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Abstract

Using numerical optimization techniques we congtrtie mean-extended Gini
(MEG) efficient frontier as a workable alternatite the mean-variance efficient
frontier. The MEG model enables the introductidnspecific risk aversion in
portfolio selection and thus offers an alternataggproach for calculating efficient
portfolios and pricing risky assets. The resultipgrtfolios are stochastically
dominant (SSD) for all risk-averse investors. $wavfor MEG portfolios allows
investors to construct efficient portfolios that aailored to specific risk requisites.
As a measure of risk, the model uses the extendedwhich is calculated by the
covariance of asset returns with a weighing fumcid the cumulative distribution
function (CDF) of these returns. Efficient MEG tiolios are obtained by
minimizing the extended Gini of portfolio returnsbgect to a required mean return
constraint. In a sample of asset returns, the GEstimated by ranking the returns.
In this case analytical optimization techniquesagsiontinuous gradient approaches
are unavailable, thus the need to develop numeoiatinization techniques. In this
paper we solve for MEG efficient portfolios expamgli spreadsheetEkce)
techniques. In addition, usiniylathematica software we develop a numerical
optimization algorithm that finds the portfolio aptl frontier for arbitrarily large
sets of shares. The result is a 3-dimension MHGieft frontier in the mean, the
extended Gini, and the risk aversion coefficierascgp
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Mean-Extended Gini Portfolios: The Ultimate Frontier

1. Introduction

The mean-Gini (MG) investment model offers an aldive to the standard
mean-variance (MV) model by measuring risk usingi'&€imean difference instead of
the standard deviation. The MG and mean-extended{GIEG) approaches were
first introduced in finance by Shalit and Yitzhgk©984). These models present an
approach that prices risky assets and construfitseet portfolios which are second-
degree stochastic dominant (SSD) for all risk-adrsrestors. The MEG model
developed earlier by Yitzhaki (1983) allowed foe tepecific introduction of risk
aversion differentiation into the portfolio allowat process. Later, Shalit and
Yitzhaki (2005) provided superior alternative opainallocations to the MV efficient
frontier, in particular when risky assets are notnmally distributed. Although the
methods were not initially adopted, they were lateorporated to many research
projects and scientific articlésToday, the MEG model is recognized for embodying
a complete financial investment theory with econtriméesting and for establishing a
working environment for investments that are contgatwith SSD and expected
utility maximization. Our endeavor here is to $gdize MEG into a practical and
complete form for use by both financial practitimand academicians that extends
its theoretical foundations to the working mechamtportfolio allocation.

In this paper, we present numerical optimizatiogoathms in Excel and
Mathematicain order to construct mean-extended Gini efficipattfolios for large
sets of assets with and without short-sales positiorhe purpose is to familiarize the
investment practitioner with the MEG model as assitilite to the MV model in
portfolio selection. Solving for MEG portfolios drlas investors to construct efficient
portfolios that are tailored to their specific risgquirements or to the needs of their
clients. Indeed, when investors desire to hokieisor less risky assets, MEG has the
advantage of incorporating individual risk aversiadowever, because the extended
Gini is calculated by weighing the cumulative disition function, analytical
optimization techniques are unavailable. Hencexetlis a need to develop numerical
optimization techniques that would make MEG a sigpdpol for choosing optimal

portfolios.

! See Bey and Howe (1984), Carroll et al(1992), lded Luo(1993), Okunev (1991) and Shalit(1995)
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2. The Mean-Gini Investment Model

We present a portfolio investment model in whichestors minimize their risk
as measured by the Gini, subject to given expemédns. The Gini index is a
statistic of dispersion used mainly in income d@isttion in order to compute income
inequality. In financial economics the Gini indexs first used by Fisher and Lorie
(1970) to study the relative variability of singétocks and portfolios. In 1912,
Corrado Gini developed a ratio to measure theivelaariability of random variables.
For a risky assex, the numerator of the Gini indeg, is the expected absolute
difference between all observations pairs, alsdedalGini’'s mean difference,

I =%E[x-x| wherex andx are i.i.d. replicates of the risky assetand the
1]

denominator ofG, is the mean ok, E(X). In financial economics, it is customary to
use as measure of risk the absolute value of theilex, called the Gini. This is an

attractive measure ds, evaluates variability by the absolute distancevben all the

data points instead of calculating their squaré@dinces from a virtual central value

like the mean.

