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Abstract

A match is a recursive zero-sum game with three possible outcomes: player
1 wins, player 2 wins or there is a draw. Play proceeds by steps from state to
state. In each state players play a “point game” and move to the next state
according to transition probabilities jointly determined by their actions. We fo-
cus on quasi-binary matches which are those whose point games also have three
possible outcomes: player 1 scores the point, player 2 scores the point, or the
point is drawn in which case the point game is repeated. We show that when the
probability of drawing a point is uniformly less than 1, a quasi-binary match has
an equilibrium. Additionally, we can assign to each state a value of a draw so
that quasi-binary matches always have a stationary equilibrium in which players’
strategies can be described as minimax behavior in the associated point games.
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1 Introduction

A match is a recursive zero-sum game with three possible outcomes: player 1 wins,

player 2 wins or the game never ends. Play proceeds by steps from state to state. In

each state players play a “point” and move to the next state according to transition

probabilities jointly determined by their actions. Examples of matches include tennis,

penalty shootouts and, you will forgive the repetition, chess matches. In a chess match

two players play a sequence of chess games until some prespecified score is reached.

For instance, the Alekhine–Capablanca match played in 1927 took the format known as

first-to-6 wins, according to which the winner is the first player to win six games. Some

matches are finite horizon games and others are not. For instance, a best-of-seven playoff

series is a finite horizon match. Indeed, it will necessarily end in at most seven stages.

A penalty shootout, on the other hand, is an infinite horizon game. It will never end if,

for instance, every penalty kick is scored. Similarly, a first-to-6-wins chess match is also

an infinite horizon game.1 Matches can also be classified into binary and non-binary

games. A penalty shootout is an example of the former and a chess match of the latter.

The reason is that while each penalty kick has two outcomes, either the goal is scored

or it is not scored, a chess game may also end in a draw.

Matches have been the object of several empirical studies. For instance, Walker

and Wooders [10] test the minimax hypothesis using data on tennis, Palacios-Huerta [6]

tests the same hypothesis using data on penalty shootouts. Apesteguia and Palacios-

Huerta [1] observe a first-kicker anomaly in penalty shootouts and Gonzalez-Dı́az and

Palacios-Huerta [4] observe a similar anomaly in chess matches. This paper also offers

a brief theoretical analysis of a particular finite chess match.

Walker, Wooders and Amir [11] analyzed binary games and showed that under certain

monotonicity condition, minimax behavior in each of the point games constitutes an

equilibrium of the whole match. Namely, by maximizing the lowest probability of his

1In fact, the 1984 Karpov-Kasparov match lasted five months and was aborted after 48 games when
the partial score was 5-3. Coincidentally, the longest penalty shootout so far also had 48 kicks.
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scoring each point, each player is best responding to the other player’s also maximizing

the lowest probability of his scoring each point. This result implies that as long as

the monotonicity conditions holds, binary games have stationary equilibria that dictate

behavior which depends only on the current point game and therefore is independent of

the structure of the match.

Strictly speaking however, Walker, Wooders and Amir’s [11] result is proved for

matches in which never-ending play is defined to be the worst outcome for both players,

a feature that renders their matches non-zero sum games. In this paper we extend their

result in two directions. The first is that we consider matches that are zero-sum games.

Specifically, the match payoff function awards 1 to the winner, -1 to the loser, and 0

to both players in the event of an infinite play. The second direction is that we focus

on what we call quasi-binary games, which are matches whose point games have three

possible outcomes: player 1 scores the point, player 2 scores the point, or (something

that happens with probability less than 1) the point is drawn, in which case the point

game is repeated. Like in binary games, from any state play may move to one of at most

two states. Unlike binary games, play may also stay in the current state for some time.

Since quasi-binary games are zero-sum games we are able to apply well-known results

on recursive games to show that they always have an equilibrium. Moreover, they always

have a stationary equilibrium in which players’ strategies prescribe minimax play in the

point games.

Before we describe these equilibria, notice that since in a quasi-binary game the

probability of staying in the current state, say k, is less than one, players will eventually

move to one of two different states. Label them w(k) and ℓ(k). If they move to w(k)

we say that player 1 wins the point and if they move to state ℓ(k) we say that player

1 loses the point. And if they stay in the current state we say that the point is drawn.

Note that since there are two different states to which we can move from k, there are

two different ways to select a labeling. In principle, we would like to attach label w(k)

to the state that brings player 1 closer to winning the match. The problem, however, is

3



that the definition of a match does not tell us which state this is, and rightly so because

whether a transition to a state is favorable to player 1 or to player 2 is endogenously

determined by the players’ strategies. In any case, once we choose a labeling, we can

define a simple zero-sum matrix game as follows. First we assign a value ek to the draw

in the current state and then define the payoffs to player 1 as his expected earnings when

winning the point is worth 1, losing the point is worth 0, and a draw is worth ek.

In this paper we show that for each state k there is a labeling w(k), ℓ(k) of the states

to which the players can move from k, and a value ek of the draw in the associated

point game so that minimax play in the above zero-sum matrix games constitutes an

equilibrium of the match. We also show that if the game satisfies a mild monotonicity

condition, every stationary equilibrium of the match prescribes minimax play in these

zero-sum games.

To illustrate the main result, consider the following simple match. Two players play

a sequence of 2 × 2 “simplified chess” games. Each chess game may end in a victory

for either player or in a draw. The winner of a chess game earns one point and the

match ends as soon as the score difference is either 2 or -2. Formally, there are three

non-absorbing states, 1, 0, and -1, each corresponding to each partial score, and two

absorbing states, 2 and -2. Let’s adopt the labeling according to which when player 1

wins the chess game played at state k, for k = 1, 0,−1, play moves to state k + 1, and

when he loses it there is a transition to k − 1. When the partial score is 0 player 1

plays with the white pieces and the chess game is governed by the following matrix of

probabilities:

PW =





(2/3, 1/3, 0) (8/27, 1/3, 10/27)

(0, 1/2, 1/2) (2/3, 1/3, 0)



 .

Each entry displays the probabilities of player 1 winning, drawing or losing the point

when the corresponding actions are chosen.2 For instance, when player 1 chooses his first

2We are aware that in real chess, the outcome of a pair of strategies is deterministic. We hope chess
enthusiasts will forgive our distortion.
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action and player 2 chooses his second action, player 1 wins the point with probability

8/27, loses the point with probability 10/27, and there is a draw with probability 1/3.

As soon as one of the players wins the point and the partial score becomes 1 or -1, they

go on to play a new chess game in which player 1 has the black pieces. Correspondingly,

this new game is governed by the following matrix of probabilities:

PB =





(0, 1/3, 2/3) (1/2, 1/2, 0)

(10/27, 1/3, 8/27) (0, 1/3, 2/3)



 .

Here too, the entries are the probabilities that player 1 wins, draws or loses the point

when the corresponding action pair is chosen. Players continue playing this game until

one of them wins the point. If the player who has the score advantage wins the point

the match ends. If the player with the score disadvantage wins the point, the partial

score becomes 0 again and they go back to playing a chess game where player 1 has the

white pieces.

