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Abstract

We study the role of punishments in Tullock contests with symmetric players. We �rst characterize

the players�equilibrium strategies in a contest with either multiple identical prizes or multiple identical

punishments (negative prizes). Given that a prize and a punishment have the same absolute value, we

show that if the number of prizes is equal to the number of punishments and is lower (higher) than or

equal to half the number of players, a designer who wishes to maximize the players�e¤orts will prefer

to allocate punishments (prizes) over prizes (punishments). We also demonstrate that if the sum of

the punishments is constrained, then in a contest without an exit option for the players, it is optimal

for the designer who maximizes the players�e¤orts to allocate a single punishment that is equal to the

punishment sum. However, in a contest with an exit option the optimal number of punishments depends

on the value of the punishment sum and, in particular, the optimal number of punishments does not

monotonically increase in the value of the punishment sum.

JEL Classi�cations : D44, J31, D72, D82

Keywords: Tullock contests; prizes; punishments.
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1 Introduction

Prizes have a key role in contests as they provide the incentive for players to participate and exert e¤orts.

Thus, the contest literature has focused on what the optimal prize structure is.1 While most of these

studies have concentrated on the incentive role of prizes, punishments (negative prizes) which are also part

of many existing incentive contracts have been ignored. The reason for this is that a contest that has

some punishments can be replicated by one that uses only prizes and that yields the same incentives. But

this equivalence breaks down if the contest designer faces a budget constraint and if the punishments are

costly.2 Under these circumstances, the designer will prefer to distribute the entire punishment sum to the

punishment with the highest marginal e¤ect on the participants�total e¤ort relative to its cost. In other

words, subject to his budget constraint, a designer will determine the number and the size of punishments in

order to maximize the participants�expected total e¤ort. This problem of determining the optimal allocation

of punishments is the goal of this paper.

Moldovanu Sela and Shi (2012) have dealt with the issue of punishment allocation and showed that in

the all-pay contest under incomplete information the designer should only punish the player with the lowest

performance if the distribution of the players�abilities has an increasing hazard (or failure) rate. If this last

condition is not satis�ed then more punishments may be optimal. Recently, Kamijo (2016) showed how prizes

as well as punishments can be implemented in all-pay contests when the designer wishes to maximize either

the players�expected highest e¤ort or their expected minimal e¤ort. We study here the role of punishments

in the Tullock contest which is the most common rent seeking contest (see Tullock 1980 and Konrad 2009).

In this contest each player�s probability of winning is the ratio of his e¤ort and the total e¤ort exerted by

all the players.3

1Most of the literature on optimal prize allocation in contests focuses on theree classes of models: (1) the all-pay contest

(see Barut and Kovenock 1998, and Moldovanu and Sela 2001, 2006); (2) the Tullock contest (see Clark and Riis 1996,

1998, Schweinzer and Segev 2009, Szymanski 2003, Szymanski and Valleti 2005 and Fu and Lu 2012); and (3) the rank-order

tournament (see Lazear and Rosen 1981, Green and Stokey 1983, Nalebu¤ and Stiglitz 1983 and Akerlof and Holden 2012).
2For example, a costly punishment can occur if a �rm �res workers who perform poorly and then spends some resources to

search for alternative replacements.
3A number of studies provided axiomatic justi�cation for the Tullock contest (see, for example, Skaperdas 1966). Baye and

Hoppe (2003) have identi�ed conditions under which a variety of rent-seeking contests, innovation tournaments, and patent-race
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We �rst analyze the equilibrium strategies of n symmetric players with either multiple identical prizes

or multiple identical punishments. We assume that the players exert their e¤orts once in the �rst stage

and the prizes are determined sequentially. The �rst winner is determined by a probability success function

that is based on the e¤orts of all the players. The second winner is determined by a probability success

function that is based on the e¤orts of all the players excluding the e¤ort of the �rst winner. This sequential

process continues until all the prizes are allocated. Likewise, the allocation of punishments are sequentially

determined. We show that the equilibrium e¤ort in a Tullock contest with n symmetric players and k

identical prizes is identical to the equilibrium e¤ort in a Tullock contest with n symmetric players and n� k

identical punishments with the same absolute value. Then, we show that if the absolute value of a prize is

equal to that of a punishment and that, if the number of prizes that is equal to the number of punishments

is smaller than half the number of players, then the punishments�e¤ect on the players�equilibrium e¤ort is

higher than the prizes�e¤ect. The opposite is true when the number of prizes that is equal to the number

of punishments is larger than half the number of players.

