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Abstract

We study a two-stage sequential search model with two agents who compete for one job. The agents

arrive sequentially, each one in a di¤erent stage. The agents�abilities are private information and they

are derived from heterogeneous distribution functions. In each stage the designer chooses an ability

threshold. If an agent has a higher ability than the ability threshold in the stage in which he arrives,

he gets the job and the search is over. We analyze the equilibrium ability thresholds imposed by the

designer who wishes to maximize the ability of the agent who gets the job minus the search cost. We

also investigate the ratio of the equilibrium ability thresholds as well as the optimal allocation of agents

in both stages according to the agents�distributions of abilities.

1 Introduction

The problem of assigning various items of two di¤erent groups which are not necessarily of the same size

such as a group of agents to a group of jobs have been studied in numerous frameworks. In his classical

model, Derman et al. (1972) considered n agents who are available to perform n jobs which arrive in a

sequential order. The designer has to decide whether to assign the job at all, and if so, which of the n
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agents to assign it to. However, an agent can be assigned to a job only once. The goal of the designer is to

maximize the expected total return, where the return from an allocation of job j to agent k is the product

of the value of the job j and the value (ability) of the agent k. It is assumed that the agents�values are

commonly known but the jobs�values are random variables. Later, Albright (1974) focused on a continuous

time framework where the number of agents is �xed but the jobs arrive randomly according to a continuous

scholastic process. In the latter two models the agents�values are common knowledge. Mussa and Rosen

(1978), on the other hand, considered a static model of a monopolistic seller who decides on a price function

that depends on the quality of the product for sale when he does not know the agents� values for these

products, but does know their distribution. Similarly, Segal (2003) studied a monopolistic seller who faces

n buyers, each of whom has unit demand and private information for the unit being sold, and the seller

does not know the buyers�valuations nor their distribution. A dynamic model where the agents arrive by

a stochastic process was studied by Gershkov and Moldovanu (2009a). Using mechanism design tools, they

derived a revenue maximization policy in continuous time frameworks under the assumptions that agents�

valuations are drawn by a distribution function that is known to the seller and is identical for all agents. In

later works, Gershkov and Moldovanu (2009b, 2012) applied a discrete time framework where they assumed

that the agents�values are private information and even their distributions are unknown to the designer.

In all the above assignment models, as well as various others in the literature, it was assumed that the

agents�types under incomplete information, whether their distribution is known or unknown, are symmetric;

namely, each type is derived from the same distribution function. In this paper we study a very simple model

of assignment in which the agents�types are under incomplete information and are not derived from the same

distribution function. To put it formally, in the model, two agents compete for one job. The agents arrive

sequentially one after the other. The designer wishes to give the job to the agent with the highest ability.

He does not know the agents�abilities, but does know their distribution functions which are heterogeneous.

In the �rst stage, the designer decides an ability threshold. Then, the �rst agent arrives and if his ability

is higher than or equal to the ability threshold imposed by the designer he wins the job and the sequential

search is over. Otherwise, in the second stage the designer again imposes an ability threshold which is not

necessarily equal to the previous one. Then, the second agent arrives, and if his ability is higher than or
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equal to the second ability threshold, he wins the job. If, on the other hand, the second agent�s ability is

lower than the designer�s ability threshold, no one wins the job and the payo¤ of the designer is negative

and equals �2c where c is his cost of the search in each stage. The goal of the designer is to maximize his

expected payo¤ which is equal to a monotonic function of the expected ability of the agent who gets the job

minus his cost of the search.

We begin the analysis by examining the e¤ect of time on the designer�s strategies; namely, we investigate

the ratio of the ability thresholds imposed by the designer in the two stages of the sequential search. We

particularly address the following questions: Is it true that these ability thresholds decrease along the stages

of the sequential search? How does the asymmetry of the agents a¤ect the ratio of the ability thresholds they

need to face? In order to answer these questions we say that agent 1 is stronger than agent 2 if the distribution

of agent 1�s ability stochastically dominates his opponent�s distribution of ability in terms of the hazard rate.

Then we show that, if the agent who arrives in the �rst stage is stronger than the agent who arrives in the

second stage, regardless of the value of the designer�s search cost c; in the perfect Bayesian equilibrium the

stronger agent in the �rst period faces a higher ability threshold than his opponent in the second stage.

