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Abstract 

Using numerical optimization techniques we construct the mean-extended Gini 
(MEG) efficient frontier as a workable alternative to the mean-variance efficient 
frontier.  The MEG model enables the introduction of specific risk aversion in 
portfolio selection and thus offers an alternative approach for calculating efficient 
portfolios and pricing risky assets.  The resulting portfolios are stochastically 
dominant (SSD) for all risk-averse investors.  Solving for MEG portfolios allows 
investors to construct efficient portfolios that are tailored to specific risk requisites.  
As a measure of risk, the model uses the extended Gini which is calculated by the 
covariance of asset returns with a weighing function of the cumulative distribution 
function (CDF) of these returns.  Efficient MEG portfolios are obtained by 
minimizing the extended Gini of portfolio returns subject to a required mean return 
constraint.  In  a sample of asset returns, the CDF is estimated by ranking the returns.  
In this case analytical optimization techniques using continuous gradient approaches 
are unavailable, thus the need to develop numerical optimization techniques.  In this 
paper we solve for MEG efficient portfolios expanding spreadsheet (Excel) 
techniques.  In addition, using Mathematica software we develop a numerical 
optimization algorithm that finds the portfolio optimal frontier for arbitrarily large 
sets of shares.  The result is a 3-dimension MEG efficient frontier in the mean, the 
extended Gini, and the risk aversion coefficient space. 
 
Keywords: Mean-Gini portfolios, numerical optimization, stochastic dominance 
portfolios, 3D efficient frontier 
 
 

Contact Author: 

Haim Shalit 
Department of Economics 
Ben-Gurion University of the Negev, Israel 
+972-54-7892221 
shalit@bgu.ac.il 
 



 2 

Mean-Extended Gini Portfolios: The Ultimate Frontier 

 

1. Introduction 

The mean-Gini (MG) investment model offers an alternative to the standard 

mean-variance (MV) model by measuring risk using Gini's mean difference instead of 

the standard deviation.  The MG and mean-extended-Gini (MEG) approaches were 

first introduced in finance by Shalit and Yitzhaki (1984).  These models present an 

approach that prices risky assets and constructs efficient portfolios which are second-

degree stochastic dominant (SSD) for all risk-averse investors.  The MEG model 

developed earlier by Yitzhaki (1983) allowed for the specific introduction of risk 

aversion differentiation into the portfolio allocation process.  Later, Shalit and 

Yitzhaki (2005) provided superior alternative optimal allocations to the MV efficient 

frontier, in particular when risky assets are not normally distributed.  Although the 

methods were not initially adopted, they were later incorporated to many research 

projects and scientific articles.1  Today, the MEG model is recognized for embodying 

a complete financial investment theory with econometric testing and for establishing a 

working environment for investments that are compatible with SSD and expected 

utility maximization.  Our endeavor here is to synthesize MEG into a practical and 

complete form for use by both financial practitioners and academicians that extends 

its theoretical foundations to the working mechanics of portfolio allocation. 

In this paper, we present numerical optimization algorithms in Excel and 

Mathematica in order to construct mean-extended Gini efficient portfolios for large 

sets of assets with and without short-sales positions.  The purpose is to familiarize the 

investment practitioner with the MEG model as a substitute to the MV model in 

portfolio selection. Solving for MEG portfolios enables investors to construct efficient 

portfolios that are tailored to their specific risk requirements or to the needs of their 

clients.  Indeed, when investors desire to hold riskier or less risky assets, MEG has the 

advantage of incorporating individual risk aversion.  However, because the extended 

Gini is calculated by weighing the cumulative distribution function, analytical 

optimization techniques are unavailable.  Hence, there is a need to develop numerical 

optimization techniques that would make MEG a superior tool for choosing optimal 

portfolios. 

