players�value for the prize is not disperse, we show that, when

one player has information advantage over the other, the total e¤ort exerted by the players

is smaller, and thus the share of the total surplus they capture is larger, than when both

players have the same information; see Proposition 5.

Our �ndings for two-player Tullock contests do not extend over to contests with more

than two players. Indeed, we construct an example of three-player contest in which two of

the players have the same information, which is superior to that of the third player, and the

expected e¤ort exerted by the last player is greater than those of his opponents. Also, we

provide an example of a contest with multiple players in which a player that has information

advantage over all the other players, who are symmetrically informed, wins the prize more

frequently than any player. The linearity of the cost of e¤ort is also crucial in our results

regarding the reward of information advantages and the equality of expected e¤orts. Einy

et al. (2002) provide an example showing that when �rms cost function is state independent

and quadratic (speci�cally, c(x) = x2) a �rm with information advantage over other �rm

obtains lower expected pro�ts. Interestingly, in any equilibrium of a two-player contest in

which the state independent cost of e¤ort is a function of the form c(x) = x� with � � 1, the

players�expected cost of e¤ort coincide; see Proposition 6. Simple implications of this result

are our Proposition 2, as well as the result that when � > 1 if a player with information

advantage exerts less e¤ort than his opponent; see Proposition 7.

Finally, we study the relative e¤ectiveness of Tullock contests and all-pay auctions in
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inducing the players to exert e¤ort. Einy et al. (2015) characterize the unique equilibrium

of a two-player common-value all-pay auction, which is in mixed strategies, and provide an

explicit formula that allows us to compute the players�total e¤ort. Using the formula in

Einy et al. (2015) and results in the present work, we show that the sign of the di¤erence in

the total e¤ort exerted by players in a Tullock contest and an all-pay auction can be either

positive or negative.

There is an extensive literature on Tullock contests under complete information. Baye

and Hoppe (2003) have identi�ed a variety of economic settings (rent-seeking, innovation

tournaments, patent races), which are strategically equivalent to a Tullock contest. Skaper-

das (1996) and Clark and Riis (1998) provide axiomatic characterizations of Tullock con-

tests. Perez-Castrillo and Verdier (1992), Baye Kovenock and de Vries (1994), Szidarovszky

and Okuguchi (1997), Cornes and Hartley (2005), Yamazaki (2008) and Chowdhury and

Sheremeta (2009) study existence and uniqueness of equilibrium. Skaperdas and Gan (1995),

Glazer and Konrad (1999), Konrad (2002), Cohen and Sela (2005) and Franke et al. (2011)

look into the e¤ects of changes in the payo¤ structure on the behavior of players, and

Schweinzer and Segev (2012) and Fu and Lu (2013) study optimal prize structures.

The study of Tullock contests under incomplete information is relatively sparse. Fey

2008 and Wasser 2011 study rent-seeking games under asymmetric information. Einy et al.

(2015a) show that under standard assumptions Tullock contests with asymmetric information

in a large class (which contains the contests studies in the present paper) have pure strategy

Bayesian Nash equilibria, although they neither characterized equilibrium strategies nor they

study their properties. Einy et al. (2016) study the value of public information.

A closely related paper by Warneryd (2003) studies two-player Tullock contests in which

the players�common marginal cost of e¤ort is state independent and their common value is

a continuous random variable, and considers the alternative information structures arising

when each player either observes the value or does not observe it. Warneryd (2003) shows
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that in the equilibrium of the asymmetric information case, (1) the informed player is better

o¤ than the uninformed player, although (2) he wins the prize less frequently. Also, he

shows that (3) both players�exert the same expected e¤ort whether they are symmetrically or

asymmetrically informed, and that (4) the expected total e¤ort is strictly lower when players

are asymmetrically informed than when they are symmetrically informed. The results we

derive in our discrete setting contribute to clarify the nature of these results and explore

their limits: Proposition 1 establishes that Tullock contests reward information advantages,

which is the general idea implicit in (1), extending the result to contests with any number

of players and arbitrary information structures whether the marginal cost of e¤ort is state

independent or not. Proposition 2 shows that in two-players Tullock contests the equality of

players�expected e¤orts holds whatever the players information, implying (3) in our setting.

