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Abstract

We study two-stage all-pay contests where there is synergy between the stages. The reward for each

contestant is �xed in the �rst stage while it is e¤ort-dependent in the second one. We assume that a

player�s e¤ort in the �rst stage either increases (positive synergy) or decreases (negative synergy) his

reward in the second stage. The subgame perfect equilibrium of this contest is analyzed with either

positive or negative synergy. We show, in particular, that whether the contestants are symmetric or

asymmetric their expected payo¤s may be higher under negative synergy than under positive synergy.

Consequently, they prefer smaller rewards (negative synergy) over higher ones (positive synergy).

Keywords: Two-stage all-pay contests, e¤ort-dependent rewards.

JEL classi�cation: C70, D44, L12, O32

1 Introduction

Multi-stage contests are situations in which agents spend resources in order to win one or more prizes. The

prizes are allocated either in each of the stages or only in some of them, usually in the last one. There are

many architectures of multi-stage contests. Examples include best-of-k contests (see Klumpp and Polborn

2006, Harris and Vickers 1987 and Konrad and Kovenock 2009), elimination contests (see Gradstein and

Konrad 1999, Groh et al. 2009 and Fu and Lu 2012) and contests which are repeated a �nite number of

times. The analysis of multi-stage contests is quite complicated and challenging particularly when there is
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synergy between the various stages of the contest. Such a synergy could occur when contestants have a

�xed budget of resources and have to decide how to allocate them over the stages of the contest. Amegashie

et al. (2007), for example, showed that in a two-stage elimination all-pay contest if contestants have �xed

equal resources, they spend more resources in the initial rounds than in the subsequent ones. Likewise,

Sela and Erez (2013) studied a dynamic contest between two contestants who compete against each other

in n di¤erent stages and have heterogeneous resource budgets that decrease from a given stage to the next

proportionally to the resources allocated in that stage. They showed that when the winning value is equal

between the stages, the contestants� resource allocations are weakly decreasing over the stages. Another

well known dynamic contest with resource allocation is the Colonel Blotto game in which two contestants

compete against each other in n di¤erent contests. Each contestant distributes a �xed amount of resource

over the n contests without knowing his opponent�s resource distribution. In each contest, the contestant

who allocates the higher level of resource wins where each contestant�s payo¤ is a function of the sum of

wins across the individual contests (see, for example, Snyder 1989, Roberson 2006, Kvasov 2007 and Hart

2008).

The literature suggests various reasons for the occurrence of synergy in multi-stage contests other than

a �xed resource budget. Ryvkin (2011), for example, studied a best-of k contest in which the contestants�

probabilities of winning in each stage depend on the contestants�e¤orts in that stage as well as their e¤orts

in the previous stages and found that agents are more likely to exert higher e¤orts in the later stages of the

contest. Kovenock and Roberson (2009) studied a two-stage campaign resource allocation game in which the

players�di¤erence campaign expenditures in the �rst stage serve as a head start advantage to the contestants

in the second stage.1

In this paper, we study a two-stage all-pay contest in which the contestants�e¤orts in the �rst stage do

not a¤ect the contestants�success functions in the second stage (as in the above two studies) but instead

a¤ect their rewards in the later stage. There are numerous examples of rewards in contests which are not

necessarily �xed and where there is a relationship between the e¤orts made and the size of the rewards. To

illustrate, the greater the e¤ort a student exerts for an exam at a university, the greater is his chance to

1The one-stage all-pay contest with discrimination in the form of a head-start advantage has been analyzed by Konrad

(2002).
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achieve a higher grade. Similarly, the greater the e¤ort a �rm exerts to produce a new product, the greater

is the probability that the quality of the �nal product will improve. A last example is patent races, where

the more e¤ort a �rm invests, the earlier is the innovation time and therefore the larger is the reward.

In one-stage contests, the e¤ort�dependent rewards have been shown to have a complicated e¤ect on

contestants�behavior. For example, in one-stage all-pay contests with e¤ort-dependent rewards under in-

complete and complete information, Kaplan et al. (2002, 2003) showed that substantial qualitative changes

can occur in the behavior of the contestants compared to their behavior in the same contests with constant

rewards. Cohen et al. (2008) studied all-pay contests with e¤ort-dependent rewards under incomplete in-

formation in which the value of winning the contest for each contestant depends not only on his type but

also on the e¤ort-dependent reward chosen by the designer. They showed that when the designer maximizes

the contestants� expected total e¤ort and there is a su¢ ciently large number of contestants, the optimal

reward decreases in the contestants�e¤ort. However, when the designer maximizes the contestants�expected

highest e¤ort, the optimal reward may increase in the contestants�e¤ort for any number of contestants. A

last example is Kaplan and Wettstein (2015) who studied the optimal e¤ort-dependent reward in all-pay

contests under complete information. Their results indicate that for asymmetric environment with two �rms,

it is optimal to set di¤erent rewards for each �rm.