                                                 
1 See Bey and Howe (1984), Carroll et al(1992), Lien and Luo(1993), Okunev (1991) and Shalit(1995) 
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2. The Mean-Gini Investment Model 

 

We present a portfolio investment model in which investors minimize their risk 

as measured by the Gini, subject to given expected returns.  The Gini index is a 

statistic of dispersion used mainly in income distribution in order to compute income 

inequality.  In financial economics the Gini index was first used by Fisher and Lorie 

(1970) to study the relative variability of single stocks and portfolios.  In 1912, 

Corrado Gini developed a ratio to measure the relative variability of random variables. 

For a risky asset x, the numerator of the Gini index Gx is the expected absolute 

difference between all observations pairs, also called Gini’s mean difference, 

1
2

,
| |x i j

i j
E x xΓ = −  where xi and xj are i.i.d. replicates of the risky asset x and the 

denominator of Gx is the mean of x, E(x).  In financial economics, it is customary to 

use as measure of risk the absolute value of the Gini index, called the Gini.  This is an 

attractive measure as xΓ  evaluates variability by the absolute distance between all the 

data points instead of calculating their squared differences from a virtual central value 

like the mean.  

The Gini xΓ  has many representations and formulations, most of which can be 

found in Yitzhaki (1998).  The main feature of the Gini is that it estimates the pure 

risk of x since it can be obtained from the generalized (absolute) Lorenz curve of asset 

x.  To see this, assume that asset x’s returns are distributed by the cumulative 

probability distribution function (CDF), F(x). Following Gastwirth (1971), the 

absolute Lorenz curve is defined over the probability φ as: 

 1

0

( ) ( ) for 0 1xL F t dt
ϕ

ϕ ϕ−= ≤ ≤∫  (1) 

where 1( ) { | ( ) }F t Inf x F x t− = ≥ is the inverse of the CDF.  The absolute Lorenz curve 

of asset x is delineated in Figure 1.  The curve starts at the origin (φ = 0) and ends up 

at the mean E(x) for φ= 1.  For identical means, the more convex the curve is, the 

riskier is the asset.  The absolute Lorenz curve for the safest asset given a mean return 

is expressed by the straight line, called the line of safe asset (LSA), that runs from the 

origin to the mean of asset x.  The pure risk of the asset is calculated by the area 

between the LSA that yields the same mean return and its absolute Lorenz curve since, 

for every probability φ, had one invest in the risky asset, one would get the 



 4 

cumulative expected return along the absolute Lorenz curve whereas investing in the 

riskless asset one would obtain a higher cumulative expected return on the LSA.  

Therefore, the farther the LSA is from the absolute Lorenz curve, the greater is the risk 

assumed by the asset.  

In financial applications, the Gini is more conveniently expressed as 

2cov[ , ( )]x x F xΓ = ;  i.e., the covariance between asset returns x and their cumulative 

probability distribution F(x).  The latter is estimated by i/ T, which is the relative 

ranking of xi sorted from the lowest return (i=1) to the highest (i=T).   

As a measure to value uncertainty in risky assets, the Gini has been shown by 

Yitzhaki (1982) to have many advantages over the variance. Firstly, when returns 

depart from normality the Gini exhibits a better picture of the dispersion of the 

distribution since it compares the spread of observations among themselves.  

Secondly, together with the expected return, the Gini provides necessary and 

sufficient conditions for second degree stochastic dominance (SSD), implying that the 

mean and the Gini are a two parameter approach that is fully compatible with 

expected utility maximization.  This feature is nonexistent with the variance and the 

mean unless asset returns are normally distributed or investor's preferences are 

quadratic.  The mean-Gini conditions for SSD are stated as following: 

Let x and y be two risky assets with means E(x) and E(y), and Gini’s Γx and Γy 

respectively.  Then, ( ) ( )E x E y≥  and ( ) ( )x yE x E y−Γ ≥ −Γ  are necessary and 

sometimes sufficient conditions for asset x to be preferred to asset y for all 

maximizing expected utility risk-averse investors.  