Actually, this result is a simple corollary of a more general property of two-player Tullock

contests: if players cost of e¤ort is a state independent convex function of the form c(x) = x�;

with � � 1, then players expected cost of e¤ort coincide; see Proposition 6. Thus, when

the cost of e¤ort is linear (i.e., � = 1), this result implies (4), but when it strictly convex

(i.e., � > 1), a player with information advantage exerts less e¤ort in expectation than his

opponent; see Proposition 7. Also, propositions 4 and 5 establish in our setting the analog

of (2) and (3), as well as other interesting properties of equilibrium.

As we do in the present paper, Fang (2002), Epstein, Mealem and Nitzan (2011) compare

the outcomes of Tullock contests and all-pay auctions under complete information, while

Dubey and Sahi (2012) consider an incomplete information binary setting. Common-value

�rst- and second-price auctions in a setting analogous to ours have been studied by Einy

et al. (2001, 2002), Forges and Orzach (2011), and Malueg and Orzach (2009, 2012), while

all-pay auctions have been studied by Einy et al. (2015b, 2016) and Warneryd (2012).

The rest of the paper is organized as follows: Section 2 describes our setting and presents

our result on information advantage. Section 3 contains our results for two-player contents.
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Section 4 contains examples and discussion. The proofs are given in an Appendix.

2 Common-Value Classic Tullock Contests

2.1 Basic Notations

A group of players N = f1; :::; ng; with n � 2; participates in a contest that allocates

a prize. The contest starts by a move of nature that selects a state ! from a �nite set


: The private information about the state of nature of player i 2 N is described by a

partition �i of 
. Upon the realization of !; player i observes the element �i(!) of �i which

contains !, i.e., �i(!) contains the set of states of nature which i cannot distinguish from

!. Then players simultaneously choose their e¤ort levels in R+. Players� common prior

belief about the realized state of nature is given by a probability distribution p over 
.

W.l.o.g. we assume that p(f!g) > 0 for every ! 2 
. Players� common value for the

prize is given by a random variable V : 
 ! R++. We assume that players� common

costs of e¤ort is linear; their common marginal cost of e¤ort is given by a random variable

C : 
! R++: The prize is awarded to the players in a probabilistic fashion: Given a pro�le

of e¤orts x = (x1; :::; xn) 2 Rn+nf0g the probability that player i receives the prize is equal

to xi=
Pn

k=1 xk; when no player exerts e¤ort, i.e., x = 0, the prize is allocated according to

a given arbitrary probability vector (��1; :::; ��n). Hence, for every ! 2 
 and x 2 Rn+nf0g the

payo¤ of player i 2 N is given by

ui(!; x) =
xiPn
k=1 xk

V (!)� C(!)xi; (1)

whereas ui(!; 0) = ��iV (!). A common-value classic Tullock contest (which we will refer to

henceforth simply as a Tullock contest) is therefore described by a collection

(N; (
; p); f�igi2N ; V; C):
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2.2 Strategies and Equilibrium

A Tullock contest de�nes a Bayesian game in which a pure strategy for player i 2 N is a

�i-measurable function Xi : 
 ! R+ (i.e., Xi is constant on every element of �i); that

represents i�s choice of e¤ort in each state of nature following the observation of his private

information. We denote by Si the set of strategies of player i, and by S = �ni=1Si the set

of strategy pro�les. For any strategy Xi 2 Si and �i 2 �i; Xi (�i) stands for the constant

value that Xi (�) takes on �i. Also, given a strategy pro�le X = (X1; :::; Xn) 2 S; we denote

by X�i the pro�le obtained from X by suppressing the strategy of player i 2 N: Throughout

the paper we restrict attention to pure strategies.

Let X = (X1; :::; Xn) be a strategy pro�le. We denote by Ui(X) the expected payo¤ of

player i, which is given by

Ui(X) � E[ui(�; (X1 (�) ; :::; Xn (�))]:

For �i 2 �i; we denote by Ui(X j �i) the expected payo¤ of player i conditional on �i; i.e.,

Ui(X j �i) � E[ui(�; (X1 (�) ; :::; Xn (�)) j �i]:

An n-tuple of strategies X� = (X�
1 ; :::; X

�
n) is a (Bayesian Nash) equilibrium if

Ui(X
�) � Ui(X�

�i; Xi) (2)

for every player i 2 N , and every strategy Xi 2 Si; or equivalently,

Ui(X
� j �i) � Ui(X�

�i; xi j �i) (3)

for every i 2 N; every �i 2 �i; and every e¤ort xi 2 R+ of player i (viewed here as a strategy

in Si with the constant value xi on the set �i). Existence of equilibrium in Tullock contests

is implied by the theorem of Einy et al. (2015).

