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Abstract

I introduce a new axiom for power indices on the domain of �nite simple

games that requires the total power of any given pair i; j of players in any given

game v to be equivalent to some individual power, i.e., equal to the power of

some single player k in some game w: I show that the Banzhaf power index

is uniquely characterized by this new "equivalence to individual power" axiom

in conjunction with the standard semivalue axioms: transfer (which is the

version of additivity adapted for simple games), symmetry or equal treatment,

positivity (which is strengthened to avoid zeroing-out of the index on some

games), and dummy.

JEL Classi�cation Numbers: C71, D72.

Keywords: Simple Games, Banzhaf Power Index, Semivalues, 2-E¢ ciency,

Superadditivity, Transfer, Symmetry, Positivity, Dummy.

1 Introduction

The Shapley-Shubik power index (henceforth SSI) and the Banzhaf power index

(henceforth BI) were devised as measures of the individual power in voting situ-

ations, and are based on simple computational formulas. The BI, introduced in
�The author acknowledges helpful conversations with Pradeep Dubey, Ezra Einy and David

Wettstein.
yDepartment of Economics, Ben-Gurion University, Beer Sheva 84105, Israel. E-mail:

orih@exchange.bgu.ac.il
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Banzhaf (1965), is easier to describe �the voting power of a participant is de�ned

as the probability that he is a "swinger", i.e., that his "yes" vote changes the voting

outcome, when all other individuals cast their votes independently and with equal

probability for "yes" and "no". If, as suggested by Shapley and Shubik (1954), the

voting situation is modelled as a simple cooperative game with a �nite player set

N , the BI of player i 2 N is given by his probability to turn a random coalition of

players from losing to winning by joining it, assuming that the coalition is chosen

with respect to the uniform distribution over the subsets of Nnfig.
Naturally, other probability distributions over the subsets of Nnfig can be consid-

ered, one of which leads to the famous SSI, introduced in Shapley and Shubik (1954).

The SSI is induced by the uniform distribution over all strict orderings of N , and

player i�s voting power is de�ned as the probability of him being pivotal in a random

order (that is, the probability that by joining the coalition of his predecessors in a

random order, i switches it from losing to winning). A major distinctive feature of

SSI is its e¢ ciency �namely, the total power of all players is 1 in any simple game.1

In contrast, BI is not e¢ cient in general. The total power in a game is equal to the

expected number of "swingers" in that game. The latter property has been elevated

to the rank of an axiom by Dubey and Shapley (1979) as a substitute for e¢ ciency,

in an attempt to provide BI with an axiomatic foundation that would mirror that of

SSI (established in Dubey (1975)).

The Dubey and Shapley axiom may be deemed unsatisfactory,2 however, not least

because it explicitly relies on counting "swings" (the notion on which BI is based).

Fortunately, BI has other distinguishing features that can replace this axiom, of which

we shall mention just two. The composition property, that was formally de�ned and

proved by Owen (1975, 1978), pertains to a two-tier voting process, and requires

the power of player i in a compound voting game to be equal3 to the product of i�s

power in the �rst-tier game in which he participates and the power of i�s delegate

1In this paper we adopt the Dubey and Shapley (1979) notion of a simple game, that requires

the grand coalition N to be winning, and the game to be monotonic (i.e., a winning coalition must

remain winning if joined by one or more players).
2See e.g. Section 5 in Dubey et al. (2005).
3To be precise, a second-tier game needs to be decisive (namely, a winning coalition must have a

losing complement in N , and vice versa) for the composition property to hold.
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in the second-tier game.4 Another distinctive property of BI is 2-e¢ ciency. It was

established in Lehrer (1988) and requires the sum of the power of any two players, i

and j, in any game v to be equal to the power of player i in the game vi;j obtained

from v by "merging" j into i (i.e., any coalition that contains i in the game vi;j has

the same worth as the coalition that contains both i and j in the game v).