We also study the optimal allocation of punishments without an exit option, namely, the players have to

participate in the contest even if their ex-ante expected payo¤ is negative. We assume that punishments are

costly and the designer has a �xed punishment sum and show that, similar to allocating prizes, it is optimal

to allocate the entire punishment sum to a single punishment. Afterwards, we study the optimal allocation

of punishments when players have an exit option, and thus may choose not to participate in the contest.

Then, in contrast to the case without an exit option, the value of the punishment sum has a meaningful

e¤ect on the optimal distribution of punishments. In particular, for a relatively low punishment sum, in

order to maximize the players�equilibrium e¤ort, it is optimal to allocate only one punishment as all the

players still have an incentive to participate in the contest. On the other hand, when the punishment sum

increases allocating two punishments may be better than allocating one prize since in a contest with one

punishment the number of the players will be smaller. However, if the punishment sum keeps increasing

we show that the number of players in both contest forms with either one or two punishments is equalized

and therefore allocating one punishment will then be optimal. In sum, we demonstrate that in the Tullock

games are strategically equivalent to the Tullock contest.
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contest with an exit option, the optimal number of punishments neither increases nor decreases in the value

of the punishment sum.

The rest of the paper is organized as follows: In Section 2 we analyze the symmetric equilibrium e¤ort

with multiple identical prizes and punishments. In Section 3 we study the optimal allocation of punishments

with and without an exit option. Section 4 concludes. The proofs appear in an Appendix.

2 Contests with multiple identical prizes or punishments

We consider a Tullock contest with n risk-neutral players where each player j makes an e¤ort xj : For

simplicity, we postulate a deterministic relation between e¤ort and output, and assume these to be equal.

E¤orts are submitted simultaneously. If only one prize with a value of v is awarded, then if x is the e¤ort of

player 1 and y is the symmetric e¤ort of all the other players, player 1�s probability of winning the prize is

x

x+ (n� 1)y

If, on the other hand, two identical prizes with a value of v are awarded, player 1�s probability of winning

one of the prizes (each player can win only one prize) is

x

x+ (n� 1)y +
(n� 1)y

x+ (n� 1)y �
x

x+ (n� 2)y

Suppose now that the designer allocates k < n identical prizes with a value of v. Thus, the maximization

problem of player 1 is given by

max
x
v

kX
i=1

yi�1x
�
n�1)!
(n�i)!

�
�ij=1 ((n� j)y + x)

� x (1)

where x is the e¤ort of player 1 and y is the symmetric e¤ort of all the other players. Then, we obtain that

Proposition 1 In the Tullock contest with n symmetric players and k identical prizes with a value of v, the

symmetric equilibrium e¤ort is

x = v
kX
i=1

1� (Hn �Hn�i)
n

(2)

where Hn =
nX
i=1

1
i is the Harmonic series.
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Proof. See Appendix.

Let xk be the the players�symmetric equilibrium e¤ort with k identical prizes given by (2). Then we

have

xk � xk�1 = v
1� (Hn �Hn�k)

n

Thus, the optimal number of prizes kmax that maximizes the players�symmetric equilibrium e¤ort satis�es

Hn �Hn�kmax � 1

and

Hn �Hn�kmax�1 > 1

Now suppose that there are no prizes but that there is one punishment with a value of �s where s > 0:

Then if x is the e¤ort of player 1 and y is the symmetric e¤ort of all the other players, player 1�s probability

to be punished is

(n� 1)y
(n� 1)y + x �

(n� 2)y
(n� 2)y + x � ::: �

2y

2y + x
� y

y + x

If, on the other hand, there are two punishments with a value of �s, then player 1�s probability to be

punished is

(n� 1)y
(n� 1)y + x �

(n� 2)y
(n� 2)y + x � ::: �

2y

2y + x
� ( y

y + x
+

x

y + x
)

Thus, if the designer allocates l identical punishments with a value of �s, the maximization problem of

player 1 is

max
x
�s
�
yn�1(n� 1)!
�n�1i=1 (iy + x)

�
� s

lX
i=1

yn�ix( (n�1)!(i�1)! )

�n�1j=i�1(jy + x)
� x (3)

where x is the e¤ort of player 1 and y is the symmetric e¤ort of all the other players. Then, we obtain that

Proposition 2 In the Tullock contest with n symmetric players and l identical punishments with a value of

s, the symmetric equilibrium e¤ort is

x = s

�
(Hn � 1)� �li=2(Hn �Hi�1)� 1

n

�
(4)

where Hn =
nX
i=1

1
i is the Harmonic series.
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Proof. See Appendix.