The Gini I', has many representations and formulations, mosthath can be

found in Yitzhaki (1998). The main feature of tG&i is that it estimates the pure
risk of x since it can be obtained from the generalizedolabs) Lorenz curve of asset
X. To see this, assume that asg@t returns are distributed by the cumulative
probability distribution function GDF), F(x). Following Gastwirth (1971), the

absolute Lorenz curve is defined over the probghjias:

L,(p) :fFl(t)dt for 0<p<1 (1)

where F'(t) = Inf{x| F(X > # is the inverse of thEDF. The absolute Lorenz curve

of asseik is delineated in Figure 1. The curve starts atahigin ¢p = 0) and ends up
at the meark(x) for = 1. For identical means, the more convex the cusyehie
riskier is the asset. The absolute Lorenz curvéhie safest asset given a mean return
is expressed by the straight line, called the ¢éihsafe assetLSA), that runs from the
origin to the mean of assg&t The pure risk of the asset is calculated byatea
between th&. SAthat yields the same mean return and its absbbrenz curve since,

for every probabilityp, had one invest in the risky asset, one would thet



cumulative expected return along the absolute Loremve whereas investing in the
riskless asset one would obtain a higher cumulagixeected return on theSA
Therefore, the farther tHeSAis from the absolute Lorenz curthe greater is the risk
assumed by the asset.

In financial applications, the Gini is more conwartly expressed as

I', =2cov[x,F (x)]; i.e., the covariance between asset retyraisd their cumulative

probability distributionF(x). The latter is estimated by T, which is the relative
ranking ofx sorted from the lowest returr=() to the highesi£T).

As a measure to value uncertainty in risky asshesGini has been shown by
Yitzhaki (1982) to have many advantages over th@awmee. Firstly, when returns
depart from normality the Gini exhibits a bettectpre of the dispersion of the
distribution since it compares the spread of olm@ms among themselves.
Secondly, together with the expected return, thai Qrovides necessary and
sufficient conditions for second degree stochastiminance $SD, implying that the
mean and the Gini are a two parameter approachishéilly compatible with
expected utility maximization. This feature is ea&istent with the variance and the
mean unless asset returns are normally distribotednvestor's preferences are
guadratic. The mean-Gini conditions f8éDare stated as following:

Let x andy be two risky assets with meaBé) andE(y), and Gini'sI'y andI'y
respectively.  Then,E(X)> E(Y) and E(X)-T', > E(y)-T', are necessary and

sometimes sufficient conditions for assetto be preferred to asset for all
maximizing expected utility risk-averse investors.

Let us now present the mean-GiMG) portfolio model where investors use
the mean and the Gini to constr&$Defficient portfolios by choosing the shares of
risky assets that minimize the portfolio Gini suibjeo a given expected return. We
consider a portfolio oN assets the weights of which are giverwaand the portfolio

N
returnsp of which are given ap=Zw>g, wherex; are assets returnhe assets
i=1

N
form a portfolio when the shares add up to on Ewi =1, The investor has to
i=1

choose the shareg that minimize the portfolio Ginil", = 2cov[p,F, (p)] subject to

a given mean return constrai( p) =

N
w K x) and subject or not to short sales
=1
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restrictionsy > 0. By introducing a riskless asset with safe retgrthe mean return

constraint becomes:
E(p)=rf+iw(E(>.<)—F) 2)

In theory, the MG model is similar to the MV modeld would yield identical
results if asset returns were normally distributedzor any other probability
distribution, the analyst is expected to obtainfeddnt allocation results. An
additional advantage of using the Gini as meastriskis that MG can be extended
into a family of increasingly risk-averse models des/eloped by Yitzhaki (1983).
Indeed, by adding one extra parameter], the extended Gini measures asset risk
when the lower portions of the returns distributeme multiplied by larger relative
weights that express the concern investors havdofses when investing in risky
assets. To specify increasing risk aversion, we/eléhe extended-Gini statistic by
stressing the lower segments of the distributiorasdet returns. As we recall from
Figure 1, the simple Gini is obtained by calculgtthe area between th&Aand the
Lorenz curve. Similarly, we obtain the extendechiiy adding the relatively
weightedvertical differences between th&A and the Lorenz curve. This area is

calculated using the parameteio obtain the extended Gini of asgets follows:

L) =v(v-D. @-0) 2 @E(X)- L, (0))dp (3)
where L, (¢) is the Lorenz curve from Equation (1pE(X) is the LSA and

v(v-1)(1-¢)? are the weights associated with each portion efalea between the

LSAand the Lorenz curve. The paramete(>0) is the risk aversion coefficient
chosen by analysts to represent the relative febrsees by investors. Some special
cases of interest for the extended Gini parametglude the following: Fow = 2
Equation (3) becomes the simple Gini. ko « the extended Gini reflects the
attitude of a max-min investor who expresses rigly o terms of the worst outcome.
Forv — 1, Equation (3) cancels out, allowing risk-neutnalestors without measures
of dispersion to evaluate risk. For 0<1 the extended Gini is negative and relates to
risk-loving investors. For ease of presentatiod bacause we are dealing with risk-
averse investors, we consider here only the exte@iei withv > 1, although many

of the results can be applied without modificatitis risk-loving investors. In



financial analysis, it is easier to express theemaéd Gini using the covariance
formula rather than Equation(3):
[ (v)=-vcov{x[Ll- F(X]"} 4)

To understand the essence of risk aversion usmgittended Gini, the reader is
referred to the swimmer/ shark metaphor from Sreald Yitzhaki (2009, p. 761):
“.... As an example, imagine a shark is roaming the abasiters. A risk-neutral
swimmer will calculate the swimming benefits byngsithe objective probability of
being struck by a shark. If the swimmer useg, she will attach as the probability of
being struck, twice her entrance into the watencalgh she will jump only once. If
the swimmer uses—co, although she intends to enter the water only ohes
behavior is as if she will be entering an infinm@mber of times. That is, if there is a
tiny objective probability of having a shark roamithe waters, the behavior of the
v—oo sSwimmer is as if the shark will strike with a padfility of one....” Hence, we
can see that the parameteaind the extended Gini span an entire continuogstspn
of risk-aversion behavior

Moreover, with the extended GirCGAPMs can be estimated, for eagchas has
been done in studies on equity and futures marfsetsGregory-Allen and Shalit,
1999, Lien and Luo, 1993, and Shalit, 1995, to jeist a few). The main econometric
results of these papers show that when Ordinargtt®quares are used as estimators,
unwarranted sensitivity c€CAPM betas is to be expected because of the fat thils o
market returns distributionMEG estimation has been shown to resolve some of these
anomalies. MEG not only improves the quality of estimators by magkthem more
robust to outliers, it also presents a frameworlkcdmpare results witilV when
market returns are not normal (see Carroll, Thisted Wei, 1992, Shalit and
Yitzhaki, 2002).

From an investor's point of view, given a specyiefficient portfolio frontiers
can be constructed with and without allowing foorstsales. This permits investors
to construct efficient portfolios that are tailoratheir specific risk needs. Indeed,
when investors desire to hold riskier or less rigkgetsMEG has the advantage of
incorporating individual risk- aversion in the cbeiprocess itself without relying on
the portfolio separation theorem. The investortsbfem is to choose the positions
that minimize the extended Gini of a portfolio a&fsats subject to a given mean as

follows:



Consider a portfoligp of N assets whose weights aseand whose returns are

given byr, = Zinwiri , Wherer; are the assets’ return& portfolio of assets requires

N
that > w =1. Hence,

i=1

Minimize —viwI cov{x,[1- F ( P)] '}

subjectto E @ )= WE (x)

= (5)
1= iwI

i=1

Changing the required mean allows the financiallyshao span the entire
efficient frontier. The advantage MEG is rooted in the different number of efficient
frontiers each of which depends on the coeffic@ntisk aversiony (see Shalit and
Yitzhaki, 1989). Investors have the choice to foptthe portfolios that best suit their
aversion to risk. Asset allocation usiMEG is somewhat similar td1V portfolio
optimization when short sales are allowed and wineturn distributions are
exchangeabl. In that case, standakV algorithms can be used fbEG as done by
Shalit and Yitzhaki (2005). We now write Probles) in matrix form:

MinT (v)
st. E(p)=w'u
1=wl
w>0

(6)

where,u is the vector of assets’ mean retusns the vector of portfolio weights and

is a vector of ones. Problem(6), although simitastructure to thé/V optimization
problem, is much more complex than M¥ problem because the extended Gini of a
portfolio cannot be derived as a simple functiontieé probability distribution
statistics of the assets. Furthermore, when sbalgs are not allowed or when

distributions are not exchangeable specific opttitmn programming is needed to

2 A set of random variables is exchangeable if foerg permutation of then
subscripts, the joint distributions ofy( ... , %) are identical (Stuart and Ord, 1994).
The multivariate normal is an example of an excleabig distribution up to a linear
transformation.



solve the portfolio allocation problem. These teghes are presented in the next

section.