The 2-e¢ ciency property is quite powerful. Lehrer (1988) showed that any 2-

e¢ cient power index that coincides with BI on the set of all 2-player simple games

is, in fact, identical to the BI on all games. But 2-e¢ ciency is also powerful enough

to be a basis for an axiomatization of BI that does not contain an explicit or implicit

comparison to BI on certain games. Lehrer (1988) considered a weaker version of 2-

e¢ ciency, which he termed the superadditivity axiom, whereby the total power of any

i,j in any v does not exceed the power of the merged player i in vi;j: Lehrer proved

that BI is uniquely characterized by the superadditivity axiom, along with other

requirements that are routinely imposed5 on power indices (these are the transfer,

equal treatment or symmetry, and dummy axioms).6 Recently, Casajus (2012) showed

that the symmetry axiom is not needed in Lehrer�s characterization of BI (but the

three remaining axioms are logically independent). That is, superadditivity, transfer

and dummy axioms uniquely characterize BI on the set of �nite simple games.

In this work we introduce a new axiom, equivalence to individual power (EIP),

that is related to 2-e¢ ciency but has an independent conceptual appeal. The EIP

axiom is based on the idea that when trying to conceptualize the collective power of

a pair of players, one need not leave the realm where only the individual power is

de�ned, as the collective power has an ordinal equivalent in that realm. Formally, EIP

postulates that, given any two players i; j 2 N and a simple game v on N; the total

power of the pair i; j in v is equivalent to some individual power, i.e., equal to the

power of some (single) player k in some simple game w: Only one mild assumption

4A composition property-based axiomatization of the BI on the domain of simple games appeared

in Dubey et al. (2005).
5See Dubey (1975), Dubey and Shapley (1979), Einy (1987).
6The superadditivity and 2-e¢ ciency also �gure prominently in axiomatizations of the Banzhaf

value (BV), the extension of BI to the set of all games on N: Lehrer�s (1988) Theorem B establishes

a characterization of BV that is identical to that of BI, with the linearity axiom instead of transfer.

See also the works of Nowak (1997) and Casajus (2011, 2012), where the linearity axiom is replaced

by versions of Young�s (1985) monotonicity.
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links w to the original game v: w should have the same �or smaller �carrier compared

to v: There need not be any other relation between w and v: Thus, according to EIP,

the "language" of individual power must be su¢ ciently "expressive" to also be able

to capture the total power of pairs; in mathematical terms, the union of the image

sets of all players�individual power indices must be su¢ ciently rich so as to contain

the image sets of all 2-sums of individual power indices.

The usual formulations of the 2-e¢ ciency property (such as those in Lehrer (1988),

Casajus (2012)) treat the original simple game v and the merged vi;j as having di¤er-

ent player sets (with j missing from the player set of the latter). To allow comparison

with EIP, we note that v and vi;j can be assumed to have the same set of players

N; but di¤erent carriers: if v has a carrier T � N , then Tnfjg acts as a carrier for
vi;j (with j being a null player). With this convention, the axiomatization of BI in

Lehrer (1988) holds with a �xed player set N:7 The EIP axiom can thus be viewed

as a weakening of the 2-e¢ ciency property. Indeed, given a 2-e¢ cient power index, a

simple game v on N and i; j 2 N; take w to be the merged game vi;j and k to be the
merged player i; then any carrier of v is also a carrier of vi;j = w; and, by 2-e¢ ciency,

i = k has the same power as what i and j hold together in v: Note that the relaxation

of 2-e¢ ciency that is embodied in the EIP axiom is signi�cant, because the latter is

very permissive as to what individual power may be considered in seeking the match

for the total power of i and j: The matching individual power is not required to be

obtainable by merging i and j in v; in fact, it may come from a game not related to

v in any way (other than having the same carrier).

Our main result (Theorem 1) is that BI is the only power index that satis�es

the EIP axiom together with the standard set of four "semivalue axioms" (the term

comes from Einy (1987), who calls power indices satisfying the four axioms semivalues

on simple games). The set contains the transfer, symmetry, and dummy axioms

that have already been mentioned, and the positivity axiom that, in addition to the

standard requirement of non-negativity of the power index for all players, stipulates

that positive power must be attributed to at least one player in a game.8 We then

show, using arguments similar to those of Malawski (2002), that a weaker equal

7The axiomatization in Theorem 5 of Casajus (2012) that removes the symmetry axiom from

Lehrer�s list also holds for games with a �xed player set N , assuming jN j � 3:
8Without the latter requirement, our result would not hold as is explained in Remark 2(4).
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treatment property can replace the symmetry in our set of axioms (see Corollary 1).