In our two-stage contest the e¤ect of the e¤ort-dependent reward on the contestants�behavior is even

more complicated than in one-stage contests since this reward implies a synergy between the two stages.

This synergy might be either positive or negative, namely, the contestants� e¤orts in the �rst stage may

either increase or decrease their rewards in the second stage. The reason for a positive e¤ect is that the

e¤ort in the �rst stage may increase the value of winning in the second stage. This can occur, for example,

in a two-stage R&D contest when a contestant acquires some knowledge and experience in the �rst stage

which increases the bene�t from winning in the second stage. The reason for a negative e¤ect is that the

e¤ort in the �rst stage may decrease the value of winning in the second stage. This can happen when the

contestant�s reward in the second stage is a function of his budget of e¤ort which decreases within the stages.

Thus, the contestant�s e¤ort in the �rst stage decreases his budget constraint in the second stage and as such

decreases his reward in that stage.
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In our two-stage all-pay contest, in each stage each contestant exerts an e¤ort and the contestant who

exerts the highest e¤ort receives the reward, but, independently of success, all the contestants bear the cost

of their e¤orts.2 The contestants compete in each stage for a di¤erent reward. The reward in the �rst stage

is �xed but in the second stage it is variable with a constant marginal increasing (decreasing) rate; namely,

a contestant�s reward in the second stage is a linear function of his e¤ort in the �rst stage.

With symmetric contestants who have the same rewards, we show that if there is positive synergy between

the stages (each contestant�s e¤ort in the �rst stage increases his reward in the second stage) both contestants

have an expected payo¤ of zero, but, if there is negative synergy between the stages (each contestant�s e¤ort

in the �rst stage decreases his reward in the second stage), both contestants have positive expected payo¤s.

This result is in contrast to the standard one-stage all-pay contest in which symmetric contestants always

have an expected payo¤ of zero. However, with asymmetric contestants who have di¤erent �xed prizes

in the �rst stage, we show that if there is positive synergy between the stages, the stronger contestant

(the contestant with the higher reward in the �rst stage) has a positive expected payo¤ while the weaker

contestant has an expected payo¤ of zero. However, if the synergy between the stages is negative, both

contestants have positive expected payo¤s.

Furthermore, regardless of whether the contestants are symmetric or asymmetric and whether the e¤ort-

dependent reward in the second stage is increasing or decreasing in the contestants� e¤orts, we �nd that

the contestants�expected payo¤s are non-decreasing in the (absolute) value of the marginal increasing (de-

creasing) rate of the e¤ort-dependent reward. That is, when the synergy is either negative or positive, the

higher the e¤ect of the contestant�s e¤ort in the �rst stage is on his reward in the second stage, the higher

is his expected payo¤. In particular, when the synergy is negative, lower rewards in the second stage lead

to higher expected payo¤s. The reason is that when all contestants have lower rewards, the contestants�

expected payo¤s which are based on the di¤erence of their rewards do not necessarily decrease.

We also compare the contestants�expected payo¤s under positive and negative synergies when the mar-

ginal increasing rate and the marginal decreasing rate of the e¤ort-dependent reward have the same absolute

value. We �nd that if the contestants are symmetric, they have either the same expected payo¤ or a higher

2The all-pay contest has been analyzed, among others, by Kovenock and de Vries (1993), Che and Gale (1998), Amman and

Leininger (1996), Krishna and Morgan (1997), Moldovanu and Sela (2001, 2006), Gavious et al. (2003) and Siegel (2009).
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expected payo¤ under negative synergy than under positive one. However, if the contestants are asymmetric,

the weaker contestant (the contestant with the lower type in the �rst stage) has either the same expected

payo¤ or a higher expected payo¤ under negative synergy than under positive one. On the other hand,

the stronger contestant (the contestant with the higher value in the �rst stage), depending on the value

of the marginal increasing/decreasing rate, has either a lower or a higher expected payo¤ under negative

synergy than under positive synergy. Thus, even when contestants are asymmetric, they both may prefer

that their rewards in the second stage will decrease and not increase in their e¤orts of the previous stage.