Although matrices PW and PB represent the strategic interaction involved in each of

the chess games, they themselves are not games. In order to transform them into games

we need to specify the proportion of the point at stake a draw represents. Consider

for instance the matrix PW . If a draw is worth ε ∈ [0, 1] of a point, then by taking

the expected value of the point earned by player 1, PW can be transformed into the

following matrix game:

PW (ε) =





2/3 + 1/3ε 8/27 + 1/3ε

1/2ε 2/3 + 1/3ε



 .

Routine calculations show that the value of this matrix is 2(1 + ε)/5, and that in

particular when ε = 2/3 the value of the matrix is also 2/3. Namely, 2/3 is a fixed point

of the function that assigns to each ε ∈ [0, 1] the value of PW (ε). We call this fixed

point the value of the draw when player 1 plays with the white pieces, and we call the

corresponding matrix PW (2/3) the associated point game. One can also check that the
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equilibrium strategies of this point game are ((2/5, 3/5), (3/5, 2/5)).

Similarly, one can check that when the draw in the chess game governed by PB is

worth ε of a point, the associated matrix game is

PB(ε) =





1/3ε 1/2 + 1/2ε

10/27 + 1/3ε 1/3ε





and that the value of this game when a draw is worth 1/3 of a point is also 1/3. In other

words, the value of a draw when player 1 plays with black is 1/3, and the associated

point game is PB(1/3). Furthermore, equilibrium strategies of the associated point game

PB(1/3) are ((3/5, 2/5), (2/5, 3/5)).

Our main result will imply that choosing the mixed action (2/5, 3/5) when playing

with the white pieces, and choosing the mixed action (3/5, 2/5) when playing with the

black pieces is an optimal strategy for each of the players in the match. Furthermore,

since this match satisfies the a simple monotonicity condition, our second result shows

that the corresponding pair of strategies is the only stationary equilibrium of the match.

Notice that this equilibrium dictates that in each point game players behave in a way

that depends only on the chess game played. In particular, since when the partial score

is 1 or -1 the chess games played are the same, equilibrium behavior in them is also the

same.

This paper generalizes the forgoing example for all quasi-binary matches. Specifically,

denoting P k the matrix of probabilities that govern the outcomes of the point played at

state k, we can find a value of the draw ek and build a matrix P k(ek) which is obtained

from P k by first interpreting one of the outcomes as winning the point and the other

as losing it, and by evaluating a draw as worth ek of a point. Our main result says

that for any quasi-binary game, choosing minimax mixtures of the point game P k(ek) in

state k constitutes a stationary equilibrium. Furthermore, when a simple monotonicity

condition is satisfied, all the stationary equilibria of the match are of this type.
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2 Matches

Consider the following zero-sum stochastic game, which we call a match. There are

two players, 1 and 2, and a set of states S = {0, 1, . . . , K + 1}. States 0 and K + 1 are

absorbing states which if reached the match ends. In state k ∈ S, the actions available to

players 1 and 2 are labeled by the integers 1, . . . , Ik and 1, . . . , Jk, respectively. Without

loss of generality we assume that for all k, Ik = I and Jk = J and denote the action sets

of player 1 and 2 by I and J , respectively. Players are endowed with action sets in states

0 and K+1 only for notational convenience. A mixed action for player 1 is a probability

distribution over I and a mixed action for player 2 is a probability distribution over J .

We denote the sets of mixed actions of player 1 and 2 by ∆I and ∆J , respectively. For

any I × J matrix game A, val(A) denotes its value. A mixed action x ∈ ∆I is said

to be optimal for player 1 in A if it guarantees that he gets a payoff of at least val(A).

Similarly, a mixed action y ∈ ∆J is said to be optimal for player 2 in A if it guarantees

that player 1 gets a payoff of at most val(A). Recall that for A = (aij|i ∈ I, j ∈ J ) and

B = (bij|i ∈ I, j ∈ J ), |val(A)− val(B)| ≤ maxij |aij − bij| and that if bij = αaij + β for

some α > 0 and β ∈ IR and for all i ∈ I and j ∈ J , then val(B) = α val(A) + β.

For each state k ∈ S there is a matrix

P k = (pkij|i ∈ I, j ∈ J )

of probability distributions on the set of states S. Namely, for each pair of actions i, j

of player 1 and 2, respectively, pkij = (pkk
′

ij )k′∈S where

pkk
′

ij ≥ 0 and
∑

k′∈S

pkk
′

ij = 1.

Matrices P 0 and PK+1 are introduced for notational convenience; since states 0 and

K + 1 are absorbing, p00ij = pK+1,K+1
ij = 1 for all i ∈ I and j ∈ J . We will henceforth

refer to P k as the point matrix at k.
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The interpretation of the match is as follows. In state k = 1, . . . , K, after player 1

chooses an action i ∈ I and player 2 chooses an action j ∈ J they move to state k′ ∈ S

with probability pkk
′

ij . If state 0 is reached the match ends and player 1 wins. If state

K +1 is reached, the match ends and player 2 wins. If neither state 0 nor K +1 is ever

reached, the match is drawn.

In order to define the match we need to specify the initial state and, for each player,

his set of available strategies and his payoff function. But first we need some definitions.

The set of histories of length t = 0, 1, 2, . . . is denoted by Ht = S × (I × J × S)t. A

typical history of length t is ht = (s0, (i1, j1, s1), . . . , (it, jt, st)) ∈ Ht. Here, the initial

state is s0 ∈ S and at stage τ = 1, . . . t, players chose actions iτ and jτ as a result of

which the state becomes sτ . By the end of ht, the state is st. The set of all finite histories

is denoted by H = ∪t≥0Ht.

A player’s strategy is a specification of a mixed action for each stage conditional on

the current state and on the history of play up to that stage. Formally, a strategy for

player 1 is a map χ : H → ∆I that prescribes a mixed action χ(ht) = (χ1(ht), . . . , χI(ht))

to be used by player 1 after every finite history ht. Similarly, a strategy for player 2 is a

map ψ : H → ∆J that prescribes a mixed action ψ(ht) = (ψ1(ht), . . . , ψJ(ht)) to be used

by player 2 after every finite history ht. Stationary strategies are strategies that depend

only on the current state. Thus, a stationary strategy for player 1 can be represented by

a vector ~x = (x0, . . . , xK+1), where for each k ∈ S, xk = (xk1, . . . , x
k
I ) is a mixed action

for player 1. Similarly, a stationary strategy for player 2 is a vector ~y = (y0, . . . , yK+1)

of mixed actions for player 2. We denote the sets of strategies for players 1 and 2 by

X and Ψ respectively, and their subsets of stationary strategies by ~X and ~Y . Given an

initial state k ∈ S, a pair of strategies χ and ψ induces a probability distribution on the

histories of length t as follows. For histories of length 0, h0 ∈ H0,

πχ,ψk (h0) =







1 if h0 = k

0 otherwise.
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And for histories of length t = 1, 2, . . . this probability distribution is defined inductively

as follows. For ht = ht−1 ◦ (it, jt, st),

πχ,ψk (ht) = πχ,ψk (ht−1)χit(ht−1)ψjt(ht−1) p
st−1st
itjt

.