7



2.3 Information Advantage

The concept of information advantage is central to our work, and our �rst result is concerned

with the natural question of whether this advantage is re�ected in equilibrium payo¤s. For-

mally, player i 2 N is said to have an information advantage over player j 2 N if partition

�i is �ner than partition �j; i.e., �i (!) � �j (!) for every ! 2 
 � in words, if player

i knows the realized state of nature with no less or greater precision than player j. The

next proposition shows that Tullock contests reward information advantages, as far as the

equilibrium expected payo¤s are concerned � for any two players i and j as in the above

scenario, the expected payo¤ of player i with an information advantage is never below that

of the disadvantaged player j. Importantly, this result holds for any two players i and j

with rankable information partitions, regardless of the information endowments of the other

players and their relation to the information of i and j.

Proposition 1 In any equilibrium of a Tullock contest the expected payo¤ of a player is

greater or equal to that of any other player over whom the player has information advantage.

Proposition 1 is proved by observing a formal equivalence between a Tullock contest and

a Cournot oligopoly with asymmetric information in which all �rms have the same linear

cost function, and by appealing to a result of Einy et al. (2002) that shows that the Bayesian

Cournot equilibria of such industries have the desired property.

3 Two-Player Tullock Contests

3.1 Expected E¤ort in Equilibrium

Throughout Section 3 we will con�ne ourselves to two-player Tullock contests, and further

assume that the marginal cost of e¤ort is state-independent (i.e., C is constant on 
) and

hence normalized to one. Our �rst result establishes the equality of the expected e¤orts of
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both players in such contests. In particular, in a two-player Tullock contest in which one

players has an information advantage over the other, the player with less information exerts

the same expected e¤ort as the player with information advantage, although his expected

payo¤ is (typically) smaller than that of the better informed player by Proposition 1. The

equality of the expected e¤orts does not, however, depend on there being an information

advantage in the contest, as no assumption is made on the players�information endowments.

Proposition 2 In any equilibrium of a two-player Tullock contest both players exert the

same expected e¤ort.

3.2 Equilibrium when a Player has Information Advantage

We shall now characterize the equilibrium of a two-player Tullock contest in which one player

has an information advantage over the other, and study its properties. In order to simplify

the presentation, let us index the set of states of nature as


 = f!1; :::; !mg:

For k = 1; :::;m, we write

p(f!kg) = pk and V (!k) = vk

and, w.l.o.g., assume that

0 < v1 � v2 � ::: � vm: (4)

We shall assume that player 2 has an information advantage over player 1. Since 
 is

�nite, we may further assume, w.l.o.g., that the only information player 1 has about the state

is the common prior belief, i.e., �1 = f
g, whereas player 2 has full information about the

state of nature, i.e., �2 = ff!1g; :::; f!mgg. Dealing with general information structures for

which player 2 has information advantage over player 1 involves applying on each atom of the

information partition of player 1 the analysis that we provide for this extreme information
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structure, and then use conditional expectation and the law of iterated expectation to derive

the results we obtain.

With these conventions, a strategy pro�le is a pair (X; Y ); where X can be identi�ed

with a number x 2 R+ specifying player 1�s unconditional e¤ort, and Y can be identi�ed

with a vector (y1; :::; ym) 2 Rm+ specifying the e¤ort of player 2 in each of the m states of

nature. The following notation will be useful in characterizing equilibria. For k 2 f1; :::;mg

we write

Ak =

 
mX
s=k

ps
p
vs

! 
1 +

mX
s=k

ps

!�1
: (5)

Note that

A1 =
E(
p
V )

2
:

Lemma 1 establishes a key property of the sequence fAkgmk=1 :

Lemma 1 If
p
vk > Ak; then

p
vk0 > Ak0 and Ak > Ak0 for all k0 > k:

Proposition 3 below shows that a two-player Tullock contest in which player 2 has infor-

mation advantage over player 1 has a unique equilibrium, which is calculated explicitly. Let

k� 2 f1; :::;mg be the smallest index such that pvk > Ak: Since

p
vm >

pm
(1 + pm)

p
vm = Am;

k� is well de�ned.