Our �ve axioms are independent when there are at least three players (see Remark

2). Thus, the EIP axiom is "permissive" not only in appearance �it is strictly weaker

than 2-e¢ ciency because the latter uniquely characterizes BI combined with just three

semivalue axioms (positivity excepted) by Lehrer (1988).9 However, we also point out

that the weakening of EIP that only bounds the total power of a pair from above

by some individual power cannot replace EIP in our axiomatization (because then

the SSI would satisfy all the axioms, see Remark 2(1)), unlike superadditivity in the

axiomatization of Lehrer (1988) that was substitutable for the stronger 2-e¢ ciency.

Furthermore, the EIP axiom cannot be a basis for an axiomatic characterization of

the Banzhaf value on the set of all games on N , as then the all-games version of EIP

would be satis�ed by every semivalue (see Remark 4).

2 Simple Games and the Banzhaf Index

Let N = f1; 2; :::; ng be the player set, that will be �xed throughout. Denote the
collection of all coalitions (subsets of N) by 2N ; and the empty coalition by ?: Then

a game on N (or simply a game) is given by a map v : 2N ! R with v (?) = 0: The

space of all games is denoted by G(N): A coalition T 2 2N is called a carrier of v if
v(S) = v(S \ T ) for any S 2 2N :
The domain SG(N) � G(N) of simple games on N consists of all v 2 G such that
(i) v(S) 2 f0; 1g for all S 2 2N ;
(ii) v(N) = 1;

(iii) v is monotonic, i.e., if S � T then v(S) � v(T ):

A coalition S is said to be winning in v 2 SG(N) if v(S) = 1; and losing otherwise.
The set of simple games (respectively, all games) with carrier T � N will be denoted

by SG (T ) (respectively G (T )): Given a non-empty set T � N; denote by uT 2 SG(T )
the unanimity game with carrier T; i.e., the game for which T is the (only) minimal

winning coalition.

9In fact, as the above-mentioned result of Casajus (2012) holds when the player set N is �xed

and jN j � 3, the transfer and dummy axioms alone can uniquely characterize the BI in conjunction
with 2-e¢ ciency.

5



A power index is a mapping ' : SG(N)!Rn. For each i 2 N and v 2 SG(N);
the ith coordinate of ' (v) 2 Rn; ' (v) (i); is interpreted as the voting power of player
i in the game v: The Banzhaf index (henceforth BI) and the Shapley-Shubik index

(henceforth SSI) are among the best known power indices. In this article we focus on

the former. The BI is given for each v 2 SG(N) and i 2 N by

� (v) (i) =
X

S�Nnfig

1

2n�1
[v(S [ fig)� v(S)] : (1)

Thus, for each i 2 N , � (v) (i) is the expected marginal contribution of player i to

a random coalition, chosen w.r.t. the uniform distribution on subsets of Nn fig :
Equivalently, � (v) (i) is the probability that the random coalition is losing in v but

becomes winning if joined by i. (The SSI is given by a modi�cation of (1), where in

each summand the coe¢ cient 1
2n�1 is replaced by

jSj!(n�jSj�1)!
n!

:)

3 The Axioms

We shall show that � is the unique power index on SG(N) which satis�es the �ve
axioms below. The �rst axiom is new. It postulates that the total power of a pair

of players, as measured by the index, is equivalent to some individual power. To be

precise, the sum of power indices of any two given players in a game is required to be

equal to the power index of some player in some game with the same carrier (that

need not be related in any other way to the original game).