Let xl be the players�symmetric equilibrium e¤ort with l identical punishments given by (4). Then we

have

xl � xl�1 = s
(Hn �Hl�1)� 1

n

Thus, the optimal number of punishments lmax that maximizes the players�equilibrium e¤ort satis�es

Hn �Hlmax�1 � 1

and

Hn �Hlmax < 1

The similarity of the conditions of the optimal number of prizes and punishments indicates that there is a

relationship between contests with identical prizes and punishments with the same absolute values. Indeed,

we have

Proposition 3 The symmetric equilibrium e¤ort in the Tullock contest with n symmetric players and k

identical prizes with a value of v is identical to the symmetric equilibrium e¤ort in the Tullock contest with

n symmetric players and n� k identical punishments with the same (absolute) value of v:

Proof. See Appendix.

Given the assumption that punishments as well as prizes are costly, it is of interest to ask whether a prize

or a punishment has a higher e¤ect on the players�equilibrium strategies. By (2), the symmetric equilibrium

e¤ort with one prize of a value of v is

x = v
1� (Hn �Hn�1)

n

and by (4), the symmetric equilibrium e¤ort with one punishment of a value of �v is

x = v
Hn � 1
n

Since for all n � 2; we have Hn � 1 � 1� (Hn �Hn�1) = 1� 1
n we obtain that a punishment has a higher

e¤ect on the symmetric equilibrium e¤ort than a prize with the same absolute value. In general, punishments

do not necessarily have a larger e¤ect than prizes on the players�equilibrium e¤orts. Indeed, the next result
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shows that if the number of prizes and punishments is relatively low the allocation of punishments is then

more e¤ective and if their number is relatively high then the allocation of prizes is more e¤ective.

Proposition 4 The symmetric equilibrium e¤ort in the Tullock contest with k < (>)n2 punishments of a

value �v is higher (lower) than in a Tullock contest with k prizes of a value of v:

Proof. See Appendix.

If we combine Propositions 3 and 4 we obtain that in order to maximize the players�symmetric equilibrium

e¤ort, allocating n� 1 prizes are better than allocating one prize with the same value. Similarly, allocating

n � 2 prizes is better than allocating two prizes with the same value and so on. In other words, although

the players�equilibrium e¤ort is not monotonic in the number of prizes, n� s prizes are better than s prizes

for every 0 < s < n
2 :

3 The optimal allocation of punishments with and without an exit

option

We assume now that the punishment sum is constrained and is equal to v: Denote by vi � 0 the cost of

the i-th punishment which is equal to its (absolute) value, namely �v1 is the �rst punishment, �v2 is the

second punishment and so on, such that v1 � v2 � v3::::: � vn and
nX
i=1

vi = v. We also assume that the

players cannot exit, namely, even if a player has an ex-ante negative expected payo¤ he cannot stay out of

the contest. Let x be the e¤ort of player 1 and by symmetry y be the e¤ort of each of the other players.

Then, the maximization problem of player 1 is

max
x
�v1

yn�1(n� 1)!
�n�1i=1 (iy + x)

�
n�1X
i=2

vi
yn�ix (n�1)!(i�1)!

�n�1j=i�1(jy + x)
� x (5)

In that case, we obtain that the optimal allocation of punishments is v1 = v and vi = 0 for all i 6= 1:

Proposition 5 In the Tullock contest with n symmetric players, the players�symmetric equilibrium e¤ort

is maximized when the entire punishment sum is allocated to a single punishment.