Let us now present the mean-Gini (MG) portfolio model where investors use 

the mean and the Gini to construct SSD efficient portfolios by choosing the shares of 

risky assets that minimize the portfolio Gini subject to a given expected return.  We 

consider a portfolio of N assets the weights of which are given as wi and the portfolio 

returns p of which are given as
1

N

i i
i

p w x
=

=∑ , where xi are assets returns.  The assets 

form a portfolio when the shares add up to on or :
1

1
N

i
i

w
=

=∑ .  The investor has to 

choose the shares wi that minimize the portfolio Gini  2cov[ , ( )]p pp F pΓ =  subject to 

a given mean return constraint 
1

( ) ( )
N

i i
i

E p w E x
=

=∑  and subject or not to short sales 
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restrictions 0iw ≥ .  By introducing a riskless asset with safe return r f. the mean return 

constraint becomes: 

 ( )
1

( ) ( )
N

f i i f
i

E p r w E x r
=

= + −∑  (2) 

In theory, the MG model is similar to the MV model and would yield identical 

results if asset returns were normally distributed.  For any other probability 

distribution, the analyst is expected to obtain different allocation results.  An 

additional advantage of using the Gini as measure of risk is that MG can be extended 

into a family of increasingly risk-averse models as developed by Yitzhaki (1983).  

Indeed, by adding one extra parameter, ν>1, the extended Gini measures asset risk 

when the lower portions of the returns distribution are multiplied by larger relative 

weights that express the concern investors have for losses when investing in risky 

assets.  To specify increasing risk aversion, we derive the extended-Gini statistic by 

stressing the lower segments of the distribution of asset returns. As we recall from 

Figure 1, the simple Gini is obtained by calculating the area between the LSA and the 

Lorenz curve.  Similarly, we obtain the extended Gini by adding the relatively 

weighted vertical differences between the LSA and the Lorenz curve.  This area is 

calculated using the parameter ν to obtain the extended Gini of asset x as follows:   

 
1 -2

0
( ) ( -1) (1- ) ( ( ) ( ))x xE x L dνν ν ν ϕ ϕ ϕ ϕΓ = −∫  (3) 

where  ( )xL ϕ  is the Lorenz curve from Equation (1), ( )E xϕ  is the LSA, and 

2( -1)(1 )νν ν ϕ −−  are the weights associated with each portion of the area between the 

LSA and the Lorenz curve.  The parameter ν (>0) is the risk aversion coefficient 

chosen by analysts to represent the relative fear of losses by investors.  Some special 

cases of interest for the extended Gini parameter include the following: For ν = 2 

Equation (3) becomes the simple Gini.  For ν → ∞ the extended Gini reflects the 

attitude of a max-min investor who expresses risk only in terms of the worst outcome.  

For ν → 1, Equation (3) cancels out, allowing risk-neutral investors without measures 

of dispersion to evaluate risk.  For 0< ν <1 the extended Gini is negative and relates to 

risk-loving investors.  For ease of presentation and because we are dealing with risk-

averse investors, we consider here only the extended Gini with ν > 1, although many 

of the results can be applied without modification to risk-loving investors.  In 
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financial analysis, it is easier to express the extended Gini using the covariance 

formula rather than Equation(3): 

 1( ) cov{ ,[1 ( )] }x x F x νν ν −Γ = − −  (4) 

To understand the essence of risk aversion using the extended Gini, the reader is 

referred to the swimmer/ shark metaphor from Shalit and Yitzhaki (2009, p. 761): 

“….   As an example, imagine a shark is roaming the coastal waters.  A risk-neutral 

swimmer will calculate the swimming benefits by using the objective probability of 

being struck by a shark.  If the swimmer uses ν=2, she will attach as the probability of 

being struck, twice her entrance into the water although she will jump only once. If 

the swimmer uses νØ¶, although she intends to enter the water only once, her 

behavior is as if she will be entering an infinite number of times. That is, if there is a 

tiny objective probability of having a shark roaming the waters, the behavior of the 