Axiom I: Equivalence to individual power (EIP). If T � N and v 2 SG(T ),
then for every two distinct players i; j 2 T there exist k 2 T and w 2 SG(T ) such
that

' (v) (i) + ' (v) (j) = ' (w) (k): (2)

EIP is related to the superadditivity (SA) and 2-e¢ ciency (2-EF) axioms intro-

duced by Lehrer (1988) for his characterization of the BI. Given T � N; i; j 2 T and
v 2 SG(T ); the two axioms compare the sum ' (v) (i)+' (v) (j) with ' (vi;j) (i); where

vi;j 2 SG(Tnfjg) is given by vi;j (S) = v(Snfjg) and vi;j (S [ fig) = v(S [ fi; jg) for
any S � Nnfig (i.e., in vi;j the two distinct players i; j are "merged" into a single
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player, i). SA requires that

' (v) (i) + ' (v) (j) � ' (vi;j) (i); (3)

2-EF requires (3) to hold with equality. (In our rendering of SA and 2-EF we follow

the interpretation of Casajus (2012), in that the new entity created by the merger of

i and j retains the name i; however, in order to keep the player set N unchanged,

in accordance with our basic assumption, j is assumed not to leave the game but to

remain as a null player10.)

It is clear that EIP is weaker than 2-EF, as an equality in (3) implies (2) by

taking w = vi;j and k = i: Conceptually, EIP places almost no restriction on the

source of an individual power needed to match the total power of i and j. Indeed, the

individual power is not required to be obtainable by merging i and j in v; and may

come from a game not related to v in any way, other than having the same carrier T:

However, EIP and SA are incomparable. On the one hand, EIP requires the total

power of a pair i; j to be precisely matched by the individual power of some player,

while SA only requires the total power to be bounded from above by the individual

power. On the other hand, EIP is signi�cantly more permissive as to the source of

the individual power.

Remark 1 (2-EF of the BI). By Proposition 1 in Lehrer (1988), � satis�es

2-EF, and hence SA. (This implies that � also satis�es EIP.)

The four axioms that follow are standard, and their variants are present in the

original axiomatizations of SSI and BI (see Dubey (1975) and Dubey and Shapley

(1979)). Power indices that satisfy them were termed semivalues on SG(N) in Einy
(1987). To state our second axiom, we introduce the following notation. For v; w 2
SG(N) de�ne v _ w; v ^ w 2 SG(N) by:

(v _ w) (S) = max fv(S); w(S)g ;

(v ^ w) (S) = min fv(S); w(S)g

for all S 2 2N : (It is evident that SG(N) is closed under operations _;^:) Thus a
coalition is winning in v _ w if, and only if, it is winning in at least one of v or w,

and it is winning in v ^ w if, and only if, it is winning in both v and w:
10This term is formally de�ned in a discussion following the statement of Axiom V (D) below.
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Axiom II: Transfer (T). ' (v _ w) + ' (v ^ w) = ' (v) + ' (w) for all v; w 2
SG(N).

As remarked in Dubey et al. (2005), T can be restated in the following equivalent

form. Consider two pairs of games v; v0 and w;w0 in SG(N), and suppose that the
transitions from v0 to v and w0 to w entail adding the same set of winning coalitions

(i.e., v � v0; w � w0; and v � v0 = w � w0). An equivalent axiom would require that

' (v)� ' (v0) = ' (w)� ' (w0) ;

i.e., that the change in power depends only on the change in the voting game.

Next, denote by�(N) the set of all permutations ofN (i.e., bijections � : N ! N):

For � 2 �(N) and a game v 2 SG(N), de�ne �v 2 SG(N) by

(�v) (S) = v(�(S))

for all S 2 2N : The game �v is the same as v except that players are relabeled

according to �:

Axiom III: Symmetry (S). ' (�v) (i) = ' (v) (� (i)) for every v 2 SG(N),
every i 2 N; and every � 2 �(N):

According to S, if players are relabeled in a game, their power indices will be

relabeled accordingly. Thus, irrelevant characteristics of the players, outside of their

role in the game v, have no in�uence on the power index.

Axiom IV: Positivity (P). ' (v) 2 Rn+ and the vector ' (v) is non-zero for each
v 2 SG(N).