Proof. See Appendix.
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By Propositions 5 and 3 we obtain that in a Tullock contest with n symmetric players an allocation of

n � 1 identical prizes of a value v yields a higher symmetric equilibrium e¤ort than an allocation of n � j

identical prizes of a value v
j , j = 2; 3; :::::

Now, suppose that a player can exit, namely, if he has a negative ex-ante expected payo¤ he does not

participate in the contest. However, it is important to emphasize that although the players are symmetric

there is no equilibrium in which all the players decide not to participate, since when some of the players quit,

the ex-ante expected payo¤s of the other players increase. If the players have no incentive to participate,

players randomly and sequentially quit until the rest of the players again have an incentive to participate in

the contest. Since in a contest with only punishments players obviously have no incentive to participate, we

assume that there is one prize of a value v and a punishment sum that is equal to �v where � > 0. Then,

for any allocation of the punishment sum into two punishments, the maximization problem of player 1 is

max
x
v

x

(n� 1)y + x � ��v
�
yn�1(n� 1)!
�n�1i=1 (iy + x)

�
� (1� �)�v y

n�2x(n� 1)!)
�n�1i=1 (iy + x)

� x (6)

where x is the e¤ort of player 1, y is the symmetric e¤ort of all the other players, and 0 � � � 0:5. Then we

obtain

Proposition 6 In the Tullock contest with n symmetric players, one prize of a value v and two punishments

of a values �v and (1� �)�v; � > 0; 0 � � � 0:5, the symmetric equilibrium e¤ort of each player is

x =
v(n� 1)
n2

� (1� �)�v � (Hn � 1)�v
n

(7)

Proof. See Appendix.

In order to analyze the players� symmetric equilibrium e¤ort in a Tullock contest with an exit option

we need to de�ne the critical punishment sums for which players decide to exit. By (6) and (7) a player�s

expected payo¤ in the contest with n symmetric players, one prize of a value v and one punishment of a

value �v is

u1;n =
v(1� �)

n
� v(n� 1)

n2
� �v(Hn � 1)

n
(8)
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De�ne the critical value �� for which the expected payo¤ of each of the n symmetric players in the contest

with one punishment of �v is equal to zero. Then by (8) we have

�� =
1

nHn

Similarly, by (6) and (7) a player�s expected payo¤ in a contest with one prize of a value v and two punish-

ments of a values ��v and (1� �)�v, 0 < � � 0:5; is

u�;n =
v(1� �)

n
� v(n� 1)

n2
� �v((Hn � 1)� (1� �))

n
(9)

De�ne the critical value ��� for which the expected payo¤ of each of the n symmetric players in the contest

with two punishments of values ��v and (1� �)�v is equal to zero. Then by (4) we have

��� =
1

n(Hn � 1 + �)
(10)

Note that for all n > 2; ��� > ��, that is, in the contest with one punishment, the players have an incentive

to quit for a smaller value of the punishment sum than in the contest with two punishments.

By Proposition 5, for a relatively low punishment sum it is optimal to allocate only one punishment

since all the players have an incentive to participate in the contest. However, using the above critical values,

the next lemma shows that when the punishment sum increases, an allocation of two punishments will be

better than an allocation of only one punishment since when there is only one punishment that is equal to

the punishment sum, one of the players will exit, but when there are two smaller punishments whose sum is

equal to the punishment sum, all the players will participate in the contest. Then, a contest with n players

and two relatively small punishments yields a higher total e¤ort than a contest with n� 1 players and one

large punishment.

Lemma 1 For every ��� > � � ��, if 1 � 1
n �

1
n(n�1)� < � < 1, then the players� symmetric equilibrium

e¤ort in the Tullock contest with one punishment of �v is smaller than in the Tullock contest with two

punishments of ��v and (1� �)�v:

Proof. See Appendix.
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By Lemma 1, we obtain that for all ��� > � � ��; if

��� = 1� 1

n
� 1

n(n� 1) < � < 1

the players�symmetric equilibrium e¤ort in a Tullock contest with one punishment of �v is smaller than in

a Tullock contest with two punishments of ��v and (1� �)�v:

De�ne now another critical value ���� for which the expected payo¤ of each of the n � 1 players in the

contest with one punishment of �v is equal to zero. Then, by (8), we have

���� =
1

(n� 1)Hn�1
(11)

By (10) and (11) we obtain that

���� =
1

(n� 1)Hn�1
>

1

n(Hn � 1 + �)
= ��� (12)

i¤

� >
n� 1
n

Hn�1 �Hn + 1 = ����

The inequality of the critical values (12) implies that a player will exit the contest with n players and two

punishments of ��v and (1 � �)�v earlier (namely, when the punishment sum will be lower) than he will

with n� 1 players and one punishment of �v . Thus, for all ���� > � > ���, the number of players will be

n � 1 in both contests either with one punishments of �v or with two punishments of ��v and (1 � �)�v.