Consequently, given an initial state k and a pair of strategies χ and ψ the probability

that at stage t = 1, 2, . . ., the current state is k′ is given by

µkk
′

t (χ, ψ) =
∑

{ht∈Ht:st=k′}

πχ,ψk (ht). (1)

Since states 0 and K + 1 are absorbing, the probability sequences {µk0t (χ, ψ)}∞t=1 and

{µkK+1
t (χ, ψ)}∞t=1 are non-decreasing and bounded. Therefore they have limits, which are

denoted µk0∞(χ, ψ) and µkK+1
∞ (χ, ψ), respectively. Each of these limits is the probability

that player 1 and player 2, respectively, eventually wins the match conditional on the

initial state being k when they choose the strategy pair (χ, ψ).

As mentioned earlier, when state 0 is reached, player 1 wins and gets a payoff of 1

from player 2 and if state K + 1 is reached, player 1 loses and pays 1 to player 2. It is

not necessarily true, however, that any pair of strategies leads to one of these two states

with probability 1. In the case there is no winner we specify the players’ payoffs to be 0.

We can now define the match Γk which starts at state k ∈ S. Formally, Γk is the

zero-sum game where the sets of strategies of player 1 and 2 are X and Ψ, respectively,

and player 1’s payoff function uk : X ×Ψ → [−1, 1] is defined by uk(χ, ψ) = µk0∞(χ, ψ)−

µkK+1
∞ (χ, ψ). Player 2’s payoff function is consequently −uk(χ, ψ). Note that Γ0 and

ΓK+1 are degenerate games with u0(χ, ψ) ≡ 1 and uK+1(χ, ψ) ≡ −1. We denote by Γ

the collection of matches {Γk : k = 1, . . . , K} and remark that Γ is fully determined by

the set of states S and by the set of point matrices (P k)Kk=1.

The number vk is said to be the value of Γk if supχ∈X infψ∈Ψ u
k(χ, ψ) = vk =

infψ∈Ψ supχ∈X u
k(χ, ψ). If vk is the value of Γk for k = 1, . . . , K we say that (v1, . . . , vK)

is the value of Γ. If χε ∈ X is such that uk(χε, ψ) ≥ vk − ε for ε > 0 and for all

9



ψ ∈ Ψ, we say that χε is ε-optimal for player 1 in Γk. Similarly, if ψε ∈ Ψ is such that

uk(χ, ψε) ≤ vk + ε for ε > 0 and for all χ ∈ X, we say that ψε is ε-optimal for player 2

in Γk. A strategy pair (χ∗, ψ∗) ∈ X ×Ψ is an equilibrium of Γk if

uk(χ, ψ∗) ≤ uk(χ∗, ψ∗) ≤ uk(χ∗, ψ) for all χ ∈ X,ψ ∈ Ψ.

In this case uk(χ∗, ψ∗) is clearly the value of Γk. We say that (χ∗, ψ∗) ∈ X × Ψ is an

equilibrium of Γ if it is an equilibrium of Γk for all k ∈ {1, . . . , K}.

The match Γ is a recursive game as defined by Everett [2]. Recursive games are a

special case of stochastic games, which were introduced by Shapley [8]. Everett [2] shows

that recursive games have a value, and Mertens and Neyman [5] prove more generally

that when streams of payoffs are undiscounted all stochastic games with finite state and

action spaces have a value. Further results in recursive games can be found in Flesch,

Thuijsman and Vrieze [3] and in Vieille [9].

The point matrix P k represents the point played at state k. Note that P k is not a

game since its entries are probability distributions on S. However, it can be transformed

into a zero-sum game by assigning values to the states and averaging them according to

the entries of P k. More specifically, for any α = (α1, . . . , αK) ∈ IRK we can define the

matrix game Ak(α) as follows:

Ak(α) =
(

pk0ij +
K
∑

k′=1

pkk
′

ij α
k′ − pkK+1

ij | i ∈ I, j ∈ J
)

.

As a direct application of Theorems 2, 3 and 6 of Everett [2] we have the following

observation which plays a fundamental role in our analysis.

Observation 1 For k = 1, . . . , K, Γk has a value vk and this value satisfies vk =

val(Ak(v1, . . . , vk)). Furthermore, for every ε > 0 there exist stationary strategies ~xε ∈ ~X

and ~yε ∈ ~Y that are ε-optimal for players 1 and 2, respectively, in Γk, k = 1, . . . , K.

Although Γk has a value, it may not have an equilibrium. See Everett’s [2] Example
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1, reproduced in Section 4 below.

2.1 Stationary strategies

Given an initial state k ∈ S, a pair of stationary strategies induce a Markov chain that

allows us to compute the transition probabilities defined in (1) recursively. Specifically, a

pair of stationary strategies (~x, ~y) induces a Markov matrix M(~x, ~y) = (µss
′

(~x, ~y)|s, s′ ∈

S) whose transition probabilities are given by the probability of moving to state s′

conditional on the current state being s:

µss
′

(~x, ~y) =

∑

{ht:st=s}
π~x,~yk (ht)

∑I
i=1

∑J
j=1 x

s
iy
s
jp
ss′

ij
∑

{ht:st=s}
π~x,~yk (ht)

=
I

∑

i=1

J
∑

j=1

xsiy
s
jp
ss′

ij . (2)

As is well-known, this probability does not depend on the initial state k.

Note that µkk
′

1 (~x, ~y) = µkk
′

(~x, ~y) and that the probabilities µkk
′

t (~x, ~y) defined in (1)

satisfy the recursive relation

µkk
′

t (~x, ~y) =
∑

s∈S

µkst−1(~x, ~y) µ
sk′(~x, ~y) k ∈ S.

In other words, they are none other than the entries of the t-th power of M(~x, ~y).

3 Quasi-binary matches

In this paper we restrict attention to a particular class of simple matches and show

that they always have an equilibrium in which in each state players play minimax in an

appropriately defined point game.

Let Γ be a match characterized by the point matrices P k = (pkij|i ∈ I; j ∈ J ), for

k = 1, . . . , K. For each state k, define the set of its immediate successors, or simply
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successors, to be

S(k) = {k′ ∈ S : pkk
′

ij > 0, for some (i, j) ∈ I × J }.

This set contains the states that can possibly be reached from state k in one single step.

Successors of k that are not k itself are called proper successors. The set of k’s proper

successors is denoted by Ŝ(k). We now define the class of games we focus on.

Definition 1 A match is quasi-binary if for each state k = 1, . . . , K the number of its

proper successors is exactly two, and pkkij < 1 for all i ∈ I, j ∈ J .

Although for a match to be quasi-binary all states must have two proper successors,

states with a single proper successor can also be accommodated. Indeed, if pkkij < 1 for

all i ∈ I, j ∈ J we can add state 0 or state K+1 as a fictitious successor and the whole

analysis remains valid. If, however, pkkij = 1 for some i ∈ I, j ∈ J the analysis needs

to be slightly changed but our results will still hold (vide footnote 3 infra for details).