The positivity requirement is natural, as it is hard to imagine how a negative power

could be associated with a player who can never make matters worse by joining a

group. Since every v 2 SG(N) is monotonic by assumption, no player can indeed turn
a winning coalition into a losing one by joining it. Similarly, as the grand coalition

N is by assumption a winning coalition in any v 2 SG(N), winning is possible, hence
the expectation that positive power should be attributed to at least one player.
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Axiom V: Dummy (D). If v 2 SG(N) and i is a dummy player in v, i.e.

v(S [ fig) = v(S) + v(fig) for every S � Nn fig ; then ' (v) (i) = v (fig) :

This axiom can be viewed as a normalization requirement. If i does not belong to

a carrier of v 2 SG(N); he is a dummy with v (fig) = 0; i.e. a null player : He changes
nothing by joining a coalition, and hence in the distribution of power it is convenient

to view his share as the lowest possible, 0: On the other hand, if i is a dummy player

in v and v(fig) = 1; then he is a dictator, namely, a coalition is winning if and only if
it contains i: In terms of power distribution, the power attributed to him should be

at the highest possible level, and it is convenient to label this level as 1 (= v(fig)).

4 The Results

Our main result is the following theorem.

Theorem 1. There exists one, and only one, power index satisfying EIP, T, S,

P, and D, and it is the BI:

Proof. As mentioned in Remark 1, � satis�es EIP, and it is well known that �

also satis�es the semivalue axioms T, S, P, and D. It remains to show that our �ve

axioms uniquely determine �: To this end, �x any power index ' that satis�es EIP,

T, S, P, and D. On account of the last four axioms, ' is a semivalue on SG(N),
and so Theorem 2.4 of Einy (1987) applies11. Thus, there is a unique extension of '

to ' : G(N)!Rn that is a semivalue on G(N) (the latter means that (i) ' is a linear
map; (ii) ' satis�es the symmetry axiom for any v 2 G(N); (iii) ' (v) (i) = v(fig)
for any additive12 game v 2 G(N) and i 2 N ; and (iv) ' (v) 2 Rn+ for any monotonic
game v 2 G(N)). The restriction of ' to the space G(T ) for any T � N obviously

remains a semivalue on G(T ): The Lemma in Dubey et al. (1981) that characterizes
all semivalues on �nite games can now be used to explicitly describe the restriction

of ' to G(T ) for any �xed T � N , of size 1 � jT j = t � n: there exists a unique

11Although Theorem 2.4 of Einy (1987) is stated for semivalues on the set of �nite simple games

with an in�nite universe of players U; its proof does not use the assumption that U is in�nite.
12A game v 2 G(N) is additive if v(S) =

P
i2S v(fig) for every S � N:
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collection (pts)
t�1
s=0 of non-negative numbers satisfying

t�1X
s=0

�
t� 1
s

�
pts = 1; (4)

such that for every v 2 G(T )

' (v) (i) =
X

S�Tnfig

ptjSj (v(S [ fig)� v(S)): (5)

(By the symmetry of ' and the fact that (pts)
t�1
s=0 is determined uniquely, the collection

(pts)
t�1
s=0 is independent of the choice of T with jT j = t.) In particular, for every

v 2 SG(N) with carrier T � N of size t;

' (v) (i) =
X

S�Tnfig

ptjSj (v(S [ fig)� v(S)): (6)

Now �x t; 1 � t � n � 1: Since G(f1; 2; :::; tg) � G(f1; 2; :::; t + 1g), (5) can be
applied (with t + 1 instead of t) to any v 2 G(f1; 2; :::; tg) when the latter is viewed
as a game with carrier T = f1; 2; :::t+ 1g. This yields

' (v) (i) =
X

S�f1;:::;tgnfig

h
pt+1jSj + pt+1jSj+1

i
(v(S [ fig)� v(S)):

But as the collection (pts)
t�1
s=0 is determined uniquely, it follows that

pt+1s + pt+1s+1 = pts for every s = 0; :::; t� 1: (7)

We will next show by induction on t that

pts =
1

2t�1
for every s = 0; 1; :::; t� 1: (8)

For t = 1 the claim follows from (4), as then p10 = 1: Now assume that (8) has been

established for t = m; 1 � m < n: We will show that it also holds for t = m + 1:

Combining the induction hypothesis (8) with (7) for t = m yields

pm+1s + pm+1s+1 =
1

2m�1
for every s = 0; :::;m� 1:

This, in turn, implies the following equalities:

pm+10 = pm+12 = :::: =: p; (9)

pm+11 = pm+13 = :::: =: q; where p+ q =
1

2m�1
:
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Consider two games in SG(f1; 2; :::;m+ 1g),

v1 = uf1g _ uf2;:::;m+1g

and

v2 = uf1;2g _ ::: _ uf1;m+1g;

where (recall) uT denotes the unanimity game with carrier T: Using (6) and (4) for

t = m+ 1, we obtain

' (v1) (1) =
m�1X
s=0

�
m

s

�
pm+1s = 1� pm+1m ; ' (v1) (2) = pm+1m�1; (10)

and

' (v2) (1) =
mX
s=1

�
m

s

�
pm+1s = 1� pm+10 ; ' (v1) (2) = pm+11 : (11)

By EIP, there exist games v3; v4 2 SG(f1; 2; :::;m + 1g) and players k; l 2
f1; 2; :::;mg such that

' (v1) (1) + ' (v1) (2) = ' (v3) (k) (12)

and

' (v2) (1) + ' (v2) (2) = ' (v4) (l) :

It is immediate from (6) and (4) that ' (v3) (k) ; ' (v4) (l) � 1: Hence,

' (v1) (1) + ' (v1) (2) � 1 and ' (v2) (1) + ' (v2) (2) � 1:

Using (10) and (11), we obtain

1� pm+1m + pm+1m�1 � 1 and 1� pm+10 + pm+11 � 1: (13)

In what follows we consider two cases.

Case 1: The integer m is odd. Using the notation in (9), the inequalities in (13)

become 1� q + p � 1 and 1� p+ q � 1; and hence p = q: The equalities in (9) now

establish (8) for t = m+ 1:

Case 2: The integer m is even. Using the notation in (9), both inequalities in

(13) lead to a single inequality

1� p+ q � 1: (14)
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Assume �rst that 1�p+q < 1: Consider again the games v1; v3 2 SG(f1; 2; :::;m+1g)
used above. Using (10), the notation in (9), and (12), we obtain

' (v3) (k) = 1� p+ q < 1: (15)

This means that

v3 (fkg) = 0 or v3(Nnfkg) = 1; (16)

since otherwise k would be a dictator (who is also a dummy player) in the monotonic

game v3; and by Axiom D he would receive ' (v3) (k) = v3 (fkg) = 1 in contradiction
to (15). But then, using (6) and (4) for t = m+ 1;

' (v3) (k) �
mX
s=1

�
m

s

�
pm+1s = 1� pm+10 = 1� p

if v3 (fkg) = 0; and

' (v3) (k) �
m�1X
s=0

�
m

s

�
pm+1s = 1� pm+1m = 1� p

if v3(Nnfkg) = 1: Hence
' (v3) (k) � 1� p (17)

no matter which of the two equalities in (16) hold: Since q � 0 by its de�nition in

(9) and non-negativity of the coe¢ cients (pm+1s )
m
s=0 ; the combination of (15) and (17)

yields q = 0:

Consider the 2-majority game v2;m+1 2 SG(f1; 2; :::;m + 1g) in which the set of
minimal winning coalitions consists of all subsets of f1; 2; :::;m+ 1g of size 2. Then,
by (6) and the notation in (9), for every i = 1; 2; :::;m+ 1,

'
�
v2;m+1

�
(i) = mpm+11 = mq = 0:

Therefore ' (v2;m+1) is the zero vector, which contradicts the second requirement

in Axiom P. This shows that there can be no strict inequality in (14), and hence

1� p+ q = 1, or p = q: The equalities in (9) now establish (8) for t = m+ 1:

The treatment of cases 1 and 2 completes the induction step, and establishes (8)

for every t � n; and in particular for t = n: The combination of (6) and (8) for t = n

and a comparison with (1) now shows that ' = �: �

12



Remark 2 (Independence of the axioms when n � 3). Our axioms, EIP,
T, S, P, and D, are independent when there are at least three players, as we show

below.