3.  The Optimization Model

We constructMEG efficient portfolios by developing an algorithmsea on
numerical optimization. In practice, calculatitg tGini of a random variable can be
done by either averaging the absolute differeneatwden all observations pairs or
estimating theCDF by the rank function and applying it in the coaage formula. In
general, because Gini derivatives are discontinuoesearchers and analysts are
refrained from using analytical solutions to coustroptimal MEG portfolios as
gradient-type optimizations approaches fail.

Therefore, linear programming®) techniques have been proposed by Okunev
(1991) to solve for MG efficient portfolios that iminize the Gini expressed by the
expected value of absolute differences subjectregaired portfolio mean constraint
and a portfolio constraint. The absolute valuanigation of the Gini causes the
primal LP problem to contain a number of constraints aselaag the number of
observations. By moving the primal problem to tlal LP program, the number of
constraints is reduced to the number of assetshenfiontier can be easily solved for
a small number of securities (50) but seems irdtdetfor large portfolios. Also,
Okunev'd_P does not offer a solution when minimizing the exiied Gini portfolios.

Recently, a simple solution to the mean-Gini pdidf@ptimization problem
was obtained by Cheung, Kwan, and Miu (2005) usirgjandardExcel spreadsheet
technique. Here, we implement the approachviteG for a smaller number of
securities and allow for risk aversion differeribat This spreadsheet technique is
limited to smaller number of securities and a dealumber of observations. Our
challenge was to use an advanced software packahgeasMathematicao develop a
reliable numerical optimization to find efficienogfolios that minimize the extended
Gini subject to required expected returns for gdanumber of securities with and
without short sales. We now present the constoctf MEG efficient portfolios

using the two techniques:



3.1 MEG Optimization Using Excel
The MG portfolio optimization technique was developed Ggeung et al
(2005). The approach is as follows: First, fogieen set of portfolio weightsy,
i=1,..., n compute the portfolio returns ep;:iwq . Hence, the portfolio's Gini is
i1
calculated as
I, =2cov[p,F, (p)] (7)
To estimate th€DF, rank the portfolio returns sorted in ascendindeorand divide
the ordinal rank by the number of observationst us consider an example of 10
stocks and 52 returns. In tiexcel spreadsheet, write down the individual stock
returns in columnd to J androws 1 to52. The portfolio weights are stored in row
54 as A54: J54. Now, calculate the portfolio returns in celd: K52 using the
function= SUMPRODUCT( Al: J1, A$54: J$54) . With the RANK function and the
COUNT function Create the CDF in column L as
= RANK( K1: K52, K$1, K$52, 1)/ COUNT( K1: K52). The portfolio Gini is
calculated by:=2* COVAR( K1: K52, L1: L52). The main feature of this process is
rooted in the spreadsheet procedure that instamiigheand simultaneously updates
the CDF of the portfolio whenever portfolio returns aremqmuted for a specific set of
weights. This is wh¥xceland theRANK function are so successful in providing an
optimization solution for the mean-Gini frontier.
Now, we can adapt thelG technique and construct théEG frontier. For a

specific coefficient of risk-aversion, the extended Gini of a portfolio is expressed as:
I',(v)=-veov{p,[1- F,(p]} (8)

The formula is calculated by- A55* COVAR( K1: K52,( 1- L1: L52)" A55- 1))

wherev is stored in celA55. MEG optimization is achieved using tB&cel Solver

by minimizing the portfolio extended Gini subject the required mean return, the

portfolio weights constraint and whether short salee allowed or not.

3.2 The Mathematica MEG Optimization Technique

We useMathematicato write a general numerical algorithm that mirdes

the extended Gini of a portfolio for a given setrigky assets. The algorithm is



structured into a main routine that calls on speatibroutines responsible for tasks
such as finding the minimum extended Gini or caring the efficient frontiers for
a set of risk aversion parameters The main routine loads the data including asset
names and asset returns. Then, the analyst isl daskspecify several parameters.
The first parameter determines whether the requesgubcted return on the portfolio
is set to specific valueRRéstrictRange=1) or the unconstrained minimum (extended)
Gini is needed to be computeRgstrictRange=pD In the case of specific required
returns, one is requested to specify the lower 0qWPR), the step sizeRPS, and
the number of stepNUmberofStepsfor these returns. A set of required returns is
established for which the efficiency frontier witle computed. Afterwards, the
analyst is asked to choose what risk measures Wil used: the Gini
(MethodRange=)) the extended Gini MethodRange=), both risk measures
(MethodRange=R or else many extended Ginis for various riskraims v
(MethodRange=B For the latter, a 3-dimentional efficient frmmtin the space
spanned by expected return, the extended Ginitrendsk-aversion parameter {E(p),
I'v(p), v }Jmay be constructed.