For the sake of brevity, however, we decided to drop these matches from the class of

quasi-binary games.

In a quasi-binary match each state k = 1, . . . , K has only two proper successors. We

denote them w(k) and ℓ(k). If the game moves to state w(k) we say that player 1 won

the point played at k. If the game moves to state ℓ(k) we say that player 1 lost the point

played at k. And if the game stays in state k we say that the point played at k ended

in a draw. We denote by (w, ℓ) the labeling (w(k), ℓ(k))Kk=1.

We can take advantage of the labeling (w(k), ℓ(k)) to transform the point matrix P k

into a matrix game as follows. We first award player 1 a payoff of 1 if he wins the point,

a payoff of 0 if he loses the point and a payoff of ε if the point is drawn, and then replace

the distribution pkij in the ijth entry by the corresponding expected payoff p
kw(k)
ij + pkkij ε.

Formally, for each ε ∈ [0, 1] we define the matrix game P k(ε) by letting its ijth entry

be the expected value p
kw(k)
ij + pkkij ε of the point played at k when players choose the
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action pair (i, j) and a draw is valued at ε.3 Note that P k(ε) depends on the labeling

choice w(k), ℓ(k). Consequently, all the ancillary definitions in this section depend on

this choice.

The question we want to address is the following: Is there a labeling w(k), ℓ(k) and an

associated value of the draw ek for each k ∈ {1, . . . , K} so that two stationary strategies

~x∗ = (x0, . . . , xK+1) and ~y∗ = (y0, . . . , yK+1) constitute an equilibrium of Γ if for all

k ∈ {1, . . . , K}, (xk, yk) is an equilibrium of P k(ek)? An affirmative answer would mean

that in such an equilibrium players agree with our chosen labeling, evaluate a draw as if

the point was shared in the proportions (ek, 1− ek), and at each state aim to maximize

their respective expected shares of the point at stake.

The next proposition singles out a candidate for a suitable value of the draw.

Proposition 1 Let Γ be a quasi-binary match and let (w, ℓ) be a labeling. For k =

1, . . . , K, let fk : [0, 1] → [0, 1] be the function defined by fk(ε) = val(P k(ε)). Then fk

has a unique fixed point.

Proof : Since the entries of P k(ε) are in [0, 1] and are non-decreasing in ε, fk is a

nondecreasing function that maps the interval [0, 1] into itself. Therefore, by Tarski’s

fixed-point theorem fk has a fixed point, which we denote ek.

Assume that ε̂k is another fixed point of fk. Then,

|ε̂k − ek| = |fk(ε̂k)− fk(ek)|

= |val(P k(ε̂k))− val(P k(ek))|

≤ max
ij

|(pkw(k)ij + pkkij ε̂
k)− (p

kw(k)
ij + pkkij e

k)|

= |ε̂k − ek|max
ij

pkkij

< |ε̂k − ek|

3 If a state k has only one proper successor and pkkij = 1 for some i ∈ I, j ∈ J , we can denote k’s

two successors (k being one of them) by w(k) and ℓ(k), and let P k(ε) be the constant matrix defined

by {p
kw(k)
ij |i ∈ I, j ∈ J }. The ensuing analysis will still remain valid.
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where we have used the assumption that pkkij < 1 for all i ∈ I and all j ∈ J . But since

the above inequality is absurd, we conclude that ek is the only fixed point of fk. �

We denote by ek the unique fixed point identified in the above proposition. The

next proposition shows that when vw(k) > vℓ(k), this fixed point bears an interesting

relationship with the values of the successors of k.

Proposition 2 Let Γ be a quasi-binary match, let (v1, . . . , vK) be its value and extend

it so that v0 = 1 and vK+1 = 0. Let (w, ℓ) be a labeling. Let k be a state such that

vw(k) > vℓ(k) and ek be the unique fixed point identified in Proposition 1. Then,

ek =
vk − vℓ(k)

vw(k) − vℓ(k)
.

Proof : Denote ǫk = (vk − vℓ(k))/(vw(k) − vℓ(k)). By Proposition 1, the value of the

draw in state k is the unique fixed point of the function fk : [0, 1] → [0, 1] given by

fk(ε) = val(P k(ε)). Therefore, it is enough to show that ǫk is a fixed point of fk. Recall

that by Observation 1 vk = val(Ak(v1, . . . , vk)) where Ak(v) = (p
kw(k)
ij vw(k) + pkkij v

k +

p
kℓ(k)
ij vℓ(k)|i ∈ I, j ∈ J ). But note that Ak(v) and P k(ǫk) are strategically equivalent.

Indeed, for i ∈ I and j ∈ J the ijth entry of the matrix A(v) can be written

Akij(v) = (p
kw(k)
ij + pkkij ǫ

k)(vw(k) − vℓ(k)) + vℓ(k)

where vw(k) − vℓ(k) > 0. Therefore,F

val(Ak(v)) = val(P k(ǫk))(vw(k) − vℓ(k)) + vℓ(k)
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and consequently,

val(P k(ǫk)) =
val(Ak(v))− vℓ(k)

vw(k) − vℓ(k)

=
vk − vℓ(k)

vw(k) − vℓ(k)
= ǫk.

�

The forgoing proposition allows us to call ek the value of the draw in state k, and

P k(ek) the point game played at k (each with respect to (w, ℓ)). To see this, notice

that from state k, players will eventually move to one of its proper successors, w(k) or

ℓ(k), in which case player 1 will get (assuming ε-optimal play) a payoff close to vw(k),

or vℓ(k), respectively. Therefore, since vw(k) > vℓ(k), player 1 has a guaranteed expected

payoff close to vℓ(k) and hence what is really at stake in state k is close to vw(k) − vℓ(k).

When the point is drawn, the players remain in state k, in which case player 1 gets an

expected payoff close to vk. Namely, he nets a proportion vk−vℓ(k)

vw(k)−vℓ(k)
of what is at stake.

The above proposition shows that ek, the unique fixed point identified in Proposition 1,

is precisely this proportion – hence its interpretation as the value of a draw.

In the next definition we identify those stationary strategies which at every state

dictate mixed actions that are optimal in the respective point games. According to these

strategies, behavior in each state k depends only on the matrix P k and, in particular, is

independent of the structure of the match in all the other states.

Definition 2 Let Γ be a quasi-binary match, (w, ℓ) be a labeling, and for k = 1, . . . , K

let ek be the value of the draw in k and P k(ek) the point game played at k with respect to

(w, ℓ). Also, let ~x = (xk)K+1
k=0 ∈ ~X and ~y = (yk)K+1

k=0 ∈ ~Y be two stationary strategies, one

for each player. We say that (~x, ~y) is a minimax-stationary strategy pair with respect

to (w, ℓ) if for all k = 1, . . . , K, (xk, yk) is an equilibrium of P k(ek).