However, in the opposite case when the stronger agent arrives in the second stage, if the designer�s cost c

is su¢ ciently high then the stronger agent in the second stage may face a lower ability threshold than his

opponent. If, on the other hand, the search cost c is su¢ ciently small, although the stronger agent arrives

in the second stage, his weaker opponent in the �rst stage faces a higher ability threshold.

We also compare the equilibrium ability thresholds in two di¤erent sequential search models. We show

that if the agent in each stage of the sequential search A is stronger than the agent in the same stage of

the sequential search B, then the equilibrium ability threshold in each stage of the sequential search A is

higher than the equilibrium ability threshold in the same stage of the sequential search B. We also show

that if the agent in each stage of the sequential search A is stronger than the agent in the same stage of the

sequential search B, and also that the stronger agent in each sequential search arrives in the �rst stage, then

the designer�s expected payo¤ in the sequential search A is larger than in the sequential search B.

We then deal with the question of what the optimal order of agents is for the designer who wishes to

maximize his expected payo¤ which is equal to the expected ability of the agent who gets the job minus the
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cost of the search. We �rst show that in our sequential search model if the designer has to impose the same

ability threshold in both stages then the stronger player should be allocated in the �rst stage. In the case

that the designer is allowed to impose di¤erent ability thresholds in both stages of the sequential search,

we provide su¢ cient conditions such that the stronger player should be allocated in the �rst stage of the

sequential search.

The literature of economic theory under incomplete information has dealt mostly with symmetric agents

where their types are derived from the same distribution function which is common knowledge. In many

cases, however, agents�types are drawn from di¤erent distribution functions which makes it hard to deal

with these models particularly when the agents act simultaneously. Although explicit expressions for such

asymmetric equilibrium strategies cannot be obtained other than for very simple models, we can �nd some

works which dealing with asymmetric auctions or contests (see, for example, Amman and Leininger (1996),

Maskin and Riley (2000), Fibich, Gavious and Sela (2004), Parreiras and Rubinchik (2010), Kirkegaard (2012)

and Gavious and Minchuk (2014)). In contrast, when the agents act sequentially and not simultaneously,

the analysis of asymmetric models under incomplete information becomes more tractable, in particular when

each agent plays only in one stage like in Segev and Sela (2014) who study asymmetric sequential all-pay

auctions under incomplete information. Since in our sequential search model each agent similarly plays at

most in one stage it is also tractable even though the players are ex-ante asymmetric.

2 The model

We consider a two-stage sequential search with two agents who compete to win one job. The agents�valuation

for winning the job is normalized to 1. We denote by ai � 0 the ability (or type) of agent i; i = 1; 2 which

is private information to i. Agent i�s ability is independently drawn from the interval [0; 1] according to

a distribution function Fi which is common knowledge. We assume that Fi has a positive and continuous

density function F 0i > 0: Agent i participates in stage i only. In the �rst stage, the designer imposes an

ability threshold d1 and then agent 1 arrives. If his ability is higher than or equal to d1 he wins the job.

If, on the other hand, agent 1�s ability is smaller than d1, the designer imposes a new ability threshold d2

in the second stage. Then, agent 2 arrives, and if his ability is higher than or equal to d2 he wins the job;
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otherwise, the search ends and no one wins the job. The contest designer has a search cost of c � 0 in each

stage. He wishes to maximize his expected payo¤ which is equal to g(di) �
Pi

j=1 cj where i is the stage in

which agent i wins the job. The function g(di) could be equal to the average agent�s ability to win the job,

i.e., g(di) =
R 1
di
aiF

0
i (a)da

1�Fi(di) or to any other monotonic increasing function of di. In the case that no agent wins

the job, the designer�s expected payo¤ is �
P2

j=1 cj .