Proposition 3 A two-player Tullock contest in which player 2 has information advantage

over player 1 has a unique equilibrium given by x� = A2k� ; y
�
k = 0 if k < k�, and y�k =

Ak�
�p
vk � Ak�

�
otherwise.

Proposition 3 implies uniqueness and symmetry of equilibrium in the complete informa-

tion case, i.e., whenm = 1. (Note that in this case k� = 1; and therefore y�1 = A1(
p
v1�A1) =

v1=2� v1=4 = A21 = x�. This result is well known in the literature.)
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We say that the distribution of values is disperse when
p
v1 � A1 = E(

p
V )=2; e.g., this

inequality holds when vm � 4v1: (We say that the distribution of values is not disperse if

this inequality does not hold.) The following remark, which we will refer to later on, states

that when the distribution of values is not disperse the unique equilibrium of a two-player

Tullock contest in which one of the players has information advantage is interior, i.e., k� = 1,

and makes precise a useful implication of propositions 1 and 3.

Remark 1 The unique equilibrium of a two-player Tullock contest in which player 2 has

information advantage over player 1 is interior if and only if the distribution of values is

not disperse. In an interior equilibrium the players expected e¤orts are E(X�) = E(Y �) =�
E(
p
V )
�2
=4:

In a two-player Tullock contest in which player 2 has information advantage over player

1 the equilibrium probability that player 1 wins the prize when the value is vk is

��1k =
A2k�

A2k� + Ak�
�p
vk � Ak�

� = Ak�p
vk

when k � k�; whereas the probability that player 2 wins the prize is ��2k = 1���1k: Thus, the

larger is the realized value of the prize, the smaller (larger) is the probability that player 1

(player 2) wins the prize, i.e., ��1k0 < �
�
1k and �

�
2k0 > �

�
2k for k

0 > k � k�: Of course, the larger

is the realized value of the prize, the larger is the e¤ort of player 2, i.e.,

y�k0 = Ak� (
p
vk0 � Ak�) > Ak� (

p
vk � Ak�) = y�k: (6)

for k0 > k � k�. Additionally, for k0 > k � k�;

��1k0vk0 = Ak�
p
vk0 > Ak�

p
vk = �

�
1kvk;

i.e., the larger is the realized value of the prize, the larger is the conditional expected payo¤

of player 1; also,

��2k0vk0 > �
�
2kvk0 > �

�
2kvk;
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i.e., the larger is the realized value of the prize, the larger is the conditional expected payo¤

of player 2. However, the ex-ante probability that player 1 wins the prize is larger than 1=2,

as we show in the proof of Proposition 4, which states these results.

Proposition 4 If m > 1 and v1 < vm, then in the unique equilibrium of a two-player Tullock

contest in which player 2 has information advantage over player 1, player 2 exerts a larger

e¤ort and wins the prize with a larger probability the larger is the realized value of the prize.

However, the ex-ante probability that player 1 wins the prize is greater than that of player 2.

The surplus captured by the players in a Tullock contest is the di¤erence between the

expected total surplus, E(V ); and the expected total e¤ort they exert. By Remark 1, in a two-

player Tullock contest in which values are not disperse and one of the players has information

advantage the surplus captured by the players is E(V ) �
�
E(
p
V )
�2
=2: Comparing the

players expected e¤orts in this scenario and in the scenario in which players have symmetric

information leads to an interesting observation, which we state in our last proposition of this

section.

Proposition 5 Consider a two-player Tullock contest, and assume that m > 1, v1 < vm,

and that the distribution of values is not disperse. If one of the players has information

advantage over the other, then the players exert less e¤ort and capture a greater share of the

surplus compared to the scenario where they are symmetrically informed.

4 Discussion and Extensions

4.1 Illustration of the Results

The following example provides a simple demonstration of our general �ndings in Section 3.