In other words, each contestant prefers lower rewards for all the contestants over higher ones. The reason

is that under negative synergy the contestants have lower rewards than under positive synergy, but, on the

other hand, the contestants exert smaller e¤orts. Last, when the value of the marginal increasing/decreasing

rate is su¢ ciently high (close enough to 1) then the preferences of the asymmetric contestant are no longer

identical, since the stronger contestant has a higher expected payo¤ under positive synergy and the weaker

contestant has a higher expected payo¤ under negative synergy.

In a related paper (Sela 2012), we studied sequential two-prize all-pay contests under complete information

where the prizes are identical; each contestant may win more than one prize; and each contestant�s marginal

values for the �rst and the second prize are either decreasing, constant or increasing. In such a case the

contestants�strategies in the �rst stage a¤ect what their prizes will be in the second stage. In contrast, the

synergy between the stages in our present model does not depend on the identity of the winner in the �rst

stage but instead on each contestant�s e¤ort in that stage.

The rest of the paper is organized as follows: In sections 2 and 3, we analyze the two-stage all-pay contest

with positive and negative synergies. In section 4, we compare between the results of the analyses in the two

previous sections and in section 5 we conclude.

2 The two-stage all-pay contest with positive synergy

We begin by considering a two-stage all-pay contest with two contestants, 1 and 2 that compete against

each other in the �rst stage where contestant i�s reward in that stage is vi1; i = 1; 2. Contestant j�s expected

utility is ui1 = v
i
1 � xi1 if xi1 > x�i1 and otherwise ui1 = �xi1, where xi1; x�i1 are the contestants�e¤orts in that
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stage. We assume that there is positive synergy between the two stages, namely, the e¤ort of each contestant

positively a¤ects his reward in the second stage such that contestant i�s e¤ort-dependent reward is vi2+�x
i
1;

i = 1; 2 where 0 < � < 1 is the marginal increasing rate and xi1 is contestant i�s e¤ort in the �rst stage.

The contestants observe the e¤orts in the �rst stage and then choose their e¤orts x12; x
2
2 in the second stage

such that contestant i�s expected utility in the second stage is ui2 = v
i
2 +�x

i
1 � xi2 if xi2 > x�i2 and otherwise

ui2 = �xi2. The goal of each contestant is to maximize his expected utility. Henceforth, we refer to this model

as a two-stage all-pay contest with positive synergy.

In the following we assume that the contestants may have di¤erent rewards in the �rst stage, where

v11 � v21 , but have the same e¤ort-dependent reward function v2 + �x
i
2 in the second stage. In order to

analyze a subgame perfect equilibrium of the symmetric two-stage all-pay contest we begin with the second

stage and go backwards to the �rst one.

2.1 The second stage

Assume without loss of generality that the contestants�strategies in the �rst stage are x11; x
2
1 where x

1
1 � x21.

Then, according to Hillman and Riley (1989) and Baye, Kovenock and de Vries (1996, 2012), there is always

a unique mixed-strategy equilibrium in which contestants 1 and 2 randomize on the interval [0; v2 + �x21]

according to their e¤ort cumulative distribution functions G1�p(y), G2�p(y) which are given by

(v2 + �x
1
1)G2�p(y)� y = �(x11 � x21)

(v2 + �x
2
1)G1�p(y)� y = 0

where v2+�xi1 is contestant i�s e¤ort-dependent reward in the second stage. Thus, contestant 1�s equilibrium

e¤ort in the second stage is distributed according to the cumulative distribution function

G1�p(y) =
y

v2 + �x21

while contestant 2�s equilibrium e¤ort is distributed according to the cumulative distribution function

G2�p(y) =
�(x11 � x21) + y
v2 + �x11
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The respective expected payo¤s are

E12�p = �(x11 � x21) (1)

E22�p = 0

Thus, contestant 1�s expected payo¤ is positive while contestant 2�s expected payo¤ is zero. The contestants�

probabilities to win are

p12�p = 1� v2 + �x
2
1

2v2 + �(x11 + x
2
1)

p22�p =
v2 + �x

2
1

2v2 + �(x11 + x
2
1)

The contestant who wins the reward in the �rst stage (contestant 1) has a higher probability (p12 � 0:5) to

win the reward in the second stage. The contestants�strategies in the second stage are well known from

the analysis of the one-stage all-pay contest, but their strategies in the �rst stage have yet to be determined

which we proceed to do in the following section.