Conditional on choosing the extended Gini optimaatthe analyst is asked for
a specific risk-aversiom (RiskAversionParametgor for the information required to
construct a set of risk aversion parameters: tixeddimit (RiskAversionSta)t the
step sizeRiskAversionSizeand the number of stepRiskAversionSteps She is also
asked whether short sales are allowdd3hortSales=0or not NoShortSales 91

Following this parameterization, the program loatie two subroutines

OptPortfolioGini and OptPortfolioExtGinithe tasks of which are presented in detail
below. The starting minimal portfolio requireduet is specified. Conditional on the
values forMethodRangeand RestrictRangehe routine takes different paths. If the
unconstrained (extended) Gini is chosen the programputes either the minimum
Gini using OptPortfolioGini or the minimum extended Gini using
OptPortfolioExtGini and reports these values in the objB&sultVectar If the
decision is to compute an efficient frontier, theygram enters, depending on the
value chosen foMethodRangeinto different loops. If only one risk aversion
coefficient is implicitly or explicitly specified,for each step of the loop

OptPortfolioGini OptPortfolioExtGinior both are computed, the results are added to

10



ResultVector(ResultbVectoror both of them) and the required minimal portoli
return is increased lYPS

Finally, if MethodRangeindicates several values for the risk-aversion
coefficient, the routine enters the alternativeniohaof two nested loops following the
risk aversion coefficient defined WyiskAversionStart The outer loop runs through
the various risk aversion coefficients and the mlo®p runs through the various
required portfolio returns. After finishing thener loop, the risk aversiois
increased by the value &iskAversionSizehe resultare addedto ResultArray and
the routine starts the outer loop. This procedsreepeated foRiskAversionSteps
times.

The subroutineOptPortfolioExtGini minimizes the extended Gini of the
portfolio given a required portfolio return for pexified risk aversion parameter. The
extended Gini is computed in the subroutPertfolioExtGini The minimization
method used is a linear programming technique baseda simplex algorithm.
Similarly, OptPortfolioGini computes the portfolio by minimizing the Gini far
required return and an input matrix of asset returihe portfolio Gini is calculated
in the subroutin®ortfolioGini.

The flowchart presented in Figure 3 visualizes kbgic structure of the

software package explained above.
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4. Empirical Analysis and Results

We use as data the monthly returns of 100 mostedatutaded stocks on the US
financial markets from March 1992 until June 200/ost of these firms appear in the
S&P 100 index. The 183 returns were calculatethfroonthly close price adjusted
for dividends and splits downloaded from financkg@com. The summary statistics
(mean, standard deviation and Gini mean differemeepresented in Table 1 together
with the Jarque-Bera test statistic for the nortyalf returns. For most of the firms
normality is rejected, justifying the use of thenGas an appropriate risk measure to
obtain SSD portfolios.

The first stage consists of constructing the MEfiient frontier for a variety
of v using the Excel routine. The efficient portfoliase calculated when short sales
are not allowed fov = 2, 3, 4, 6, 8, 10, 15, 20, 40, 60, 80, 100. f@selts are shown
in Figure 2. In general, the various portfolio fiens seem almost the same in shape,
concavity, and mean return corresponding to themrmim extended Gini. But still a
sizeable change in the trade-off between the metanrr of the portfolio and the risk
expressed in (extended) Gini can be observed. dActe®n of the mean return from
0.023 to 0.021 yields a risk improvement of 0.02vfe 2, but reduces risk by almost
0.1 forv=100. Hence, the trade-off worsens considerabReatng the higher risk
aversion of the investor. The holdings of the mimm extended Gini portfolios are
presented in Table 2. The results display sinfktterns with respect to the efficient
frontiers. Some sizable differences between th@ws portfolios can be observed:
the portfolios with higher risk aversiom engage in stronger diversification and the
optimal portfolios with lowen rely on a relative low number of assets.