In that case, by Proposition 5 it is optimal to allocate one prize and therefore we have

Lemma 2 For every ��� > � � ���� and 1 > � > ����, the symmetric equilibrium e¤ort of a player in a

Tullock contest with one punishment of �v is higher than in a Tullock contest with two punishments of ��v

and (1� �)�v:

By Lemmas 1 and 2 since for all n > 2; ��� > ����, we obtain that for every two punishments of ��v

and (1��)�b that yield a higher symmetric equilibrium e¤ort than one punishment of a value �v there is a

higher � for which these two punishments yield a lower symmetric equilibrium e¤ort than one punishment

of a value �v: Thus, we have
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Proposition 7 In the Tullock contest with an exit option, the optimal number of punishments neither in-

crease nor decrease in the value of the punishment sum.

We showed that in contrast to the Tullock contest without an exit option in which it is optimal to allocate

the entire punishment sum to a single punishment, in a Tullock contest with an exit option, there are two

intervals of values of the entire punishment sum for which it is optimal to allocate it to a single punishment

but these intervals do not interact. Moreover, for the values of the punishment sum between these two

intervals it is optimal to allocate the entire punishment sum to more than one punishment.

4 Concluding remarks

We analyzed the e¤ect of prizes and punishments on the players�performances in the Tullock contest, and

derived the optimal punishment structures in several environments with both costly and costless punishments.

We showed that when the number of prizes and punishments is small (large) rewarding the top performers is

less (more) e¤ective than punishing the worst performers . Finally, we showed that if punishments are costly

and players do not have the option not to participate then it is optimal to allocate the entire punishment

sum to a single punishment. However, when players have the option not to participate, allocating several

punishments may be optimal. Moreover, the optimal number of punishments is not a monotonic function of

the level of the entire punishment sum.

5 Appendix

5.1 Proof of Proposition 1

The F.O.C. of (1) yields
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v
kX
i=1

yi�1
�
n�1)!
(n�i)!

�
�ij=1 ((n� j)y + x)�

�ij=1 ((n� j)y + x)
�2

�
�ij=1 ((n� j)y + x) �ij=1 1

((n�j)y+x)y
i�1x

�
n�1)!
(n�i)!

�
�
�ij=1 ((n� j)y + x)

�2
= v

kX
i=1

yi�1
�
n�1)!
(n�i)!

�
� �ij=1 1

((n�j)y+x)y
i�1x

�
n�1)!
(n�i)!

�
�ij=1 ((n� j)y + x)

= 1

By symmetry x = y and then we obtain

v
kX
i=1

xi�1
�
n�1)!
(n�i)!

�
� �ij=1 1

(n�j+1)xx
i
�
n�1)!
(n�i)!

�
�ij=1 ((n� j + 1)x)

= 1

By some simple calculations this implies

v

kX
i=1

1� �ij=1 1
(n�j+1)

nx
= 1

Then we have

v
kX
i=1

1� (Hn �Hn�1)
nx

= 1

where Hn =
nX
i=1

1
i is the harmonic series. Hence, the players�symmetric equilibrium e¤ort in a contest with

k identical prizes of a value v is

x = v
kX
i=1

1� (Hn �Hn�1)
n

Q:E:D:

5.2 Proof of Proposition 2

The F.O.C. of (3) yields
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�s
 
��n�1i=1 (iy + x)�

n�1
i=1

1
(iy+x)y

n�1(n� 1)!
(�n�1i=1 (iy + x))

2

!