It follows from Proposition 1 that if (~x, ~y) is a pair of minimax-stationary strategies
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then xk guarantees that player 1 gets a payoff of at least ek in P k(ek) and yk guarantees

that player 1 gets at most ek in P k(ek). Notice that minimax-stationary strategies always

exist.

The following observation states that when players behave according to a minimax-

stationary strategy pair, the probability of eventually winning the point game played at

k is precisely the value of the draw in state k.

Observation 2 Let Γ be a quasi-binary match, (w, ℓ) be a labeling and let (~x, ~y) be a

minimax-stationary strategy pair w.r.t (w, ℓ). Then the value of the draw at k is the

corresponding probability of eventually leaving k and transiting to w(k). Formally, for

k = 1, . . . , K

ek =
µkw(k)(~x, ~y)

1− µkk(~x, ~y)
.

Proof : Since ~x = (x0, . . . , xK+1) and ~y = (y0, . . . , yK+1) constitute a pair of minimax-

stationary strategies, for k = 1, . . . , K, (xk, yk) is an equilibrium of P k(ek), and ek =

val(P k(ek)),

ek =
∑

i∈I

∑

j∈J

xki y
k
j (p

kw(k)
ij + pkkij e

k)

which, using equation (2) can be written as ek = µkw(k)(~x, ~y)+µkk(~x, ~y)ek. Since pkkij < 1

for all i ∈ I and all j ∈ J , we have that µkk(~x, ~y) < 1. Therefore, solving for ek we

obtain the result. �

4 Existence

We have seen that given a labeling (w, ℓ) we can associate to each state k a value of

the draw ek and a point game P k(ek). Additionally, the point games P k(ek) induce

stationary strategies in Γ in a natural way: these strategies dictate that players play
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at k according to optimal strategies in P k(ek). In this section we will find a particular

labeling all of whose induced minimax-stationary strategies constitute an equilibrium of

the match. Specifically, we will prove the following.

Theorem 1 Let Γ be a quasi-binary match. There exists a labeling such that any pair

of minimax-stationary strategies with respect to it constitutes an equilibrium of Γ.

For the purposes of this theorem, the condition on quasi-binary matches that pkkij < 1

for all i ∈ I and j ∈ J cannot be dispensed with. Example 1 in Everett [2], shown

below, illustrates this point.

P 1 :





s1 1

1 −1





In this match, there is only one non-absorbing state, denoted by s1, and if players choose

the first row and the first column, they remain in s1 with probability 1. The payoffs 1

and -1 represent the transition to the absorbing states. As Everett shows, the value of

Γ is 1 but player 1 cannot guarantee this payoff. Therefore, Γ has no equilibrium.

Nor can the restriction to no more than two proper successors per state be relaxed,

as the following two-state version of Everett’s example demonstrates.

P 1 :





s2 1

1 −1



 P 2 :





s1 1

1 −1





In this equilibrium-less match there are two non-absorbing states, s1 and s2, and p
kk
ij = 0

for all action pairs ij and for k = s1, s2. However, these states have three proper

successors.

Before we prove the theorem we will construct an algorithm that labels the proper

successors of the states. We will later show that any pair of minimax-stationary strategies

with respect to this labeling is an equilibrium of Γ.
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4.1 The natural labeling

Let Γ be a quasi-binary match. Let (v1, . . . , vK) be its value and extend it so that v0 = 1

and vK+1 = −1. Let S+ = {k ∈ S : vk > 0} and S− = {k ∈ S : vk < 0}. Define a

binary relation → on S+ as follows: for k ∈ S+, k → k′ if k′ is a proper successor of k

with vk
′

≥ vk and if for all j ∈ J there exists i ∈ I such that pkk
′

ij > 0. In other words,

k → k′ if k′ has a value at least as large as the value of k and player 2 cannot prevent a

transition from k to k′.

Similarly, define a binary relation
−
−→ on S− as follows: for any k ∈ S−, k

−
−→ k′ if k′

is a proper successor of k with vk
′

≤ vk and if for all i ∈ I there exists j ∈ J such that

pkk
′

ij > 0.

We now iteratively classify the elements of S+ into disjoint subsets. Let S+
0 = {0}.

Also let S+
1 = {s ∈ S+ \ S+

0 : s → 0} be the set of states with positive value from

which player 1 can guarantee a positive probability of winning the match in one step.

In general, define for n = 1, 2, . . .

S+
n+1 = {s ∈ S+ \ ∪nν=0S

+
ν : either there exists s′ ∈ S+

n with s→ s′ or Ŝ(s) ⊆ ∪nν=0S
+
ν }.

The set S+
n+1 contains the states not yet classified from which player 1 can guarantee a

positive probability of a transition to a state already classified.

Similarly, we iteratively classify the states in S− into disjoint subsets as follows:

S−
m+1 = {s ∈ S− \ ∪mν=0S

−
ν : either there exists s′ ∈ S−

m with s
−
−→ s′ or Ŝ(s) ⊆ ∪mν=0S

−
ν }.

Since the number of states in S+ is finite, there must be an N such that S+
N 6= ∅

and S+
N+ν = ∅ for all ν = 1, 2, . . .. Similarly, there must be an M such that S−

M 6= ∅

and S−
M+ν = ∅ for all ν = 1, 2, . . .. The following claim, whose proof can be found in

the Appendix, states that the subsets defined above form a partition of S+ and of S−,

respectively.
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Claim 1 The collection {S+
0 , . . . , S

+
N} forms a partition of S+, and {S−

0 , . . . , S
−
M} forms

a partition of S−.

We can now proceed to label the proper successors of the states in {1, . . . , K}. Con-

sider first a state s ∈ S+. By the previous claim, s ∈ S+
n+1 for some n. Let s1, s2 be its

two proper successors and assume without loss of generality that vs1 ≥ vs2 . Then we

denote

w(s) =



















s1 if vs1 > vs2

s1 if vs1 = vs2 and s1 ∈ ∪nν=0S
+
ν

s2 if vs1 = vs2 and s1 /∈ ∪nν=0S
+
ν

(3)

and denote by ℓ(s) the other successor.

Simlarly, let s ∈ S−. By the previous claim, s ∈ S−
m+1 for some m. Let s1, s2 be its

two proper successors and assume without loss of generality that vs1 ≥ vs2 . Then we

denote

ℓ(s) =



















s2 if vs1 > vs2

s2 if vs1 = vs2 and s2 ∈ ∪mν=0S
−
ν

s1 if vs1 = vs2 and s2 /∈ ∪mν=0S
−
ν

and denote by w(s) the other successor.

Finally, let vs = 0 and denote s1, s2 its two proper successors where vs1 ≥ vs2 . Then,

we label w(s) = s1 and ℓ(s) = s2.

We call any labeling built according to the above procedure a natural labeling.4

Notice that this labeling satisfies vw(s) ≥ vℓ(s) for all s ∈ 1, . . . , K. The following

example illustrates the construction of a natural labeling.

Example 1 Consider the following match. The set of states is S = {s0, s1, s2, s3, s4}.