The second stage of the optimization is performgdiding the Mathematica
software. It generates efficient portfolios frams by varying the mean return, the
extended Gini, and the risk aversion parametere résulting 3-dimentional efficient
frontiers surfaces are displayed in Figure 4. dreha rising risk aversion parameter
is accompanied by an increase in the risk compemsateded for a given reduction
in expected return. Furthermore, the figure illatgs that the speed of the trade-off
change does not follow a monotone pattern, bueratippears as a volatile process.
On the margin, it turns out that not even the clkamgthe trade-off is a strictly

monotone function in the risk aversion parameter.
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This rather unexpected result cannot only be empthby the non-continuous
adjustments in the optimal weights of the remairaegets whenever security is added
or removed from the optimal portfolio, but alsorfrdrade-offs inherent in the risk
aversion parameter itself. This argument can lppaeed using the elasticity of the
extended Gini with respect to the risk aversiorapeeterv. From Equation (3) we
obtain the derivative of the extended Gini. Therefthe elasticity w.r.tv is:

or (v) v 2v-1 1
— - = — —+v| In(1- 9
ov T, v v |, In(L-p)do ©)

2v-1
(v-1)

to non-monotony. In particular, this ratio exhsb#ingularity wherv — 1 orv — 0

The ratio

and the second term of Equation (9) create trdfdetioat can lead

implying that near these values the extended Gasitieity is non-monotonous. This
feature adds on top of the trade-off between ris&ring and diversification that can

raise the required mean returns.

5. Conclusions

We have presented a new approach to construct M&@olos by inserting the
coefficient of risk-aversion into the optimizatipnogram. Hence the results show a
three dimensional frontier where the risk-aversmefficient can be chosen to
enhance the risk inherent in the portfolios. Notyathe results deliver stochastic
dominant portfolios but they allow the analyst tbep a variety of alternatives for
risk-averse investors.

In addition, the paper provides some innovations @hore technical nature.
These include a Mathematica algorithm consisting sefveral interdependent
Mathematica packages and a notebook that allowshforefficient computation of
hulls by varying portfolios for a predefined setassets. The size of this set is only
restricted by the computational resources availalheany case, these resources can
be improved by using the inherent parallel commutapacities of Mathematica. In
this way, the number of elements within the sedsdets serving as the main input to
the algorithm can be almost unlimited.

It is exactly this computational power that alloalso for a high degree of

flexibility in the design of the objective functiomithin the process of the portfolio
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optimization (5). Hence, future extensions of tl@search could include taking into
account higher moments and/or co-moments, addltipa@meters besides the risk-
aversion parameter and even a more general fuattionAnother potentially
interesting extension would be to include an olbyectunction that not only reflects
the trade-off between return and risk, but als® wseeasure of financial stability so
that minor shocks on the exogenous parameters andbles would not result in
major portfolio restructuring. Building on thisgament, integrating transaction costs
into the objective function could potentially comiateresting results as well.
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Table 1: Summary Statistics for 100 stocks (Monthl\Returns March 1992 — June 2007)