Example 1 Consider a two-player Tullock contest with m = 2, p1 = 1 � p; v1 = 1; and

v2 = v; where p 2 (0; 1) and v 2 (1;1): Then E(V ) = 1�p(1�v), E(
p
V ) = 1�p(1�

p
v);
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A1 = E(
p
V )=2, and A2 = p

p
v=(1 + p): Assume that player 2 observes the value but player

1 does not observe it. If values are not disperse, i.e., v < (1 + p)2 =p2; then the unique

equilibrium is interior, and is given by

X� = A21; Y
� =

�
A1 (1� A1) ; A1

�p
v � A1

��
:

The expected total e¤ort is

TE� = 2A21 = [1� p(1�
p
v)]2=2:

We readily verify that

U2(X
�; Y �)� U1(X�; Y �) =

(1� p) p (1�
p
v)
2

2
> 0;

that is, the payo¤ of player 2 is greater than that of player 1; and

E(��1) = (1� p)A1 + p
A1p
v
=
1

2

�
p+ (1� p)

p
v
� 1� p+ ppvp

v
� 1

1 + p
>
1

2
;

that is, the ex-ante probability that the player 2 wins the prize is less than that of player

1, consistently with propositions 1 and 4, respectively. Under symmetric information the

equilibrium total e¤ort is E(V )=2 > TE�, i.e., when players have the symmetric information

their expected total e¤ort is larger than when player 2 has information advantage over player

1, consistently with Proposition 5.

If the values are disperse, i.e., v � (1 + p)2 =p2, then the unique equilibrium is a corner

equilibrium , given by

X�� = A22; Y
�� = (0; A2

�p
v � A2

�
):

The expected total e¤ort is

TE�� = 2A22 = 2p
2v=(1 + p)2:

Again, we readily verify that

U2(X
��; Y ��)� U1(X��; Y ��) =

1� p
2 (p+ 1)

(p(v � 1)� 1) > 1� p
2p

> 0:
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and

E(���1 ) = (1� p) + p
A2p
v
= (1� p) + p2

1 + p
=

1

1 + p
>
1

2
:

4.2 Contests with more than Two Players

Our next example shows that in a three player Tullock contest the players equilibrium

expected e¤orts may di¤er, and hence that Proposition 2 does not extend to Tullock contests

with more than two players.

Example 2 Consider a three-player Tullock contest in which m = 2; p1 = p2 = 1=2, v1 = 1

and v2 = 2. Assume that players 2 and 3 have information advantage over player 1, i.e.,

�1 = ff!1; !2gg ; and �2 = �3 = ff!1g; f!2gg: The equilibrium of this contest, which is

interior, is readily calculated. In equilibrium, the strategy of strategy of player 1 is X�
1 =

(0:30899; 0:30899) while the strategies of players 2 and 3 are X�
2 = X

�
3 = (0:20342; 0:46933).

Hence

E(X�
1 ) = 0:30899 <

1

2
(0:20342 + 0:46933) = E(X�

2 ) = E(X
�
3 );

i.e., the expected e¤ort of player 1 is less than those of players 2 and 3.

Next we present an example of Tullock contests in which a player that has information

advantage over the other players wins the prize more frequently than these players, which

shows that Proposition 4 does not extend to Tullock contests with more than two players.

Example 3 Consider the Tullock contest described in Example 2, but assume that there are

8 players, and that only player 8 observes the value, i.e., �i = ff!1; !2gg for i 2 f1; :::; 7g;

and �8 = ff!1g; f!2gg: The unique equilibrium of this contest is given by

X�
1 = ::: = X

�
7 = (0:15551; 0:15551); X

�
8 = (0; 0:38694) ;

Thus, the ex-ante probability that player i 2 f1; 2; :::; 7g wins the prize is

E(��i ) =
1

2
(
1

7
+

0:155 51

7(0:155 51) + 0:386 94
) = 0:12413;
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whereas the ex-ante probability that player 8 win the prize is

E(��8) = 1� 7(0:12413) = 0:13109;

i.e., the player with information advantage wins the prize more frequently than his opponents.

4.3 Non-linear Costs

The linearity of the cost function is a crucial assumption in our results. Einy et al. (2002)

provide an example showing of a duopoly in which �rms state independent cost function is

c(x) = x2 in which the expected payo¤ of a �rm with information advantage is less than

that of its competitor. In fact, in our setting we show that when players� cost of e¤ort

is a state-independent state independent cost function of the class c(x) = xa with � � 1

then in any equilibrium of a two-player Tullock contest players�cost of e¤ort coincide. This

result, which state below, implies Proposition 2 dealing with the case � = 1, and also has

implications over the relation of players e¤orts when a player has information advantage and

� > 1.

Proposition 6 In any equilibrium of a two-player Tullock contest in which the players�cost

of e¤ort is state-independent and given by the function c (x) � x� with � � 1 the players�

expected costs of e¤ort coincide.