2.2 The �rst stage

If contestant 1 wins in the �rst stage, his reward is v11 and then the contestants�e¤ort-dependent rewards in

the second stage satisfy v2+�x11 > v2+�x
2
1. Thus, if contestant 1 wins in the �rst stage, by (1) his expected

payo¤ in the second stage is positive and equals �(x11 � x21). On the other hand, by (1), if contestant 1 loses

in the �rst stage his expected payo¤ in the second stage is zero. A similar argument holds for contestant 2.

Thus, there is always a mixed-strategy equilibrium in which contestants 1 and 2 randomize on the interval

interval [0; xmax�pa ] according to their e¤ort cumulative distribution functions F1�p(x); F2�p(x) which are

given by

v11F2�p(x) +

Z x

0

�(x� t)f2�p(t)dt� x = c1 (2)

v21F1�p(x) +

Z x

0

�(x� t)f1�p(t)dt� x = c2
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where fi�p(x) = F 0i�p(x); i = 1; 2; xmax�pa is the highest possible e¤ort of each of the contestants, and

ci; i = 1; 2; is contestant i�s expected payo¤. The derivative of (2) yields

v11f2�p(x) + �F2�p(x)� 1 = 0 (3)

v21f1�p(x) + �F1�p(x)� 1 = 0

The solution of (3) implies that

Proposition 1 In the subgame perfect equilibrium of the two-stage all-pay contest, if the contestants are

asymmetric, v11 > v
2
1, and there is positive synergy, player 1�s equilibrium e¤ort in the �rst stage is distributed

according to

F1�p(x) =
1

�
� 1

�
e
��x

v21

player 2�s equilibrium strategy in the �rst stage is distributed according to

F2�p(x) =
1

�
� (1� �)

v11�v
2
1

v11

�
e
��x

v11

where the highest possible e¤ort exerted by each of the contestants is

xmax�pa =
�v21
�
ln(1� �)

Proof. We can see that the function Fi�p(x); i = 1; 2, is well de�ned, strictly increasing on [0; xmax�pa ],

continuous, and that F1�p(0) = 0, F2�p(0) = 1
� �

(1��)
v11�v

2
1

v11

� > 0 and F1�p(xmax�pa) = F2�p(xmax�pa) =

1. Thus, Fi�p(x); i = 1; 2 are cumulative distribution functions of continuous probability distributions

supported on [0; xmax�pa ]. In order to see that the above strategies are an equilibrium, note that when

contestant 2 uses the mixed strategy F2�p(x), contestant 1�s expected payo¤ is

EP1�p = v
1
1(
1

�
� (1� �)

v11�v
2
1

v11

�
) (4)

for any e¤ort x 2 [0; xmax�pa ]. Since it can be easily shown that e¤orts above xmax�pa would lead to a

lower expected payo¤ than v11(
1
� �

(1��)
v11�v

2
1

v11

� ) for contestant 1, any e¤ort in [0; xmax�pa ] is a best response

of contestant 1 to F2�p(x): Similarly, when contestant 1 uses the mixed strategy F1�p(x), contestant 2�s

expected payo¤ is
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EP2�p = 0

for any e¤ort x 2 [0; xmax�pa ]. Again, since it can be easily shown that e¤orts above xmax�pa would result

in a non-positive expected payo¤ for contestant 2, any e¤ort in [0; xmax�pa ] is a best response of contestant

2 to F1�p(x): Hence, the pair (F1�p(x); F2�p(x)) is a mixed strategy equilibrium.

In the symmetric case when v11 = v
2
1 = v1; we obtain that

F1�p(x) = F2�p(x) =
1

�
� 1

�
e�

�x
v1

and both contestants�expected payo¤ is

EPp = v1 +

Z �v1
a ln(1�a)

0

a(x� t) 1
v1
e�

at
v1 dt+

v1
a
ln(1� �) = 0

By (4), we have

dEP1�p
d�

=
1

�2 (1� �)
v21
v11

 
v11 � v11 (1� �)

v21
v11 � �v21

!
(5)

In order to �nd whether dEP1�p
d� is positive or negative, de�ne g(�) =

 
v11 � v11 (1� �)

v21
v11 � �v21

!
. Since

g(0) = 0 and g0(�) = v21

0@ 1

(1��)
v11�v

2
1

v11

� 1

1A � 0, we obtain that g(�) � 0 for all 0 < � < 1 and therefore

dEP1�p
d� � 0: In other words, the stronger contestant�s (contestant 1) expected payo¤ increases in the marginal

increasing rate �:

Let v11 = 2 and v
2
1 = 1. Then, in the following �gure we can present the stronger contestant�s expected

payo¤ as a function of the marginal increasing rate �:
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Figure 1: Contestant 1�s expected payo¤ as a function of the marginal increasing rate �:

Figure 1 shows that when the marginal increasing rate � approaches 1, contestant 1�s expected payo¤

converges to the value of his reward in the �rst stage.