Firm Mean Std Dev Gini JB Stat Firm Mean Std Dev Gini JB Stat
AA 1.38% 9.30% 5.25% 131.82 HPQ 1.64% 10.88% 6.14% 6.76
ABT 1.09% 5.96% 3.36% 6.26 IFF 0.78% 6.45% 3.64% 36.34
AAPL 2.31% 14.75% 8.32% 8.67 IBM 1.40% 9.13% 5.15% 15.33
AEP 0.86% 6.07% 3.43% 9.82 INTC 2.23% 12.07% 6.81% 7.71
AES 2.21% 16.37% 9.23%  263.03 IP 0.61% 7.68% 4.33% 21.22
AlG 1.37% 6.46% 3.64% 22.71 JINJ 1.22% 6.05% 3.41% 0.42
AMGN 1.56% 9.91% 5.59% 55.14 JPM 1.50% 8.95% 5.05% 32.40
AVP 1.75% 9.22% 5.20% 292.58 KO 0.86% 6.45% 3.64% 14.84
AXP 1.66% 6.87% 3.88% 49.9 LTD 1.21% 9.84% 5.55% 11.00
BA 1.26% 7.82% 4.41% 37.76 MCD 1.23% 6.82% 3.85% 10.67
BAC 1.34% 6.95% 3.92% 28.43 MDT 1.64% 7.02% 3.96% 5.75
BAX 1.20% 7.51% 4.24% 73.44 MER 2.06% 9.57% 5.40% 10.53
BHI 1.58% 9.82% 5.54% 5.47 MMM 1.15% 5.94% 3.35% 29.54
BMY 0.83% 6.82% 3.85% 28.73 MO 1.46% 8.33% 4.70% 35.37
BNI 1.38% 6.87% 3.87% 2.58 MRK 0.94% 7.86% 4.44% 1.51
BUD 1.02% 4.86% 2.74% 0.23 MSFT 1.95% 10.18% 5.74% 30.74
BDK 1.25% 8.60% 4.85% 3.87 MAY 0.67% 11.94% 6.74% 1247.2
BC 1.07% 9.57% 5.40% 69.95 MEE 1.46% 12.63% 7.13% 41.94
C 2.06% 8.39% 4.74% NSC 1.18% 7.99% 4.51% 13.19
CAT 1.92% 8.36% 4.72% 31.22 NSM 2.27% 16.32% 9.21% 8.23
CCcu 2.54% 10.42% 5.88% 18.58 NT 1.30% 19.55% 11.03% 953.11
Cl 1.83% 8.92% 5.03% 222.53 ORCL 3.20% 14.23% 8.03% 77.35
CL 1.41% 7.15% 4.04% 94.87 OMX 0.96% 8.77% 4.95% 1.96
CMCSA 1.66% 9.39% 5.30% 7.51 OXY 1.58% 7.65% 4.32% 14.84
COP 1.51% 6.84% 3.86% 8.4 PEP 1.10% 6.17% 3.48% 74.30
CPB 0.97% 6.54% 3.69% 2.8 PFE 1.21% 6.82% 3.85% 1.57
CSsC 1.41% 10.07% 5.68% 134.2 PG 1.22% 6.17% 3.48% 389.57
CSCO 2.89% 12.11% 6.83% 5.12 RF 0.91% 5.72% 3.23% 9.66
CVS 1.30% 7.84% 4.42% 28.54 ROK 2.36% 9.30% 5.24% 83.38
CVX 1.35% 5.56% 3.14% 14.86 RTN 0.92% 8.48% 4.78% 162.61
CEN 1.52% 8.76% 4.94% 5.47 RSH 1.56% 11.38% 6.42% 0.98
DD 0.89% 6.71% 3.79% 0.51 S 1.33% 9.42% 5.31% 65.71
DELL 3.42% 14.79% 8.34% 5.98 SLB 0.74% 7.05% 3.98% 37.35
DIS 0.89% 7.50% 4.23% 13.08 SO 1.58% 5.42% 3.06% 27.79
DOW 1.03% 7.59% 4.28% 131.58 T 1.12% 7.31% 4,12% 11.74
EK 0.57% 8.45% 477%  42.66 TEK 1.91% 12.69% 7.16% 5491
EMC 3.40% 14.79% 8.35% 1.83 TGT 1.79% 7.93% 4.48% 2.58
EP 1.28% 10.96% 6.18%  150.36 TWX 4.03% 16.08% 9.07% 88.95
ETR 1.65% 6.42% 3.62% 23.56 TXN 2.50% 12.89% 7.27% 10.17
EXC 1.55% 6.85% 3.86% 50.88 TYC 1.66% 9.86% 5.56% 207.48
F 0.86% 9.56% 5.39% 20.96 USB 1.42% 7.43% 4.19% 131.57
FDX 1.59% 8.45% A4.77% 21.41 UTx 1.73% 7.04% 3.97% 125.09
GD 2.70% 9.10% 5.14% 1951.85 VZ 0.98% 7.29% 4.11% 152.00
GE 1.36% 6.08% 3.43% 3.49 WB 0.94% 7.24% 4.08% 47.55
GM 0.88% 9.61% 5.42% 0.49 WFC 1.56% 6.59% 3.72% 19.20
HAL 1.87% 10.97% 6.19% 9.69 WMB 2.18% 13.01% 7.34% 267.65
HD 1.30% 8.07% 4.55% 4.13 WMT 1.02% 7.14% 4.03% 4.43
HET 2.25% 10.74% 6.06% 112.68 wy 1.14% 7.41% 4.18% 0.49
HNZ 0.93% 5.58% 3.15% 0.79 XRX 1.18% 12.79% 7.21% 505.79
HON 1.40% 9.16% 5.17% 339.23 XOM 1.35% 4.74% 2.68% 56.74
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Table 2: Holdings of Minimum Extended Gini Portfolios for various v, showing only the non-
zero positions