1. The SSI satis�es all the axioms except EIP. Notice also that EIP cannot be

weakened by requiring inequality "�" in (2) instead of equality.13 Indeed, the
SSI satis�es this weaker version of EIP, and so the weaker version, combined

with the other axioms, would not uniquely characterize �:

2. Consider a power index ' on SG(N) that is equal to � for all games in SG(N);
with the exception of v = uf1;2g; for which ' (v) = 1

2
� (v) : The index ' satis�es

all the axioms except T.

3. Let ' be given, for any v 2 SG(N); by

' (v) (i) = v (f1; :::; ig)� v(f1; :::; i� 1g)

if i > 1; and ' (v) (1) = v(f1g): (In particular, ' (v) (i) 2 f0; 1g for every i 2 N;
and ' is e¢ cient.) The index ' satis�es all the axioms except S.

4. Let ' be given, for any v 2 SG(N) and i 2 N; by

' (v) (i) =
1

2
v(fig) + 1

2
(v(N)� v(Nnfig)) :

It is easy to see that ' satis�es EIP, T, S, and D. However, ' violates P. To

see this, notice that due to the assumption that n � 3; ' (v) is the zero vector
for v = v2;n; where v2;n is the 2-majority game supported on N (in which the

minimal winning coalitions are precisely those of size 2). Notice further that

' (v) 2 Rn+ for every v 2 SG(N): This shows that P cannot be weakened by

removing from it the requirement that ' (v) is always non-zero, as this weaker

version, combined with the other axioms, would not uniquely characterize the

BI:

5. The power index ' = 1
2
� satis�es all the axioms except D.

13Had EIP been stated with inequality "�" in (2), it would be implied (i.e. be weaker than) the
SA axiom of Lehrer (1988).
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Remark 3 (Redundancy of some axioms when n � 2). When n = 1; there is
only one power index on (the unique game in) SG(f1g); by D. When n � 2; Axiom P
can be dropped from the list of axioms characterizing �: Indeed, take any power index

' on SG(f1; 2g) = fuf1g; uf2g; uf1;2g; uf1g _ uf2gg: By D, '
�
uf1g

�
= �

�
uf1g

�
= (1; 0)

and '
�
uf2g

�
= �

�
uf2g

�
= (0; 1); and by S '

�
uf1;2g

�
= (a; a) and '

�
uf1g _ uf2g

�
=

(b; b) for some a; b: By T,

(1; 1) = '
�
uf1g

�
+ '

�
uf2g

�
= '

�
uf1g _ uf2g

�
+ '

�
uf1;2g

�
= (a+ b; a+ b);

hence a + b = 1: If a � 0 then b � 1; and ' fails EIP for the game v = uf1g _ uf2g
because the total power of players 1 and 2, 2b � 2; cannot be matched by any

individual power: We conclude that a > 0; and, similarly, that b > 0: Thus ' does in

fact satisfy P, and so by our theorem ' = �.

Remark 4 (Theorem 1 cannot be extended to axiomatize the Banzhaf

value on the set of all games). Formula (1), when applied to every v 2 G(N),
de�nes the Banzhaf value � : G(N )!Rn on the entire G(N). However, EIP, were
it to be stated for all games in G(N) and not just for simple games, would lose all
its strength. Indeed, for any semivalue ' de�ned by (5) (for t = n and a collection

(pns )
n�1
s=0 that is subject to (4)), the range of the individual value mapping ' (w) (k)

�with variable w 2 G(N) and �xed k 2 N � is the entire R.14 Thus, given any

v 2 G(N) and i; j 2 N; for any semivalue ' there exists a game w' 2 G(N) such that
' (v) (i)+' (v) (j) = ' (w') (k): This shows that adding EIP to the set of semivalue

axioms (which are extensions of T, S, P, and D to solutions on G(N)) will not in
any way narrow down the set of semivalues.