Consider a two-player Tullock contest in which the players�cost of e¤ort is state-independent

and given by the function c (x) � x� with � > 1: An equilibrium of this contest (X; Y );

which exist by the theorem of Einy et al. (2015a), is identi�ed by the e¤ort levels x and

(y1; :::; ym), respectively. By Proposition 6 the players�expected costs of e¤ort coincide, i.e.,

E(X�) = E(Y �): Since x� = E(X�); then v1 > vm implies that y1 6= ym and therefore

x = E(X�)
1
� = E(Y �)

1
� > E(Y );

i.e., the player with information advantaged exerts more e¤ort than his opponent. We state

this result below.
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Proposition 7 Consider a two-player Tullock contest in which the players�cost of e¤ort is

state-independent and given by a function c (x) � x� with � > 1: If m > 1, v1 < vm, and

player 2 has information advantage over player 1, then in any equilibrium of the contest the

expected e¤ort of player 1 is greater than that of player 2.

4.4 Comparison with All-Pay Auctions

Finally, we discuss whether the players�expected total e¤ort in a Tullock contests can be

ranked relative to that in an all-pay auction. Many applications of contest theory to political

or sport competition, patent races, etc., model agents interactions as all-pay auctions. In a

common-value all-pay auction the prize is given to player who exerts the largest e¤ort. Einy

et al. (2015b) consider a setting identical to that described in section 4, and show that in

the unique equilibrium of a two-player (common-value) all-pay auction in which player 2 has

information advantage over player 1 the players�total expected e¤ort is

TEAPA = 2
mX
s=1

ps

s�1X
k=1

pkvk +
mX
s=1

p2svs:

Let us use this formula to compare total expected e¤ort in two-player all-pay auction and

Tullock contests in which player 2 has information advantage over player 1 in the environment

described in Example 1. If values are not disperse, v < (1 + p)2 =p2; then

TEAPA � TE = 2(1� p)p+ (1� p)2 + p2v � 2 (p
p
v)
2

(1 + p)2

= 2(1� p)p+ 1
2

�
1� p� p

p
v
�2

> 0:

Hence, the all-pay auction generates more e¤ort than the Tullock contest. (We can show

that this is generally the case when m = 2 and values are not disperse.) However, if values

are disperse, i.e., v � (1 + p)2 =p2, the unique equilibrium of the Tullock contest is a corner
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equilibrium, and

TEAPA � TE = 2(1� p)p+ (1� p)2 + p2v � 2 (p
p
v)
2

(1 + p)2

= (1� p)(1 + p)� p2v
�

2

(1 + p)2
� 1
�
:

This di¤erence is negative for, e.g., p = 1=4 and v > 375=7. Therefore, in general the level

of e¤ort generated by these two contests cannot be ranked.

5 Appendix

Proof of Proposition 1. An n-player Tullock contest (N; (
; p); (�i)i2N ; V; C) is formally

identical to an oligopolist industry (N; (
; p); (�i)i2N ; P; C); where the market demand P is

de�ned for (!; x) 2 
� R++ as

P (!; x) =
V (!)

x
:

With this notation, the state-dependent pro�t of �rm i 2 N in the industry coincides with

the payo¤ of player i 2 N in the contest, i.e., for ! 2 
 and a non-zero X 2 S;

ui(!;X) =
V (!)Pn
s=1Xs(!)

Xi(!)� C(!)Xi(!)

= P (!;
nX
s=1

Xs(!))Xi(!)� C(!)Xi(!)):

Proposition 1 then follows from the theorem of Einy et al. (2002). � (It is easy to show that

in any equilibrium X of a Tullock contest the total e¤ort is positive in all states of nature.

Thus, although the demand function P (!; 0) is not de�ned, and therefore does not formally

satisfy the assumptions of Einy et al. (2002), their proof applies to this case without change.)

Proof of Proposition 2. Follows from Proposition 6 �see below.