The contestants�probabilities to win in the �rst stage are given by

p1�p =

�v21
a ln(1��)Z
0

1

v21
e
��x

v21 [
1

�
� (1� �)

v11�v
2
1

v11

�
e
��x

v11 ]dx

=
1

�

0B@ 1
�
v11
(1� �)

v11�v
2
1

v11

v11 + v
2
1

 
(1� �)

v11+v
2
1

v11 � 1
!
+ 1

1CA
and by p2�p = 1 � p1�p: It can be easily veri�ed that when v11 = v21 ; we obtain that p1�p = p2�p = 1

2 : We

also have that

dp1�p
d�

= � 1

�3 (1� �)
v21
v11 (v11 + v

2
1)

 
(2v11 � �v11 + �v21) (1� �)

v21
v11 � (2� �)v11 + �v21

!

In order �nd whether dp1�p
d� is positive or negative de�ne

g(�) =

 
(2v11 � �v11 + �v21) (1� �)

v21
v11 � (2� �)v11 + �v21

!

Since v11 � v21 , we have
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g(�) �
 
(2v11 � �v11 + �v11) (1� �)

v21
v11 � (2� �)v11 + �v11

!

= 2v11((1� �)
v21
v11 � 1) � 0

Thus, we obtain that dp1�nd� > 0 for all 0 < � < 1: In other words, the probability of the stronger contestant

(contestant 1) to win in the �rst stage increases in the marginal increasing rate �:

Let v11 = 2 and v
2
1 = 1: Then, in the following �gure we can present the stronger contestant�s probability

to win in the �rst stage as a function of the marginal increasing rate �:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

alfa

P1

Figure 2: Contestant 1�s probability to win in the �rst stage as a function of the marginal increasing rate �:

Figure 2 shows that when the marginal increasing rate � approaches 1, contestant 1�s probability to win

in the �rst stage converges to 1.

3 The two-stage contest with negative synergy

We consider again a two-stage all-pay contest with two contestants, 1 and 2 that compete against each other

in the �rst stage where contestant i�s reward is vi1; i = 1; 2: Contestant i�s expected utility is u
i
1 = v

i
1 � xi1 if

xi1 > x
�i
1 and otherwise ui1 = �xi1 where xi1; x

�i
1 are the contestants�e¤orts in the �rst stage. We assume

now that there is negative synergy between the two stages, namely, the e¤ort of each contestant negatively
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a¤ects his reward in the second stage such that contestant i�s reward is vi2 � �xi1; i = 1; 2 where 0 < � < 1

is the marginal decreasing rate and xi1 is contestant i�s e¤ort in the �rst stage. The contestants observe

the e¤orts in the �rst stage and then choose their e¤orts x12; x
2
2 in the second stage such that contestant i�s

expected utility is ui2 = vi2 � �xi1 � xi2 if xi2 > x�i2 and otherwise ui2 = �xi2. Henceforth, we refer to this

model as a two-stage all-pay contest with negative synergy.

In the following we assume that the contestants may have di¤erent rewards in the �rst stage, v11 � v21 ,

but have the same e¤ort-dependent reward function v2 � �xi2 in the second stage. In order to analyze a

subgame perfect equilibrium of the symmetric two-stage all-pay contest we begin with the second stage and

go backwards to the �rst stage.

3.1 The second stage

Similarly to the previous section, the contestants� strategies in the �rst stage are x11; x
2
1 where x

1
1 � x21.