3 The equilibrium ability thresholds

In order to analyze the perfect Bayesian equilibrium of the model, we begin with the second stage of the

sequential search and go backwards to the previous stage. The designer�s maximization problem in stage 2

is

max
d2

g(d2)(1� F2(d2))� c (1)

Thus, the equilibrium ability threshold in stage 2; d�2; is given by

g0(d�2)(1� F2(d�2))� g(d�2)F 02(d�2) = 0 (2)

The designer�s maximization problem in stage 1 is then

max
d1

g(d1)(1� F1(d1)) + F1(d1)g(d�2)(1� F2(d�2))� c(1 + F1(d1)) (3)

where d�2 is the equilibrium ability threshold in stage 2: The equilibrium ability threshold in stage 1; d�1 is

then given by

g0(d�1)(1� F1(d�1))� g(d�1)F 01(d�1) + F 01(d�1)g(d�2)(1� F2(d�2))� cF 01(d�1) = 0 (4)

We assume that the maximization problems (3) and (1) have a solution.1 The solution (d�1; d
�
2) of equations

(4) and (2) provides the equilibrium ability thresholds imposed by the designer. Note that these equations

are the necessary conditions for the optimal ability threshold, and therefore the optimal ability thresholds

are also equilibrium ability thresholds. The following example illustrates the perfect Bayesian equilibrium

in our sequential search model.
1For example, a su¢ cient condition that the maximization problems (1) and (3) have a solution is that g(�) is a concave

function and Fi; i = 1; 2 are convex functions.
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Example 1 Suppose that the players�abilities are distributed according to F1(a) = F2(a) = a and g(d) = d:

Then, the designers�s maximization problem in the second stage is

max
d2

d2(1� d2)� c

By (2), the F.O.C. is

1� 2d�2 = 0 =) d�2 = 0:5

The designer�s maximization problem in the �rst stage is

max
d1

d1(1� d1) + d1d�2(1� d�2)� c(1 + d1)

By (4), the F.O.C. is

1� 2d�1 + (0:25� c) = 0

=) d�1 = 0:625� 0:5c

The designer�s expected payo¤ is given by

Ed = (
5

8
� 1
2
c)(1� (5

8
� 1
2
c)) + (

5

8
� 1
2
c)
1

4
� c(1 + 5

8
� 1
2
c)

=
1

4
c2 � 13

8
c+

25

64

The following �gure presents the designer�s expected payo¤.
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Figure 1: The designer�s expected payo¤ as a function of the search cost c.
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We can see that for all c < 1
4 the equilibrium ability threshold d�1 in the �rst stage is higher than or equal

to the equilibrium ability threshold d�2 in the second stage. For c =
1
4 the equilibrium ability thresholds are

the same and both are equal to 1
2 where the expected payo¤ of the designer is zero. For c >

1
4 the designer

has a negative expected payo¤. Thus, for every possible value of the cost c � 0:25 we obtain that d�1 � d�2::

In order to proceed we need the following de�nition. Let F and G be two distribution functions with

hazard rates �F = F 0(x)
1�F (x) and �G = G0(x)

1�G(x) , respectively. If for all x, �F (x) � �G(x), we say that F

stochastically dominates G in terms of the hazard rate. Then, if player i�s ability is distributed according to

Fi, i = 1; 2; and F1 stochastically dominates F2 in terms of the hazard rate, we say that agent 1 is stronger

than agent 2.

The following result demonstrates that if the agent who arrives in the �rst stage is stronger than the

agent who arrives in the second stage, then the stronger agent in the �rst stage has to face a higher ability

threshold than the weaker agent in the second stage.

Proposition 1 If F1 stochastically dominates F2 in terms of the hazard rate, then regardless of the value

of the designer�s search cost c; the equilibrium ability threshold in the �rst stage d�1 is higher than or equal

to the equilibrium ability threshold in the second stage d�2.

Proof. The equilibrium ability threshold in the second stage is determined by

g0(d�2)(1� F2(d�2))� g(d�2)F 02(d�2) = 0 (5)

while the equilibrium e¤ort threshold in the �rst stage is determined by

G(d�1) = g
0(d�1)(1� F1(d�1))� g(d�1)F 01(d�1) + F 01(d�1)g(d�2)(1� F2(d�2))� cF 01(d�1) = 0 (6)

Inserting (5) in (6) yields

G(d�1 : d�1 = d
�
2) = G(d

�
2) = g

0(d�2)(1� F1(d�2))� g(d�2)F 01(d�2)F2(d�2)� cF 01(d�2) (7)

= g(d�2)
F 02(d

�
2)(1� F1(d�2))
(1� F2(d�2))

� g(d�2)F 01(d�2)F2(d�2)� cF 01(d�2)

= F 01(d
�
2)

�
g(d�2)

F 02(d
�
2)(1� F1(d�2))