�s

0@ lX
i=2

yn�i( (n�1)!(i�1)! )�
n�1
j=i�1(jy + x)��

n�1
j=i�1(jy + x)�

n�1
j=i�1

1
jy+xy

n�ix( (n�1)!(i�1)! )

(�n�1j=i�1(iy + x))
2

1A
= �s

 
�n�1i=1

1
(iy+x)y

n�1(n� 1)!
�n�1i=1 (iy + x)

!
� s

0@ lX
i=2

yn�i( (n�1)!(i�1)! )� �
n�1
j=i�1

1
jy+xy

n�ix( (n�1)!(i�1)! )

�n�1j=i�1(iy + x)

1A
= 1

By symmetry x = y and then we have

s

 
�n�1i=1

1
(i+1)xx

n�1(n� 1)!
�n�1i=1 (i+ 1)x

!
� s

0@ lX
i=2

xn�i( (n�1)!(i�1)! )� �
n�1
j=i�1

1
(j+1)xx

n( (n�1)!(i�1)! )

�n�1j=i�1(i+ 1)x

1A = 1

By some simple calculations this implies

s

�
Hn � 1
nx

�
� s

 
lX
i=2

1� (Hn �Hi�1)
nx

!
= 1

where Hn =
nX
i=1

1
i is the harmonic series. Hence, the players�symmetric equilibrium e¤ort in a contest with

l identical punishments of a value s is

x = s

�
(Hn � 1)� �li=2(Hn �Hi�1)� 1

n

�
Q:E:D:

6 Proof of Proposition 3

By (2) the symmetric equilibrium e¤ort with k identical prizes of a value of v is

x = v
kX
i=1

1� (Hn �Hn�i)
n

and by (4) the symmetric equilibrium e¤ort with l identical punishments of a value of v is

x = v

�
(Hn � 1)� �li=2(Hn �Hi�1)� 1

n

�
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Thus, in order to show the equivalence between a contest with k identical prizes and a contest with n � k

identical punishment we need to show that

kX
i=1

1� (Hn �Hi�1) = (Hn � 1)�
n�kX
i=2

((Hn �Hi�1)� 1)

or alternatively that

Hn +
kX
i=2

(Hn �Hi�1) = n�
n�kX
i=1

(Hn �Hn�i)

This equation is equivalent to

n�Hn =
kX
i=2

(Hn �Hi�1) +
n�kX
i=1

(Hn �Hn�i)

= (n� 1)Hn � (
kX
i=2

Hi�1 +
n�kX
i=1

Hn�i)

= (n� 1)Hn � (
k�1X
i=1

Hi +
n�kX
i=1

Hn�i)

Using the identity

k�1X
i=1

Hi +
n�kX
i=1

Hn�i =
n�1X
i=1

Hi

we obtain that we need to show that

n = nHn �
n�1X
i=1

Hi

Since

n�1X
i=1

Hi = (n� 1)1 + (n� 2)
1

2
+ :::+ (n� (n� 1)) 1

n� 1

We indeed obtain that

nHn �
n�1X
i=1

Hi = (n+
n

2
+
n

3
+ :::+

n

n� 1 +
n

n
)� (n� 1

1
+
n� 2
2

+ :::+
1

n� 1)

= (n� 1)1 + n
n
= n
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Q:E:D:

6.1 Proof of Proposition 4

We �rst assume that k < n
2 (a similar proof holds when k >

n
2 ) and show that the symmetric equilibrium

e¤ort in the Tullock contest with k < n
2 punishments of a value �v is higher than in a Tullock contest with

k prizes of a value of v. By (2) and (4) we need to show that

v

 
(Hn � 1)� �ki=21� (Hn �Hi�1)

n

!
� v

kX
i=1

1� (Hn �Hn�i)
n

By some calculations this inequality is equivalent to

2k(Hn � 1) >
kX
i=1

Hn�i +
kX
i=2

Hi�1 =
k�1X
i=1

Hi +
n�1X
i=n�k

Hi�1

or alternatively to

2k(
1

2
+
1

3
+ :::+

1

k � 1 +
1

k
+ :::+

1

(n� k) + :::+
1

n� 1 +
1

n
)

> (2k � 1) + (2k � 2)1
2
+ :::+ (k + 1)

1

k � 1 +

+k
1

k
+ :::+ k

1

n� k + (k � 1)
1

n� k + 1 + :::+ 2
1

n� 2 +
1

n� 1

By moving elements from the RHS to the LHS we have

k

k + 1
+

k

k + 2
+ :::+

k

n� k +
k + 1

n� k + 1 + :::+
2k � 1
n� 1 +

2k

n
> k (13)