Then, according to Hillman and Riley (1989) and Baye, Kovenock and de Vries (1996, 2012), there is always

a unique mixed-strategy equilibrium in which contestants 1 and 2 randomize on the interval [0; v2 � �x11]

according to their e¤ort cumulative distribution functions G1�n(y), G2�n(y) which are given by

(v2 � �x11)G2�n(y)� y = 0

(v2 � �x21)G1�n(y)� y = �(x11 � x21)

where v2��xi1 is contestant i�s e¤ort-dependent reward in the second stage. Thus, contestant 2�s equilibrium

e¤ort is distributed according to the cumulative distribution function

G2�n(y) =
y

v2 � �x11

while contestant 1�s equilibrium e¤ort is distributed according to the cumulative distribution function

G1�n(y) =
�x11 � �x21 + y
v2 � �x21

The respective expected payo¤s are

E12�n = 0 (6)

E22�n = �(x11 � x21)
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In other words, the expected payo¤ of contestant 1 (the winner in stage 1) in the second stage is zero while

the expected payo¤ of contestant 2 (the loser in stage 1) is positive. The contestants�probabilities to win in

the second stage are

p12�n =
v2 � �x11

2v2 � �(x11 + x21)

p22�n = 1� v2 � �x11
2v2 � �(x11 + x21)

Thus, the contestant who wins the reward in the �rst stage (contestant 1) has a lower probability (p12�n < 0:5)

to win the reward in the second stage. Now, given the equilibrium strategies in the second stage we can

analyze the equilibrium strategies in the �rst stage, as done in the following section.

3.2 The �rst stage

If contestant 1 wins in the �rst stage his reward is v11 and then the contestants�e¤ort-dependent rewards in

the second stage satisfy v2 � �x11 < v2 � �x21. Thus, by (6) his expected payo¤ in the second stage is zero.

On the other hand, if contestant 1 loses in the �rst stage, by (6) his expected payo¤ in the second stage is

�(x11 + x
2
1): A similar argument holds for contestant 2. Thus, there is always a mixed-strategy equilibrium

in which contestants 1 and 2 randomize on the interval [0; xmax�na ] according to their e¤ort cumulative

distribution functions F1�n(x); F2�n(x) which are given by

v11F2�n(x) +

Z xmax�n

x

�(t� x)f2�n(t)dt� x = c1 (7)

v21F1�n(x) +

Z xmax�n

x

�(t� x)f1�n(t)dt� x = c2

where fi�n(x) = F 0i�n(x); i = 1; 2; xmax�na is the highest possible e¤ort of both contestants and ci; i = 1; 2

is contestant i�s expected payo¤ in the two-stage contest. The derivative of (7) yields

v11f2�n(x)� �+ �F2�n(x)� 1 = 0 (8)

v21f1�n(x)� �+ �F1�n(x)� 1 = 0

The solution of (8) implies that

Proposition 2 In the subgame perfect equilibrium of the two-stage all-pay contest, if the contestants are

asymmetric, v11 > v
2
1, and there is negative synergy, player 1�s equilibrium e¤ort in the �rst stage is distributed

13



according to

F1�n(x) =
1 + �

�
� 1 + �

�
e
��x

v21

player 2�s equilibrium e¤ort in the �rst stage is distributed according to

F2�n(x) =
1 + �

�
� (1 + �)

v21
v11

�
e
��x

v11

where the highest possible e¤ort exerted by each of the contestants is

xmax�na =
v21
�
ln(1 + �)

Proof. It is clear that the functions Fi�n(x); i = 1; 2, are well de�ned, strictly increasing on [0; xmax�na ],

continuous, and that F1�n(0) = 0, F2�n(0) = 1+�
� � (1+�)

v21
v11

� and F1�n(xmax�n) = F2(xmax�n) = 1. Thus,

Fi�n(x); i = 1; 2 are cumulative distribution functions of continuous probability distributions supported on

[0; xmax�n].

In order to see that the above strategies are an equilibrium, note that when contestant 2 uses the mixed

strategy F2�n(x), contestant 1�s expected payo¤ is

EP1�n = v
1
1 �

v21
�
ln(1 + �) (9)

for any e¤ort x 2 [0; xmax�na ]. Since it can be easily shown that e¤orts above xmax�na would lead to a

lower expected payo¤ than v11 �
v21
� ln(1 + �) for contestant 1, any e¤ort in [0; xmax�na ] is a best response

of contestant 1 to F2�n(x): Similarly, when contestant 1 uses the mixed strategy F1�n(x), contestant 2�s

expected payo¤ is

EP2�n = v
2
1 �

v21
�
ln(1 + �)

for any e¤ort x 2 [0; xmax�na ]. Again, since it can be easily shown that e¤orts above xmax�n would result in

a lower expected payo¤ than v21 �
v21
� ln(1 + �) for contestant 2, any e¤ort in [0; xmax�na ] is a best response

of contestant 2 to F1�n(x): Hence, the pair (F1�n(x); F2�n(x)) is a mixed strategy equilibrium.