Proof of Lemma 1. Assume that
p
v�k > A�k for some �k < m:
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We show that
p
vk > Ak for all k > �k: Suppose not; let k̂ > �k be the �rst index k > �k

such that for
p
vk � Ak: Note that vk̂ � vk̂�1 and

p
vk̂�1 > Ak̂�1 imply0@1 + mX

s=k̂

ps

1Apvk̂ �

0@1 + mX
s=k̂�1

ps

1Apvk̂�1 � pk̂�1pvk̂�1
>

0@1 + mX
s=k̂�1

ps

1AAk̂�1 � pk̂�1pvk̂�1
=

mX
s=k̂�1

ps
p
vs � pk̂�1

p
vk̂�1

=

0@1 + mX
s=k̂

ps

1AAk̂;
which contradicts the assumption that

p
vk̂ � Ak̂:

Now we show that A�k > Ak for all k > �k: Suppose not; let ~k > �k be the �rst index k > �k

such that A�k � Ak: Since
p
v~k�1 > A~k�1 (as we have just shown),0@1 + mX

s=~k�1

ps

1AA~k�1 =
mX

s=~k�1

ps
p
vs

= p~k�1
p
v~k�1 +

mX
s=~k

ps
p
vs

> p~k�1A~k�1 +

0@1 + mX
s=~k

ps

1AA~k:
Hence 0@1 + mX

s=~k�1

ps

1AA~k�1 � p~k�1A~k�1 >
0@1 + mX

s=~k

ps

1AA~k;
i.e., 0@1 + mX

s=~k

ps

1AA~k�1 >
0@1 + mX

s=~k

ps

1AA~k:
Thus, A�k � A~k�1 > A~k; which contradicts the choice of ~k. �

Proof of Proposition 3. Let (X; Y ); where X = x and Y = (y1; :::; ym), be an equilibrium.

(Existence of equilibrium is guaranteed by the theorem of Einy et al (2015a).) If x = 0 and
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Y = 0; then the prize is allocated with probabilities (��1; ��2); and the player who gets the

prize with probability less than 1 can pro�tably deviate by exerting an arbitrarily small e¤ort

" > 0: If x = 0 and Y 6= 0; i.e., yk > 0 for some k 2 f1; :::;mg; then the prize is allocated to

player 2 at !k, who can pro�tably deviate by reducing his e¤ort to yk=2. Likewise, if x > 0

and Y = 0; then the prize is allocated to player 1, who can pro�tably deviate by reducing

his e¤ort to x=2. Hence x > 0 and yk > 0 for some k 2 f1; :::;mg:

Since x > 0 maximizes player 1�s payo¤ given Y ,

@

@x

 
mX
s=1

ps

�
vs

x

x+ ys
� x
�!

=
mX
s=1

psvs
ys

(x+ ys)
2 � 1 = 0: (7)

And since ys maximizes player 2�s payo¤ in state !s given x;

@

@ys

�
vs

ys
x+ ys

� ys
�
= vs

x

(x+ ys)
2 � 1 � 0; (8)

(with equality if ys > 0) for each s = 1; :::;m.

Notice next that if yk > 0 for some k < m; then yk0 > 0 for all k0 > k: Since x > 0; if yk > 0

then yk =
p
x
�p
vk �

p
x
�
by (8), and since vk0 � vk for all k0 > k;

p
x
�p
vk0 �

p
x
�
> 0,

i.e.,

vk0
x

x2
� 1 > 0;

for all k0 > k: Then yk0 = 0 would violate inequality (8) for s = k0: Hence yk0 > 0:

Let k� be the smallest index such that yk > 0: Thus, (7) implies

mX
s=1

psvs
ys

(x+ ys)
2 =

mX
s=k�

psvs
ys

(x+ ys)
2 = 1;

and (8) implies yk0 =
p
x
�p
vk0 �

p
x
�
> 0 for all k0 � k�:Hence x = A2k� ; yk = Ak�

�p
vk � Ak�

�
for all k � k�; and yk = 0 for all k < k�:

We now show that k� = k�, which establishes that the pro�le (x�; y�1; :::; y
�
m) identi�ed

in Proposition 3 is the unique equilibrium. Assume �rst that k� < k�: Then
p
vk� � Ak�

since k� is the smallest index such that
p
vk > Ak; and hence yk� =

p
x
�p
vk� �

p
x
�
=
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Ak�
�p
vk� � Ak�

�
� 0; a contradiction as yk� > 0 by the de�nition of k�: Assume next that

k� > k�: In this case, yk� = 0: Since
p
vk� > Ak� ; by Lemma 1

A2k� > A
2
k� = x; (9)

and therefore

vk�
x

x2
� 1 = A2k�

A4k�

�
vk� � A2k�

�
> 0:

This stands in contradiction to (8), as yk� = 0 by the de�nition of k�(> k�): We conclude

that indeed k� = k�. �

Proof of Proposition 4. Let us be given a two-player Tullock contest in which player 2 has

information advantage over player 1. It only remains to show that the ex-ante probability

that player 1 wins the prize, E(�1), is greater than that of player 2, E(�2). By Proposition

3, the unique equilibrium of the contest is identi�ed by some index k� 2 f1; :::;mg and a

vector (x�; y�k� ; :::; y
�
m)� 0. For (yk� ; ::::; ym) 2 Rm�k

�+1
+ de�ne the function

�p2 (yk� ; :::; ym) :=
mX

k=k�

pkyk
yk +

Pm
s=k� psys

:

By propositions 2 and 3

x� = E(X�) = E(Y �) =
mX
s=k�

psy
�
s :

Hence

E(�2) =

mX
k=k�

ps
y�k

y�k + x
� = �p2 (y

�
k� ; :::; y

�
m) :

We show that a maximum point y of �p2 on K = f(yk� ; ::::; ym) 2 Rm�k
�+1

+ j yk� � yk�+1::: �

ymg must satisfy yk� = ::: = ym; and hence that

max
K
�p2 =

Pm
s=k� ps

1 +
Pm

s=k� ps
� 1

2
: (10)

As shown above, see equation (6), y�k� < ::: < y
�
m; then (10) implies

E(�2) = �p2 (y
�
k� ; :::; y

�
m) < max

K
�p2 � 1=2;
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i.e., player 2 wins the prize with a smaller ex ante probability than player 1.

Di¤erentiating �p2 with respect to yk for k 2 fk�; :::;mg we get

@�p2
@yk

= pk

 
mX

t=k�;t6=k

ptyt
(yk +

Pm
s=k� psys)

2
�

mX
t=k�;t6=k

ptyt
(yt +

Pm
s=k� psys)

2

!
: (11)

For every (yk� ; :::; ym) 2 K such that yk� < yk�+1 � ::: � ym; @�p2=@yk� (y) > 0; and therefore

necessarily yk� = yk�+1. Suppose now that it has already been shown that yk� = yk�+1 =

::: = yk; m � 1 � k > 1: We show that yk+1 = yk as well. Indeed, if yk� = yk�+1 = ::: =

yk < yk+1 � ::: � ym, then by (11) we obtain that @�p2=@yk (y) > 0; a contradiction. Thus

yk� = ::: = ym: �

Proof of Proposition 5. By Remark 1, in a two-player Tullock contest in which values

are not disperse and player 2 has information advantage over player 1 the expected total

e¤ort is
�
E(
p
V )
�2
=2. When players have symmetric information the expected total e¤ort

is E(V )=2. If m > 1; then v1 < vm together with Jensen�s inequality imply

E(V )

2
>

�
E(
p
V )
�2

2
: �

Proof of Proposition 6. Note that, for every ! 2 
; max(X�
1 (!); X

�
2 (!)) > 0; since

otherwise one of the players (say, i) would have a pro�table deviation at �i (!) to an e¤ort

that is slightly above zero. Thus X�
i (�i) solves

max
xi2R+

E

�
V

xi +X�
j

xi � x�i j �i
�
;

where j denotes i�s opponent. It follows that

@

@xi
E

�
V

xi +X�
j

xi � x�i j �i
�����

xi=X�
i (�i)

= E

 
V �X�

j�
X�
i (�i) +X

�
j

�2 � �x��1i j �i

!
� 0;

where the inequality holds with equality if X�
i (�i) > 0: Hence

E

 
V �X�

i (�i) �X�
j

�
�
X�
i (�i) +X

�
j

�2 �X�
i (�i)

� j �i

!
=
X�
i (�i)

�
�E
 

V �X�
j�

X�
i (�i) +X

�
j

�2 � �X�
i (�i)

��1 j �i

!
= 0;
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and therefore

X
�i2�i

E

 
V �X�

i (�i) �X�
j

�
�
X�
i (�i) +X

�
j

�2 �X�
i (�i)

� j �i

!
� p (�i) = E

 
V �X�

i �X�
j

�
�
X�
i +X

�
j

�2
!
�E(C(X�

i )) = 0:

It follows that

E (C(X�
1 )) = E

�
V �X�

1 �X�
2

� (X�
1 +X

�
2 )
2

�
= E

�
V �X�

2 �X�
1

� (X�
2 +X

�
1 )
2

�
= E (C(X�

2 )) : �
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