States s0 and s4 are absorbing. If the former is reached, player 1 wins the match and

if the latter is reached player 2 wins the match. The payoffs for player 1 in these two

4There may be more than one natural labeling. For our analysis, any of them will do.
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absorbing states are 1 and -1, respectively. The match is characterized by the following

point matrices where instead of s0 and s4 we write the respective payoffs 1 and -1.

P 1 :









b

1 s2

1/2 1/2

b

1 s2

δ 1−δ









P 2 :





s3

s1



 P 3 :









b

1 −1

p 1−p









In state s1 only player 2 has a non-trivial choice, in state s2 only player 1 has a non-trivial

choice, and in state s3 none of them have a non-trivial choice. Assume 1 > p > 1/2 and

δ = 0. In this case, player 1 can guarantee a payoff of 2p− 1 > 0 in all Γk by choosing

his first action in state 2. Similarly, player 2 can guarantee that player 1 gets no more

than 2p − 1 by choosing his second action in state 1. Therefore the value of Γ is given

by v1 = v2 = v3 = 2p− 1 > 0. Hence, S+ = {s0, s1, s2, s3} and S− = {s4}.

In order to build a natural labeling, we partition S+ into S+
0 , S

+
1 , S

+
2 as described

above. By definition, S+
0 = {s0}. Although, s0 is a proper successor of both s1 and

s3, only s3 ∈ S+
1 . That s3 ∈ S+

1 is clear because s3 → s0. That s1 /∈ S+
1 follows from

the fact that since δ = 0, player 2 can prevent a transition to s0 by choosing his second

action in state s1. Hence, S
+
1 = {s3}. Since s2 → s3, we have that S+

2 = {s2}. Finally,

since s1 → s2, we have that S+
3 = {s1}. Therefore, by applying (3) we obtain that the

natural labeling is given by w(s1) = s0, w(s2) = s3, and w(s3) = s0, (and ℓ(s1) = s2,

ℓ(s2) = s1, and ℓ(s3) = s4).

Consider now the case where δ > 0, player 1 can guarantee that in Γ1 and in Γ2 he

wins the match by choosing his second action in state s2. Consequently, the value of

the match is given by v1, v2, v3 where v1 = v2 = 1 and v3 = 2p − 1 > 0. Since δ > 0,

player 2 can no longer prevent a transition from state s1 to state s0, and consequently

S+
0 = {s0}, S

+
1 = {s1, s3}, and S+

2 = {s2}. Applying (3) we obtain that the natural

labeling is w(s1) = s0, w(s2) = s1, and w(s3) = s0 (and ℓ(s1) = s2, ℓ(s2) = s3, and

ℓ(s3) = s4). Since when δ = 0 and when δ > 0 the labels of state s2 are different, we see

that a small change in the entries of the point matrix in one state can affect the natural

labeling in other states.
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4.2 Proof of Theorem 1

We now show that any minimax-stationary strategy pair with respect to a natural la-

beling constitutes an equilibrium of Γ.

Let (~x∗, ~y∗) be a minimax-stationary strategy pair with respect to that labeling. In

order to show that it is an equilibrium of Γk we will show that ~x∗ guarantees a payoff of

at least vk for player 1 in Γk. The fact that ~y∗ guarantees that player 1 gets a payoff of

at most vk in Γk is analogous and is left to the reader. The problem of finding a strategy

ψ∗ ∈ Ψ that minimizes uk(~x∗, ·) is a Markov decision problem with the expected total

reward criterion. Consequently, it has a stationary solution (see Puterman[7], Theorem

7.1.9). Therefore, it is enough to show that

uk(~x∗, ~y) ≥ vk k = 1, . . . , K

for all stationary strategies ~y of player 2. Let ~y = (y0, . . . , yK+1) be a stationary strategy

for player 2. The fact that x∗k guarantees ek in the point game P k(ek) for k = 1, . . . , K

implies that
∑

i∈I

∑

j∈J

x∗ki y
k
j (p

kw(k)
ij + pkkij e

k) ≥ ek k = 1, . . . , K.

Let M(~x∗, ~y) = (µkk
′

(~x∗, ~y)|k, k′ ∈ S) be the Markov transition matrix induced by the

strategy pair (~x∗, ~y). Using equation (2), the above inequality can be written as

µkw(k)(~x∗, ~y) + µkk(~x∗, ~y) ek ≥ ek k = 1, . . . , K. (4)

It follows that

µkw(k)(~x∗, ~y) vw(k) + µkk(~x∗, ~y) vk + µkℓ(k)(~x∗, ~y) vℓ(k) ≥ vk k = 1, . . . , K. (5)

To see this, let k ∈ {1, . . . , K}. The natural labeling ensures that vw(k) ≥ vℓ(k). If

vw(k) = vℓ(k), inequality (5) is trivially satisfied since in this case vw(k) = vk = vℓ(k). And
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if vw(k) > vℓ(k), inequality (5) is obtained by multiplying (4) by vw(k)− vℓ(k), adding vℓ(k)

to both sides and applying Proposition 2. Taking into account that k has no successors

except for w(k), k and ℓ(k), we can rewrite inequality (5) as

µk0(~x∗, ~y) +
K
∑

s=1

µks(~x∗, ~y) vs − µkK+1(~x∗, ~y) ≥ vk k = 1, . . . , K.

Denoting v = (v0, v1, . . . , vK+1)′, we can rewrite the above inequality in matrix notation

as

M(~x∗, ~y) · v ≥ v.

Iterating, we obtain thatM t(~x∗, ~y)·v ≥ v for all t. In other words, for each k = 1, . . . , K,

we have that

µk0t (~x∗, ~y) +
K
∑

s=1

µkst (~x∗, ~y) vs − µkK+1
t (~x∗, ~y) ≥ vk for all t.

Since uk(~x∗, ~y) = µk0∞(~x∗, ~y) − µkK+1
∞ (~x∗, ~y), in order to show that uk(~x∗, ~y) ≥ vk it is

enough to show that lim supt→∞

∑K
s=1 µ

ks
t (~x∗, ~y) vs ≤ 0. And to prove this it is enough

to show that for all states s with vs > 0, except for s 6= 0, limt→∞ µkst (~x∗, ~y) = 0. The

Markov matrix M(~x∗, ~y) induces a partition of S into recurrent classes and possibly a

transient set.5 We will end the proof by showing that all states s with positive value,

except for state 0, are transient states and thus limt→∞ µkst (~x∗, ~y) = 0.

Let C be a recurrent class different from {0}. We will first show that all states in C

have the same value, and later that this value is non-positive.

Lemma 1 For all s, s′ ∈ C, vs = vs
′

.

Proof : Let s ∈ C be a state with the highest value. Namely vs = max{vs
′

: s′ ∈ C}.

Case 1: vw(s) = vℓ(s). Then from s we necessarily move to a state s′ with vs = vs
′

.