In the symmetric case when v11 = v
2
1 = v1; we obtain that

F1�n(x) = F2�n(x) =
1 + �

�
� 1 + �

�
e�

x�
v1
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and both contestants�expected payo¤ is

EPn = v1 �
v1
�
ln(1 + �) > 0

Moreover, even when the contestants are asymmetric, by (7), in contrast to the case with positive synergy,

both contestants�expected payo¤s are positive. For i = 1; 2 we have

dEPi�n
d�

=
1

�2
v21
�+ 1

(ln (�+ 1)� �+ � ln (�+ 1)) (10)

=
1

�2
v21
�+ 1

(ln (�+ 1) (1 + �)� �)

In order to �nd whether dEPi�n
d� is positive or negative, de�ne g(�) = (ln (�+ 1) (1 + �) � �): Also note

that g(0) = 0 and g0(�) = ln (�+ 1) � 0: Thus, we obtain that g(�) � 0 and therefore for all 0 < � < 1;

dEPi�n
d� � 0, i = 1; 2. In other words, both contestants�expected payo¤s increase in the absolute value of

the marginal decreasing rate �.

Let v21 = 1 and v
1
1 = 2. Then, in the following �gure we can present the contestants�expected payo¤s as

functions of the marginal decreasing rate �:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

alfa

EP

Figure 3: Contestant 1�s expected payo¤ (the black curve) and contestant 2�s expected payo¤ (the red

curve) as functions of �:

The contestants�probabilities to win in the �rst stage are given by
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p1�n =

v21
a ln(1+�)Z
0

1 + �

v21
e
��x

v21

2641 + �
�

� (1 + �)
v21
v11

�
e
��x

v11

375 dx
=

1 + �

�
� v11
�2(v11 + v

2
1)
((1 + �)

v11+v
2
1

v11 � 1)

and by p2�n = 1� p1�n. It can be easily veri�ed that when v11 = v21 then p1�n = 1+�
� � 1

2�2 ((1+�)
2� 1) =

1
2 = p2�n: We also have that

dp1�n
d�

= � 1

�3 (v11 + v
2
1)
((�+ 1)

v21
v11 (�2v11 � �v11 + �v21) + 2v11 + �v11 + �v21)

In order to �nd whether dp1�n
d� is positive or negative, de�ne

g(�) = (�+ 1)
v21
v11 (�2v11 � �v11 + �v21) + 2v11 + �v11 + �v21

Then we have that for all 0 < � < 1

g(�) � (�+ 1) (�2v11 � �v11 + �v21) + 2v11 + �v11 + �v21

= (2�+ �2)(v21 � v11) � 0

Therefore we obtain that for all 0 < � < 1; dp1�nd� > 0: In other words, the probability of contestant 1 to win

in the �rst stage increases in the absolute value of the marginal decreasing rate �:

Let v21 = 1 and v
1
1 = 2. Then, in the following �gure we can present the contestant 1�s probability to win

as a function of the marginal decreasing rate �:
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Figure 4: Contestant 1�s probability to win as a functions of �:

According to Figure 4, we can see that although contestant 2 has a positive expected payo¤ in the second

stage, contestant 1, the contestant with the higher reward in the �rst stage, has a higher probability to win

in that stage.

4 Results

Based on the analysis in the previous sections we can compare the two-stage all-pay contest under positive

and negative synergies. By (4) and (9) we have

Proposition 3 In the two-stage all-pay contest:

1. If the contestants are symmetric and there is positive synergy, both contestants have an expected payo¤

of zero, and if there is negative synergy, both contestants have a positive expected payo¤. Then, if the synergy

is stronger (larger �) each contestant�s expected payo¤ is higher.

2. If the contestants are asymmetric and there is positive synergy, the contestant with the higher value in

the �rst stage has a positive expected payo¤ while the other contestant has an expected payo¤ of zero. Then,

if the synergy is stronger, the stronger contestant�s (the contestant with the higher value in the �rst stage)

expected payo¤ is higher. And, if the synergy is negative, both contestants have positive expected payo¤s
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while the stronger contestant has a higher expected payo¤. Then, if the synergy is stronger each contestant�s

expected payo¤ is higher.