We shall �nally note that in our axiomatization of BI Axiom S can be replaced

by its following well-known weaker version:

Axiom VI: Equal Treatment (ET). If i,j 2 N are substitute players in the

game v 2 SG(N), i.e., for every S � Nnfi; jg v(S[fig) = v(S[fjg); then ' (v) (i) =
' (v) (j).

14This is so even if the worth of the grand coalition, w(N); was assumed to be �xed at some level,

say w(N) = v(N):
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While S postulates that irrelevant characteristics of the players, outside of their

role in the game v, have no in�uence on a power index, the weaker ET merely forbids

discrimination between substitute players (with the same role in the game). The

reason that ET can replace the stronger S is our next Proposition 1. The proposition

is close, in statement and proof, to the con�ation of Lemma 5 and Theorem 4(a) of

Malawski (2002), who showed that ET is equivalent to S for any a linear value on

G(N) that satis�es D. Malawski�s result cannot, however, be directly imported into
our setting of power indices on SG(N); as the linearity or additivity requirements are
not applicable to power indices.

Proposition 1. Suppose that a power index ' satis�es T, D, and ET. Then '

also satis�es S.

Proof. We will make use of the following lemma.

Lemma 1. Given S; T � N such that jSj = jT j � 1;

' (uS) (i) = ' (uT ) (j) for any i 2 S and j 2 T; (18)

and

' (uS) (i) = ' (uT ) (j) = 0 for any i 2 NnS and j 2 NnT: (19)

Proof of Lemma 1. Equality (19) follows from D as any player outside some

carrier of a game is a dummy (null) player.

Denote s := jSj = jT j : If S = T then (18) is implied by ET. Consider next the

case where S 6= T but the two sets have all but two players in common (i.e. jS \ T j =
s � 1), which means that S = R [ fi0g and T = R [ fj0g for some i0 2 N , j0 2 N;

and R � Nnfi0; j0g: As all ' (uS) (i) (respectively, all ' (uT ) (j)) are equal for i 2 S
(respectively, j 2 T ) by ET, in order to establish the equality in (18) it su¢ ces to

show that ' (uS) (i0) = ' (uT ) (j
0): By T,

' (uS) + ' (uT ) = ' (uS _ uT ) + ' (uS ^ uT ) : (20)

In both uS _ uT = uR[fi0g _ uR[fj0g and uS ^ uT = uR[fi0;j0g the players i0 and j0 are

substitutes, and hence by ET and (20)

' (uS) (i
0) + ' (uT ) (i

0) = ' (uS) (j
0) + ' (uT ) (j

0) :
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Using (19), the above equality turns into ' (uS) (i0) = ' (uT ) (j
0) ; which establishes

(18) when jS \ T j = s� 1. For general S and T of the same size s, a chain of s-sized
coalitions between S and T can be found such that any two consecutive coalitions

in the chain have all but two players in common (and to whom the above argument

applies), and hence (18) holds for any S and T of size s: �

Now let ' be the power index given by

' (v) (i) � 1

n!

X
�2�(N)

' (�v)
�
��1 (i)

�
for every v 2 SG(N) and i 2 N: It is easy to check that ' satis�es S, and it also

satis�es T as ' does so. By its de�nition and the properties established in Lemma

1, ' coincides with ' on the collection (uT )? 6=T�N of all unanimity games in SG(N):
Any v 2 SG(N) can be written as a maximum of a �nite number of unanimity games:

v = uT1 _ uT2 _ ::: _ uTk ;

where T1; :::; Tk are the minimal winning coalitions in v: By Lemma 2.3 of Einy (1987),

for any power index  that satis�es T

 (v) =
X

I�f1;:::;kg;I 6=?

(�1)jIj+1  
�
u[m2ITm

�
; (21)

and by applying (21) to '; ' and using the fact that both coincide on all unanimity

games, we obtain ' (v) = ' (v) : As this holds for every v 2 SG(N); ' = '. But '

satis�es S as has been noted earlier. �

It is an immediate corollary of Theorem 1 and Proposition 1 that ET can replace

S in our axiomatization of BI:

Corollary 1. BI is the only power index that satis�es EIP, T, ET, P, and D:
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