Firms v=2 v=3 v=4 v=6 v=8 v=10 v=15 v=20 v=40 v=60 v=80 v=100
ABT 299% 4.69% 5.48% 558% 5.64% 528% 5.14% 4.63%.07% 5.07% 5.07%  5.074
AAPL 0.23% 0.61% 1.01% 2.10% 3.39% 4.84% 549% %00 7.11% 7.12% 7.12%  7.124
AMGN | 1.40% 1.21% 0.97% 0.82% 0.75% 2.60% 2.53% @94 2.16% 2.16% 2.16% 2.16
BNI 1.68% 1.76% 1.72% 1.51% 1.22% 0.10% 0.10% 0.099%.08% 0.08% 0.08%  0.084
BUD 17.50% 15.20% 13.85% 12.24% 11.55% 11.79% 2P4.7111.24% 13.16% 13.18% 13.18% 13.1
COP 0.00% 0.00% 0.09% 0.09% 0.09% 0.13% 0.14% 0.14%13% 0.13% 0.13% 0.134
CPB 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 0.01% 0.01%01% 0.01% 0.01% 0.014
CVvX 8.91% 8.38% 7.21% 572% 4.87% 4.26% 3.68% 2.15%.69% 0.69% 0.69%  0.694
CEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%50% 0.50% 0.50%  0.504
DOW 2.22% 2.55% 244% 2.25% 2.65% 3.87% 3.61% 251%25% 1.25% 1.25%  1.254
EK 2.96% 3.63% 3.76% 4.15% 4.38% 3.39% 3.57% 4.03%.05% 5.06% 5.06% 5.069
EXC 529% 4.34% 3.84% 3.46% 3.50% 3.13% 1.84% 1.18%19% 1.19% 1.19%  1.194
FDX 0.70% 0.76% 0.79% 0.78% 0.69% 0.34% 0.33% 0.32%®.31% 0.31% 0.31%  0.314
GD 2.02% 1.18% 0.78% 051% 0.46% 0.84% 1.12% 2.74%05% 7.05% 7.05%  7.05¢
HET 0.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.20%.20% 0.20% 0.20%  0.20¢
HNZ 8.00% 8.10% 8.47% 7.82% 8.16% 8.05% 8.54% 8.08%.02% 4.02% 4.02%  4.024
LTD 0.00% 063% 0.74% 091% 1.16% 3.87% 4.17% 5.06%.42% 5.41% 5.41% 5.414
MDT 2.01% 2.26% 2.25% 1.72% 1.34% 0.00% 0.00% 0.00%.60% 0.60% 0.60%  0.604
MER 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%.06% 0.06% 0.06%  0.06¢4
MMM 427%  3.65% 2.71% 2.12% 1.80% 0.21% 0.20% 0.1699.14% 0.14% 0.14%  0.144
MO 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.14%.11% 0.11% 0.11% 0.119
MSFT 3.61% 2.61% 239% 2.42% 2.22% 1.69% 1.33% 9%.100.59% 0.59% 0.59%  0.59¢
NSM 1.05% 0.87% 0.87% 0.91% 0.70% 0.14% 0.15% 0.11%.09% 0.09% 0.09%  0.09¢
ORCL 1.53% 2.27% 259% 3.60% 3.69% 4.12% 3.92% 9.553.91% 3.90% 3.90%  3.90¢
PG 0.15% 0.11% 0.10% 0.10% 0.10% 0.17% 0.18% 0.13%11% 0.11% 0.11% 0.114
RSH 3.62% 4.31% 4.40% 3.91% 3.26% 2.08% 1.36% 0.65%28% 0.28% 0.28%  0.284
S 0.00% 0.68% 0.86% 0.91% 0.91% 0.45% 0.44% 0.40%30% 0.30% 0.30% 0.309%
SLB 0.00% 0.00% 0.00% 0.04% 0.04% 0.04% 0.04% 0.05%.05% 0.05% 0.05%  0.054
SLE 0.00% 0.00% 0.00% 0.84% 0.88% 1.44% 1.66% 1.77%57% 1.57% 1.57% 1.574
SO 19.66% 23.58% 25.70% 28.02% 29.11% 31.13% 32.48%32% 31.94% 31.86% 31.86% 31.8¢
T 0.00% 0.00% 0.00% 1.27% 1.44% 2.79% 2.82% 2.78%70% 0.70% 0.70% 0.709
TEK 2.75% 244% 260% 291% 3.12% 3.11% 3.31% 4.32%.74% 5.73% 5.73% 5.734
Total 92.91% 95.80% 95.62% 96.73% 97.13% 99.88% 88¥8. 99.81% 99.61% 99.54% 99.54% 99.5

18



L(a)

Figure 1: The Absolute Lorenz Curve

LSA

Lo)

E(X)

19

\ 4



Figure 2: Efficient Frontiers for Various vs
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Figure 2: cont.
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Figure 3: Flowchart for Mathematica Package
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Figure 4: 3-D Efficiency Frontier Mean Extended Gin
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