5A set C is a recurrent class if
∑

k′∈C µkk′

(~x∗, ~y) = 1 for all k ∈ C and no proper subset of C has
this property. A state is transient if there is a positive probability of leaving and never returning.
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Case 2: vw(s) > vℓ(s). It must be the case that es /∈ (0, 1). For if es < 1, by

Proposition 2, vw(s) > vs and if es > 0 by equation (4) and Observation 2, µsw(s)(~x∗, ~y) >

0. This means that w(s) ∈ C which contradicts the fact that there is no s′ ∈ C with

vs
′

> vs. Thus es ∈ {0, 1}. If es = 1, Proposition 2 implies that vw(s) = vs and by

equation (4) and Observation 2, µsw(s)(~x∗, ~y)/(1 − µss(~x∗, ~y)) ≥ es = 1. Namely, from

s with probability one the players eventually move to w(s). If es = 0, Proposition 2

implies that vℓ(s) = vs < vw(s). Since vs = max{vs
′

: s′ ∈ C} we conclude that w(s) /∈ C.

Therefore, from s with probability one the players eventually move to ℓ(s).

We see that in either case, from any s ∈ C with vs = max{vs
′

: s′ ∈ C} the players

necessarily move to a state s1 such that vs1 = vs. Iterating this argument, since C is a

recurrent class we find that for all states s, s′ ∈ C, vs = vs
′

. �

We now show that the common value of the states in C is non-positive. Let s ∈ C

and assume by contradiction that vs > 0. Let’s build a sequence {kt}t≥1 of states in C

as follows. The first term is k1 = s and the remaining terms are recursively defined by

kt+1 =







w(kt) if w(kt) ∈ C

ℓ(kt) otherwise.

By Lemma 1, all the states in the sequence have the same value, which by our assumption

is positive. Therefore they are all in S+. By Claim 1, for each kt there is a unique

n(t) ∈ {1, 2, . . . , N} such that kt ∈ S+
n(t). Pick T such that state kT is a state with

n(T ) ≤ n(t) for all t = 1, 2, . . .. We will show that kT+1 ∈ ∪n(T )−1
ν=0 S+

ν . There are two

cases.

Case 1: kT+1 = w(kT ). In this case there are two subcases.

Case 1.1: vw(kT ) = vkT = vℓ(kT ). Since kT ∈ S+
n(T ) and since Ŝ(kT ) ∩ ∪

n(T )−1
ν=0 S+

ν 6= ∅,

by (3) we have that w(kT ) ∈ ∪
n(T )−1
ν=0 S+

ν .

Case 1.2 : vw(kT ) = vkT > vℓ(kT ). In this case kT 6→ ℓ(kT ). Then since kT ∈ S+
n(T ),

we must have either that w(kT ) ∈ ∪
n(T )−1
ν=0 S+

ν and kT → w(kT ), or that w(kT ), ℓ(kT ) ∈

23



∪
n(T )−1
ν=0 S+

ν . In either case, w(kT ) ∈ ∪
n(T )−1
ν=0 S+

ν .

Case 2: kT+1 = ℓ(kT ). Then w(kT ) /∈ C. This means that µkTw(kT )(~x∗, ~y) = 0. By

equation (4), and since µkT kT (~x∗, ~y) < 1, we obtain that ekT = 0. Namely, player 2

can prevent a transition from kT to w(kT ). That is, we must have that kT 6→ w(kT ).

Then, since kT ∈ S+
n(T ), by a similar argument as the one used in Case 1.2, we have that

ℓ(kT ) ∈ ∪
n(T )−1
ν=0 S+

ν .

In either case we conclude that kT+1 ∈ ∪
n(T )−1
ν=0 S+

ν . This implies that n(T +1) < n(T )

which contradicts the fact that by our choice of T , n(T ) ≤ n(T + 1). This shows that

all the recurrent states have non-positive value – hence the transience of the states with

positive value. �

To illustrate the theorem, consider the match described in Example 1 with p > 1/2

and δ = 0. We have shown that the natural labeling in this case is given by w(s1) = s0,

w(s2) = s3, and w(s3) = s0, (and ℓ(s1) = s2, ℓ(s2) = s1, and ℓ(s3) = s4). Since Γ is

not just a quasi-binary match but also a binary game, the corresponding matrices P k(ε)

with respect to this labeling are constant and are given by

P 1(ε) :
(

1/2 0
)

P 2(ε) :





1

0





P 3(ε) :
(

p
)

It can be checked that the associated minimax-stationary strategies dictate that player

1 chooses his first action in state 2, and player 2 chooses his second action in state

1. Consistent with Theorem 1 they constitute an equilibrium of Γ. Moreover, in this

example, this labeling is the only one that yields minimax-stationary strategies that

are an equilibrium. For instance, if we replace the labeling of state 2’s successors to

w(s2) = s1 and ℓ(s2) = s3, minimax-stationary strategies lead to an unending cycle

involving states s1 and s2 with a corresponding payoff of 0. That is, they are not an

equilibrium of Γ.

Theorem 1 states that any pair of minimax-stationary strategies constitutes an equi-

librium of Γ. Notice that these strategies dictate behavior in state k that depends on
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the point matrices in states different from k only to the extent that they affect the nat-

ural labeling. Therefore, any modification in the structure of the match that involves

neither a change in the point matrix P k nor in the natural labeling, will not affect the

equilibrium behavior in state k. However, even a small change in the point matrix of a

state different from k may drastically alter the equilibrium behavior in state k. To see

this consider again Example 1 with p > 1/2. We have already seen that when δ = 0

the natural labeling sets w(s2) = s3 and when δ > 0, w(s2) = s1. This small change in

the point matrix P 1 affects the equilibrium strategies in state s2. Indeed, when δ = 0

the minimax-stationary strategy of player 1 dictates that he chooses his first action and

when δ > 0 the minimax-stationary strategy of player 1 dictates that he chooses his

second action. Theorem 1 shows that this kind of interstate influence is possible only if

the changes in the point games affect the natural labeling.

4.3 A partial converse

It is not necessarily the case that every stationary equilibrium of a quasi-binary match is

a minimax-stationary strategy pair with respect to some labeling. To see this, let us go

back to the match in Example 1 with p > 1/2 and δ = 0 and recall that the value of this

match is v1 = v2 = v3 = 2p−1 > 0. Consider the following pair of stationary strategies.

Player 1 chooses his two actions with equal probabilities in state s2 and player 2 chooses

his second action in state s1. It can be checked that, independent of the initial state,

player 1’s strategy guarantees that he gets a payoff of at least 2p− 1 and that player 2’s

strategy guarantees that player 1 gets a payoff of at most 2p − 1. Consequently, these

strategies constitute an equilibrium of Γ. However, player 1’s strategy is not a minimax-

stationary strategy with respect to any labeling since no matter how the successors of s2

are labeled, the corresponding minimax-stationary strategy will never prescribe mixing

between his actions in s2.

We now present a partial converse of Theorem 1. It says that when for every state,

both its proper successors have different values, any stationary strategy equilibrium of
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Γ is a minimax-stationary strategy pair with respect to a natural labeling.