(1� F2(d�2))F 01(d�2)
� g(d�2)F2(d�2)� c

�
= F 01(d

�
2)

�
g(d�2)

�F2(d
�
2)

�F1(d
�
2)
� g(d�2)F2(d�2)� c

�
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where �F1(a) and �F2(a) are the hazard rates of F1 and F2, respectively. We assume that F1 stochastically

dominates F2 in terms of the hazard rate which implies that
�F2 (d

�
2)

�F1 (d
�
2)
� 1 and therefore we have that

G(d�2) � F 01(d�2) [g(d�2)(1� F2(d�2))� c] � 0

The last inequality holds since otherwise the designer has no incentive to act in the second stage. Thus,

G(d�2) � 0, and since G(d�1) = 0 and G0 < 0, we obtain that the equilibrium ability thresholds satisfy d�1 � d�2:

The result of Proposition 1 implies that if both agents have the same distribution of ability, i.e., F1 =

F2; the equilibrium ability threshold in the �rst stage d�1 is higher than or equal to the equilibrium ability

threshold in the second stage d�2. The next result shows that when agent 1 is not stronger than agent 2, the

equilibrium ability threshold that the weaker agent (agent 1) faces in the �rst stage might be either higher

or lower than the equilibrium ability threshold that the stronger agent (agent 2) faces in the second stage.

Proposition 2 Assume that F2 stochastically dominates F1 in terms of the hazard rate. Then, if the cost c

is su¢ ciently high, the equilibrium ability threshold in the �rst stage d�1 is lower than the equilibrium ability

threshold in the second stage d�2: On the other hand, if the cost c is su¢ ciently small and
�F2 (a)

�F1 (a)
> F2(a) for

all a, then the equilibrium ability threshold in the �rst stage d�1 is higher than the equilibrium ability threshold

in the second stage d�2:

Proof. By (6) and (7) the equilibrium ability thresholds satisfy

G(d�1) = g
0(d�1)(1� F1(d�1))� g(d�1)F 01(d�1) + F 01(d�1)g(d�2)(1� F2(d�2))� cF 01(d�1) = 0

and

G(d�2) = F
0
1(d

�
2)

�
g(d�2)

�F2(d
�
2)

�F1(d
�
2)
� g(d�2)F2(d�2)� c

�
Since �F2 (a)

�F1 (a)
< 1; if the term g(d�2)( 1� F2(d�2))� c is su¢ ciently small we obtain that G(d�2) < 0; and since

G0 < 0 we have that d�1 < d
�
2: On the other hand, if

�F2 (a)

�F1 (a)
� F2(a) and c is su¢ ciently small, we obtain that

G(d�2) > 0 which implies that d
�
1 > d

�
2:

The following example illustrates the result obtained in Proposition 2.
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Example 2 Suppose that F1(x) = xk, F2(x) = xm, g(d) = d and c = 0: Let k � m such that F2 stochastically

dominates F1 in terms of the hazard rate. We will show that although the stronger agent arrives in the second

stage, the equilibrium ability threshold in the �rst stage is higher than in the second stage. In that case we

have that

�F2(x)

�F1(x)
=

F 0
2(x)

1�F2(x)
F 0
1(x)

1�F1(x)

=
mxm�1

1�xm
kxk�1

1�xk
=
mxm(1� xk)
kxk(1� xm)

By Proposition 2, in order to show that the equilibrium ability threshold in the second stage is higher than in

the �rst stage, it is su¢ cient to show that for all 0 � x � 1,

�F2(x)

�F1(x)
=
mxm(1� xk)
kxk(1� xm) � x

m = F2(x)

or, alternatively, we need to show that

m+ kxk+m � (k +m)xk

For x = 1, both sides of the last inequality are the same. The derivative of the LHS is

k(k +m)xk+m�1

and the derivative of the RHS is

k(k +m)xk�1

Since for every 0 � x � 1 there exists xk+m�1 < xk�1, we obtain that m + kxk+m � (k +m)xk for every

0 � x � 1.

Thus far we have compared the equilibrium ability thresholds of the same sequential search model. Now

we wish to compare the equilibrium ability thresholds of two di¤erent sequential search models.