Note that for all 1 � j < n� k;
k

n� k <
k

k + j

and for all 1 � j � k
k

n� k <
k + j

n� k + j

15



Then, we have

k

k + 1
+

k

k + 2
+ :::+

k

n� k +
k + 1

n� k + 1 + :::+
2k � 1
n� 1 +

2k

n

> (n� k) k

n� k = k

That is, the inequality (13) holds. Q:E:D:

6.2 Proof of Proposition 5

The F.O.C. of (5) is

�v1

 
�n�1i=1 (iy + x)�

n�1
i=1

1
(iy+x)y

n�1(n� 1)!
(�n�1i=1 (iy + x))

2

!

�
n�1X
i=2

vi

0@yn�i (n�1)!(i�1)! �
n�1
j=i�1(jy + x)��

n�1
j=i�1(jy + x)�

n�1
j=i�1

1
(jy+x)y

n�ix (n�1)!(i�1)!

(�n�1j=i�1(jy + x))
2

1A
By some simple calculations we obtain that the symmetric equilibrium e¤ort in a contest with punishments

of the absolute values of v1 � v2 � :::: � vn is

x = v1
Hn�1
n

+
n�1X
i=2

vi
Hn �Hi�1 � 1

n

Thus, the designer who wishes to maximize the symmetric equilibrium e¤ort has the following maximization

problem

max
v1;:::;vn

v1
Hn�1
n

+
n�1X
i=2

vi
Hn �Hi�1 � 1

n

s:t:

n�1X
i=1

vi = 1

Since

Hn�1 > Hn �H1 > Hn �H2 > ::: > Hn �Hn�2

we obtain that the symmetric equilibrium e¤ort x is maximized for v1 = 1 and vj = 0 , 2 � j � n � 1:

Q:E:D:
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6.3 Proof of Proposition 6

The F.O.C. of (6) is

v(n� 1)y
((n� 1)y + x)2 �

�
(1� �)�vyn�2(n� 1)!�n�1i=1 (iy + x)

(�n�1i=1 (iy + x))
2

�
+

"
�n�1i=1 (iy + x)�

n�1
i=1

1
(iy+x) (��vy

n�1(n� 1)! + (1� �)�vyn�2x(n� 1)!)
(�n�1i=1 (iy + x))

2

#
= 1

By symmetry, x = y and then we have

v(n� 1)x
(nx)2

�
�
(1� �)�vxn�2(n� 1)!
(�n�1i=1 ((i+ 1)x))

�
+

"
�n�1i=1

1
((i+1)x) (��vx

n�1(n� 1)! + (1� �)�vyn�1(n� 1)!)
(�n�1i=1 ((i+ 1)x))

#
= 1

By some simple calculations we obtain

v(n� 1)
n2x

�
�
(1� �)�vx�1 � �ni=2 1ix�v

n

�
and therefore the symmetric equilibrium e¤ort is

x =
v(n� 1)
n2

� (1� �)�v � (Hn � 1)�v
n

Q:E:D:

6.4 Proof of Lemma 1

If �� < �, by (7) the total e¤ort in a contest with one prize of a value v and one punishment of a value �v;

�� < �; is

E(1; n� 1) = (n� 1)xn�1 =
v(n� 2)
n� 1 + �v(Hn�1 � 1)

17



and the total e¤ort in a contest with one prize of v and two punishments of values ��v and (1� �)�v; 0 <

� � 0:5; is

E(2; n) = nxn =
v(n� 1)

n
+ �v((Hn � 2 + �))

Then, we have

E(2; n)� E(1; n� 1) = v

n(n� 1) + �v(Hn �Hn�1 � 1 + �)

Thus, the total e¤ort in a contest with one punishment of �v is lower than in a contest with two punishments

of ��v and (1� �)�b i¤

� � 1�Hn +Hn�1 �
1

n(n� 1)�

Note also that for all � � 1;

1�Hn +Hn�1 �
1

n(n� 1)� �
n� 1
n

� 1

n(n� 1) < 1

Thus, there is always 0 < � < 1 such that the players�total e¤ort in a contest with n� 1 symmetric players

and one punishment of a value �v is smaller than in a contest with n symmetric players and two punishments

of values ��v and (1� �)�v: Q:E:D:
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