By Proposition 3 if the synergy is positive the symmetric contestants have an expected payo¤ of zero

while if the synergy is negative they have a positive expected payo¤. Thus, both contestants prefer negative

over positive synergy. When contestants are asymmetric, the weaker contestant (the contestant with the

lower value in the �rst stage), like the symmetric contestants, also prefers negative over positive synergy,

since under positive synergy he has an expected payo¤ of zero while under negative synergy he has a positive

expected payo¤. On the other hand, the stronger contestant (the contestant with the higher value in the �rst

stage) has a positive expected payo¤ under both positive and negative synergies. In order to compare his

expected payo¤s for both cases, let v11 = 2 and v
2
1 = 1. Then, in Figure 5 below we can present the stronger

contestant�s expected payo¤s as a function of the marginal rate � under positive and negative synergies.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

alfa

EP1

Figure 5: Contestant 1�s expected payo¤ as a function of � under positive synergy (black curve) and

negative synergy (red curve).

Figure 5 shows that the stronger�s expected payo¤ could be higher but also lower under positive synergy

than under negative synergy. Furthermore, for relatively high values of � the contestants preferences are not

identical as the following result shows.

Proposition 4 In the two-stage all-pay contest,
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1. If the contestants are symmetric, they have higher expected payo¤s under negative synergy than under

positive synergy.

2. If the contestants are asymmetric, the weaker contestant (the contestant with the lower value in the �rst

stage) has a higher expected payo¤ under negative synergy than under positive synergy. On the other hand,

if the marginal (increasing/decreasing) rate � is su¢ ciently high (approaches 1), the stronger contestant has

a lower expected payo¤ under negative synergy than under positive synergy.

Proof. By (10), when the synergy is negative we have that dEP1�nd� � 0, and

dEP1�n
d�

=
1

�2
v21
�+ 1

(ln (�+ 1) (1 + �)� �)

� 1

�2
v21
�+ 1

(�(1 + �)� �) = v21
�+ 1

� v21

On the other hand, by (5), when the synergy is positive we have that dp1�nd� � 0 and

lim
�!1

dEP1�p
d�

= lim
�!1

1

�2

0B@ v11 � �v21

(1� �)
v21
v11

� v11

1CA =1

Thus, when � is su¢ ciently close to 1, we obtain that EP1�p � EP1�n > 0:

By Proposition 4 and Figure 5, we have values of marginal increasing rate � according to which regardless

of whether the contestants are symmetric or asymmetric, they have the same or a higher expected payo¤

under negative synergy than under positive synergy. This result can be explained as follows: The contestants�

expected payo¤s in the second stage are decided according to the di¤erence between their e¤orts in the �rst

stage and not according to the level of these e¤orts. Thus, when the synergy between the stages is negative,

the contestants� expected payo¤s in the second stage are not necessarily lower than when the synergy is

positive. However, when the synergy is positive, the contestants expected total e¤ort in the second stage is

higher than the expected total e¤ort when the synergy is negative.

5 Concluding remarks

We studied two-stage all-pay contests with e¤ort-dependent rewards that either increase (positive synergy)

or decrease (negative synergy) in the contestants� e¤orts. We analyzed the subgame perfect equilibrium
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and showed that in our model all the contestants, whether symmetric or asymmetric, may have positive

expected payo¤s. The results also showed a paradoxical behavior: although contestants, whether symmetric

or asymmetric, have larger rewards when the e¤ort-dependent rewards are increasing, they all may prefer

decreasing e¤ort-dependent rewards over increasing ones.

The above results have been obtained under the assumption that the reward function in the second stage

is additively separable, vi2(x
i
1) = v2 � �xi1 where xi1 is player i�s e¤ort in the �rst stage. However, these

results are robust and hold for other forms of the reward function in this stage as, for example, when the

reward function in the second stage is multiplicatively separable, vi2(x
i
1) = v2�x

i
1; i = 1; 2. The reason is that

the di¤erence between the contestants�rewards in the second stage is the key parameter for the analysis of

the equilibrium in the �rst stage and that di¤erence in the multiplicative-separable case is equal to that in

the additively-separable case multiplied by constant.

A natural extension of our model would be to consider a multi-stage contest in which a contestant�s e¤ort

will a¤ect not only his reward in the later stages but his opponents�rewards as well. This and other possible

extensions indicate the research potential of studying multi-stage contests with e¤ort-dependent rewards.
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