Proposition 3 Let (dF1 ; d
F
2 ) be the equilibrium ability thresholds in the sequential search when the distribu-

tion functions are Fi; i = 1; 2; and (dG1 ; d
G
2 ) be the equilibrium ability thresholds in the sequential search when

the distribution functions are Gi; i = 1; 2. If Fi; i = 1; 2 stochastically dominates Gi; i = 1; 2 in terms of the

hazard rate, then, dFj � dGj ; j = 1; 2:
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Proof. By (2) we have the following conditions

g0(dF2 )
(1� F2(dF2 ))
F 02(d

F
2 )

� g(dF2 ) = 0

g0(dG2 )
(1�G2(dG2 ))
G02(d

G
2 )

� g(dG2 ) = 0

Rearranging implies that

F 02(d
F
2 )

(1� F2(dF2 ))
=

g0(dF2 )

g(dF2 )

G02(d
G
2 )

(1�G2(dG2 ))
=

g0(dG2 )

g(dG2 )

Since F2 stochastically dominates G2 in terms of the hazard rate,
(1�F2(x))
F 0
2(x)

� (1�G2(x))
G0
2(x)

and, in particular,

we have that

LF (d
G
2 ) =

g0(dG2 )(1� F2(dG2 ))
F 02(d

G
2 )

� g(dG2 ) �
g0(dG2 )(1�G2(dG2 ))

G02(d
G
2 )

� g(dG2 ) = LG(dG2 ) (8)

By the S.O.C. of the maximization problem (1) we obtain that LF (d) and LG(d) are decreasing functions,

and therefore by (8) in order to obtain the equality LF (dF2 ) = LG(d
G
2 ) we necessarily have that d

F
2 > d

G
2 :

Similarly, by (4) we have the following conditions

g0(dF1 )(1� F1(dF1 ))� g(dF1 )F 01(dF1 )) + F 01(dF1 )g(dF2 )(1� F2(dF2 )) = 0

g0(dG1 )(1�G1(dG1 ))� g(dG1 )G01(dG1 ) +G01(dG1 )g(dG2 )(1�G2(dG2 )) = 0

Since

g(dF2 )(1� F2(dF2 )) � g(dG2 )(1� F2(dG2 )) � g(dG2 )(1�G2(dG2 ))

we obtain that

MF (d
F
1 ) =

g0(dF1 )(1� F1(dF1 ))
F 01(d

F
1 )

� g(dF1 ) �
g0(dG1 )(1�G1(dG1 ))

G01(d
G
1 )

� g(dG1 ) =MG(d
G
1 )

Since F1 stochastically dominates G1 in terms of the hazard rate,
(1�F1(x))
F 0
1(x)

� (1�G1(x))
G0
1(x)

and, in particular,

we have that

MF (d
G
1 ) =

g0(dG1 )(1� F1(dG1 ))
F 01(d

G
1 )

� g(dG1 ) �
g0(dG1 )(1�G1(dG1 ))

G01(d
G
1 )

� g(dG1 ) =MG(d
G
1 ) (9)

By the S.O.C. of the maximization problem (3) we obtain thatMF (d) andMG(d) are decreasing functions,

and therefore by (9) in order to obtain the equality MF (d
F
1 ) = MG(d

G
1 ) we necessarily have that d

F
1 > d

G
1 :
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In the following, using the above results concerning the ratio of the equilibrium ability thresholds, we

show that if the agent in each stage of sequential search A is stronger than the agent at the same stage of

sequential search B, and the stronger agent of the sequential search B arrives in the �rst stage, then the

designer�s optimal expected payo¤ in the sequential search A is higher than in the sequential search B.

Proposition 4 Suppose that Fi; i = 1; 2 stochastically dominates Gi; i = 1; 2 in terms of the hazard rate,

and G1 stochastically dominates G2 in terms of the hazard rate as well. Then, in the sequential search with

the distribution functions Fi; i = 1; 2 the designer�s optimal expected payo¤ is higher than in the sequential

search with the distribution functions Gi; i = 1; 2.