Let Γ be a quasi-binary match and let (v1, . . . , vK) be its value. Extend it so that

v0 = 1 and vK+1 = −1 and let v = (v0, . . . , vK+1). Note that if the proper successors of

a given state k have different values, then vw(k) > vℓ(k) for any natural labeling (w, ℓ).

We say that Γ satisfies monotonicity if for every state both its proper successors have

different values. Notice that if Γ satisfies monotonicity, there is a unique natural labeling.

Theorem 2 Let Γ be a quasi-binary match that satisfies monotonicity. A pair of sta-

tionary strategies is an equilibrium of Γ only if it is a pair of minimax-stationary strate-

gies with respect to the natural labeling.

Proof : Let (~x∗, ~y∗) be a stationary equilibrium of Γ and let (w, ℓ) be a natural labeling.

Let k ∈ 1, . . . , K. Since vw(k) > vℓ(k), by Proposition 2

ek =
vk − vℓ(k)

vw(k) − vℓ(k)
. (6)

We need to show that x∗k guarantees that player 1 gets a payoff of at least ek in P k(ek)

and that y∗k guarantees that player 1 gets a payoff of at most ek in P k(ek).

Since (~x∗, ~y∗) is an equilibrium of Γk,

vk = uk(~x∗, ~y∗) ≥ uk(χ, ~y∗) for all χ ∈ X. (7)

Since ~y∗ is a stationary strategy, the problem of finding a strategy for player 1 that max-

imizes uk(·, ~y∗) is a Markov decision problem (with the expected total-reward criterion).

Equation (7) says that ~x∗ is one of its solutions and that it attains vk. Therefore (see

Puterman [7], Chapter 7),

v = max
~x∈ ~X

M(~x, ~y∗)v (8)

where M(~x, ~y∗) is the Markov matrix induced by the stationary strategy pair (~x, ~y∗).
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This means that, using equation (2), for every k = 1, . . . , K,

vk = max
~x∈ ~X

K+1
∑

k′=0

∑

i∈I

∑

j∈J

xki y
∗k
j p

kk′

ij v
k′

= max
~x∈ ~X

∑

i∈I

∑

j∈J

xki y
∗k
j

K+1
∑

k′=0

pkk
′

ij v
k′

= max
~x∈ ~X

∑

i∈I

∑

j∈J

xki y
∗k
j (p

kw(k)
ij vw(k) + pkkij v

k + p
kℓ(k)
ij vℓ(k)).

Subtracting vℓ(k) from both sides and then dividing the result by vw(k)−vℓ(k) (which can

be done since this difference is positive) using equation (6) we find that

ek = max
~x∈ ~X

∑

i∈I

∑

j∈J

xki y
∗k
j (p

kw(k)
ij + pkkij e

k).

This shows that y∗k guarantees that player 1 gets at most ek in P k(ek).

A similar argument shows that x∗k guarantees that player 1 gets at least ek in

P k(ek). �

To illustrate Theorem 2, consider again the match in Example 1 but this time with

p < 1/2 and δ = 0. In this case the value of Γ is (v1, v2, v3) where v1 = v2 = 0,

and v3 = 2p − 1 < 0. This match satisfies monotonicity and as can be checked, the

resulting natural labeling is given by w(s1) = s0, w(s2) = s1, and w(s3) = s0, (and

ℓ(s1) = s2, ℓ(s2) = s3, and ℓ(s3) = s4). The associated minimax-stationary strategies

prescribe that player 1 chooses his second action in state s2 and player 2 chooses his

second action in state s1. Since the conditions of Theorem 2 hold these are the only

stationary equilibrium strategies of Γ. Notice that these strategies lead to a never-ending

cycle involving states s1 and s2, and consequently to a tie in the match. Interestingly,

this example satisfies Walker, Wooders and Amir’s [11] monotonicity condition and as a

result their Equilibrium Theorem can be applied to it. However, since the value of the

draw in states s1 and s2 are 0 and 1, respectively, their Minimax Theorem for Binary
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Markov Games cannot be applied. Nevertheless, for this example the conclusion of this

last theorem holds.

Appendix

Proof of Claim 1: We will proof the first statement. The proof of the other one is

analogous and is left to the reader. By definition of the sets in {S+
0 , . . . , S

+
N}, it is clear

that they are pairwise disjoint. In order to show that their union is S+ it is enough to

show that if S+ \ ∪nν=0S
+
ν 6= ∅ then S+

n+1 6= ∅.

Assume by contradiction that S+
n+1 = ∅ even though S+ \ ∪nν=0S

+
ν 6= ∅. Then, for

any s ∈ S+ \ ∪nν=0S
+
ν , since Ŝ(s) 6⊆ ∪nν=0S

+
ν , at most one of its successors is in ∪nν=0S

+
ν .

And if s′ is such a successor we have that s 6→ s′. That is, either vs
′

< vs or player 2

can guarantee that the next state is not s′, namely there exists j ∈ J s.t. pss
′

ij = 0 for

all i ∈ I. Let k ∈ S+ \ ∪nν=0S
+
ν such that vk ≥ vk

′

for all k′ ∈ S+ \ ∪nν=0S
+
ν . Let ~y be

a stationary strategy for player 2 that guarantees that from any s ∈ S+ \ ∪nν=0S
+
ν , the

next state s′ is not in ∪nν=0S
+
ν unless vs

′

< vs. By the forgoing discussion, such strategy

exists. Let ε > 0 be such that ε < vk and 2ε < min{|vs − vs
′

| : vs 6= vs
′

, s, s′ ∈ S}).

Also, let ~yε be an ε-optimal strategy for player 2 and consider the following strategy for

player 2 in Γk.

ψ(ht) =







~y(ht) if for all τ ≤ t, sτ ∈ S+ \ ∪nν=0S
+
ν

~yε(ht) if for some τ ≤ t, sτ /∈ S+ \ ∪nν=0S
+
ν .

Strategy ψ makes sure that after any history ht = (s0, (i1, j1, s1), . . . , (it, jt, st)), as long

as all the states sτ , τ ≤ t have been in S+ \ ∪nν=0S
+
ν , the next state st+1 will not be in

∪nν=0S
+
ν , unless v

st+1 < vst in which case it may be in ∪nν=0S
+
ν . The only way to ever

move to a state in ∪nν=0S
+
ν , and in particular, to state 0, is to make a transition from

some state s ∈ S+ \∪nν=0S
+
ν to a state s′ /∈ S+ \∪nν=0S

+
ν with vs

′

< vs ≤ vk. But as soon

as the system moves from a state in S+ \ ∪nν=0S
+
ν to a state not there, player 2 switches
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to the ε-optimal strategy ~yε.

Let χ be any stationary strategy for player 1. Since the only way to ever reach state

0 is to go through a state s /∈ S+ \ ∪nν=0S
+
ν with vs < vk, we have that

uk(χ, ψ) ≤ max{0, vs + ε : s with vs < vk}

≤ max{0, vk − 2ε+ ε : s with vs < vk}

= vk − ε

where the second and third inequalities follow from our choice of ε. This inequality,

since it holds for every χ ∈ X, contradicts the fact that vk is the value of Γk.
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