Proof. Let (dF1 ; d
F
2 ) be the optimal ability thresholds when the distribution functions are Fi; i = 1; 2,

and (dG1 ; d
G
2 ) be the optimal ability thresholds when the distribution functions are Gi; i = 1; 2. We wish to

show that

g(dF1 )(1� F1(dF1 )) + F1(dF1 )(g(dF2 )(1� F2(dF2 ))� c) � g(dG1 )(1�G1(dG1 )) +G1(dG1 )(g(dG2 )(1�G2(dG2 ))� c)

Since the optimal ability thresholds satisfy equations (4) and (2), by Proposition 1 we have that dG1 � dG2 :

Thus, it is su¢ cient to show that for all d1 � d2

g(d1)(1� F1(d1)) + F1(d1)(g(d2)(1� F2(d2))� c) � g(d1)(1�G1(d1)) +G1(d1)(g(d2)(1�G2(d2))� c)

or, alternatively, that

(g(d1)� g(d2) + c)(G1(d1)� F1(d1)) � g(d2)(�G1(d1)G2(d2) + F1(d1)F2(d2)) (10)

Since d1 � d2 and Fi stochastically dominates Gi, we obtain that g(d1) � g(d2) > 0 and G1(d1) �

F1(d1) > 0; and, in particular, that the LHS of (10) is always positive. On the other hand, G1(d1)G2(d2) >

F1(d1)F2(d2) and therefore the RHS of (10) is negative. Hence, the inequality (10) holds.

4 The optimal order of agents

In this section we examine how the order of agents a¤ects the designer�s expected payo¤. Assume �rst that

the contest designer has a limitation according to which the ability thresholds have to be the same in both
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stages although the agents have asymmetric distributions of abilities. Then, if the designer has to choose

the same ability threshold independent of the order of agents we obtain that

Proposition 5 If the designer imposes the same ability threshold in both stages and the distribution func-

tion of player 1�s ability F1 stochastically dominates the distribution function of player 2�s ability F2 in terms

of the hazard rate, then the designer maximizes his expected payo¤ when player 1 is allocated in the �rst

stage and player 2 in the second one.

Proof. It is su¢ cient to show that for every 0 � d � 1

h1(d) = g(d)(1�F1(d))+F1(d)(g(d)(1�F2(d))�c) � g(d)(1�F2(d))+F2(d)(g(d)(1�F1(d))�c) = h2(d) (11)

Note that

h1(d)� h2(d) = c(F2(d)� F1(d))

Since F1(d) � F2(d) for every 0 � d � 1, the inequality (11) is satis�ed.

For Proposition 5 it was su¢ cient to assume that F1 �rst-order stochastically dominates F2; i.e., for

all x, F1(x) � F2(x): Note that the fact that F1 stochastically dominates F2 in terms of the hazard rate

implies that F1 �rst-order stochastically dominates F2: Assume now that the designer has to choose the same

ability threshold independent of the order of agents where this ability threshold is equal to the equilibrium

ability threshold of the second stage. Then, in contrast to Proposition 5, the following result shows that

the stronger player should be allocated in the second stage.

Proposition 6 Assume that the cost of search c is su¢ ciently small and the designer imposes in both stages

the equilibrium ability threshold of the second stage. Then, if the distribution function of player 1�s ability

F1 stochastically dominates the distribution function of player 2�s ability F2 in terms of the hazard rate, the

designer maximizes his expected payo¤ when player 1 is allocated in the second stage and player 2 in the �rst

one.

Proof. Let d1 be the ability threshold for both stages when player 1 is allocated in the second stage and

d2 be the ability threshold for both stages when player 2 is allocated in the second stage. We wish to show
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that

g(d1)(1� F2(d1)) + F2(d1)(g(d1)(1� F1(d1))� c) � g(d2)(1� F1(d2)) + F1(d2)(g(d2)(1� F2(d2))� c)

or, alternatively, that

g(d1)(1� F2(d1)F1(d1))� g(d2)(1� F2(d2)F1(d2)) � (F2(d1)� F1(d2))c

Assume that c = 0: Then we need to show that

G = g(d1)(1� F2(d1)F1(d1))� g(d2)(1� F2(d2)F1(d2)) � 0

Let h(d) = g(d)(1� F2(d)F1(d)). Since F2(d)F1(d) �rst-order stochastically dominates both F1 and F2;

and F1 stochastically dominates F2 we obtain that

argmax g(d)(1� F2F1) > argmax g(d)(1� F1) > argmax g(d)(1� F2)

Thus, d1; d2 < argmaxh(d) = g(d)(1� F2(d)F1(d)) and since by Proposition 3 d1 > d2; we obtain that

G = g(d1)(1� F2(d1)F1(d1))� g(d2)(1� F2(d2)F1(d2)) � 0

For Proposition 6 it was also su¢ cient to assume that F1 �rst-order stochastically dominates F2. We now

give the designer the freedom to choose di¤erent ability thresholds that depend on the agents�distributions

of abilities. Then, we have su¢ cient conditions that the stronger player should be allocated in the �rst stage

of the sequential search.

Proposition 7 Assume that the distribution function of player 1�s ability F1 stochastically dominates the

distribution function of player 2�s ability F2 in terms of the hazard rate. Then, if the search cost c is

su¢ ciently small and

�F1(x)

�F2(x)
� F1(x) for all 0 � x � 1 (12)

the designer maximizes his expected payo¤ when he allocates player 1 in the �rst stage.

Proof. Let (ed1; ed2) be the equilibrium ability thresholds when player 1 is allocated in the �rst stage,

and (bd1; bd2) be the equilibrium ability thresholds when player 2 is allocated in the �rst stage. We wish to
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show that in order to maximize his expected payo¤ the designer should allocate player 1 in the �rst stage

and player 2 in the second one. Thus, we need to show that

g(ed1)(1�F1(ed1)) +F1(ed1)(g(ed2)(1�F2(ed2))� c) � g(bd1)(1�F2(bd1)) +F2(bd1)(g(bd2)(1�F1(bd2))� c) (13)
By Proposition 2, since �F1 (x)

�F2 (x)
� F1(x) and c is su¢ ciently small, then bd1 > bd2: Thus, it is enough to show

that for all d1 > d2;

g(d1)(1� F1(d1)) + F1(d1)(g(d2)(1� F2(d2))� c) � g(d1)(1� F2(d1)) + F2(d1)(g(d2)(1� F1(d2))� c)

or, alternatively, that

g(d1)(F2(d1)� F1(d1))� (g(d2)� c)(F2(d1)� F1(d1))

= (g(d1)� g(d2) + c)(F2(d1)� F1(d1)) � 0

Since F1 stochastically dominates F2 in terms of the hazard rate the last inequality holds.

The result of Proposition 7 is illustrated in the following example.

Example 3 Suppose that F1(x) = xk,F2(x) = xm; k > m � 1, and c = 0. Then, by Proposition 7, player 1

should be allocated in the �rst stage if

F 01(x)(1� F2(x))
F 02(x))(1� F1(x))

� F1(x)

This condition can be expressed as

kxk�1(1� xm)
mxm�1(1� xk) � x

k

and it is equivalent to

k(1� xm)
m(1� xk) � x

m (14)

Therefore it is enough to show that

m(1� xk) < k(1� xm)

For x = 1, both sides of the last inequality are the same. The derivative of the LHS is �kmxk�1 and the

derivative of the RHS is �kmxm�1: Since �kmxk�1 > �kmxm�1 the inequality (14) is satis�ed.
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It is important to note that Proposition 7 provides a su¢ cient condition but not a necessary one for

allocating the stronger agent in the �rst stage and the weaker agent in the second one. Allocating the

stronger agent in the �rst stage most probably holds for a signi�cantly larger group of distribution functions

than the group determined by our su¢ cient condition.

5 Concluding remarks

We studied a two-stage sequential search with two agents who compete for one job. We assumed that the

agents are ex-ante asymmetric, namely, their abilities are derived from asymmetric distribution functions.

The designer who does not know the agent�s abilities but only the distribution of their abilities imposes an

ability threshold in every stage according to the agent who arrives in that stage. We demonstrate that the

ratio between the ability thresholds of both stages depends �rst on the agents�distributions of types and

second on the timing of play. Thus, while when agents are ex-ante symmetric the ability threshold levels

are necessarily decreasing along the stages, in our model when the agents are ex-ante asymmetric they may

increase. We also provided su¢ cient conditions such that the designer would prefer that the stronger agent

will arrive �rst and the weaker one later. We believe that this result holds even for much weaker conditions

than our su¢ cient conditions. In this paper, for simplicity, we considered a two-agent model but most of

our results about the ratio of the ability thresholds can be easily generalized to a model with any number

of agents. On the other hand, a generalization of our results about the optimal order of agents to sequential

search models with any number of agents would most likely be quite complex to undertake.
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