νØ¶ swimmer is as if the shark will strike with a probability of one….”  Hence, we 

can see that the parameter ν and the extended Gini span an entire continuous spectrum 

of risk-aversion behavior 

Moreover, with the extended Gini, CAPMs can be estimated, for each ν, as has 

been done in studies on equity and futures markets (see Gregory-Allen and Shalit, 

1999, Lien and Luo, 1993, and Shalit, 1995, to cite just a few).  The main econometric 

results of these papers show that when Ordinary Least-Squares are used as estimators, 

unwarranted sensitivity of CAPM betas is to be expected because of the fat tails of 

market returns distribution.  MEG estimation has been shown to resolve some of these 

anomalies.  MEG not only improves the quality of estimators by making them more 

robust to outliers, it also presents a framework to compare results with MV when 

market returns are not normal (see Carroll, Thistle, and Wei, 1992, Shalit and 

Yitzhaki, 2002).  

From an investor's point of view, given a specific ν, efficient portfolio frontiers 

can be constructed with and without allowing for short sales.  This permits investors 

to construct efficient portfolios that are tailored to their specific risk needs.  Indeed, 

when investors desire to hold riskier or less risky assets, MEG has the advantage of 

incorporating individual risk- aversion in the choice process itself without relying on 

the portfolio separation theorem.  The investor's problem is to choose the positions 

that minimize the extended Gini of a portfolio of assets subject to a given mean as 

follows: 
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Consider a portfolio p of N assets whose weights are wi and whose returns are 

given by 
n

p i ii
r w r=∑ , where r i  are the assets’ returns.  A portfolio of assets requires 

that 
1

1
N

i
i

w
=

=∑ . Hence,  

 

1

1

1

1

Minimize cov{ ,[1 ( )] }

subject to ( ) ( )

1

N

i i p
i

N

i i
i

N

i
i

w x F p

E p w E x

w

νν −

=

=

=

− −

=

=

∑

∑

∑

 (5) 

Changing the required mean allows the financial analyst to span the entire 

efficient frontier. The advantage of MEG is rooted in the different number of efficient 

frontiers each of which depends on the coefficient of risk aversion, ν (see Shalit and 

Yitzhaki, 1989).  Investors have the choice to opt for the portfolios that best suit their 

aversion to risk.  Asset allocation using MEG is somewhat similar to MV portfolio 

optimization when short sales are allowed and when return distributions are 

exchangeable.2  In that case, standard MV algorithms can be used for MEG as done by 

Shalit and Yitzhaki (2005).  We now write Problem (5) in matrix form:     

 
'

( )

s.t. ( ) '

1

0 .

pMin

E p

νΓ

=

=

≥

w µ

w l

w

 (6) 

 

where, µ is the vector of assets' mean returns w is the vector of portfolio weights and l 

is a vector of ones.  Problem(6), although similar in structure to the MV optimization 

problem, is much more complex than the MV problem because the extended Gini of a 

portfolio cannot be derived as a simple function of the probability distribution 

statistics of the assets.  Furthermore, when short sales are not allowed or when 

distributions are not exchangeable specific optimization programming is needed to 

                                                 

2 A set of random variables is exchangeable if for every permutation of the n 
subscripts, the joint distributions of (xj1, ... , xjn) are identical (Stuart and Ord, 1994).  
The multivariate normal is an example of an exchangeable distribution up to a linear 
transformation.  
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solve the portfolio allocation problem.  These techniques are presented in the next 

section. 

 

 

3. The Optimization Model 

 

We construct MEG efficient portfolios by developing an algorithm based on 

numerical optimization.  In practice, calculating the Gini of a random variable can be 

done by either averaging the absolute differences between all observations pairs or 

estimating the CDF by the rank function and applying it in the covariance formula.  In 

general, because Gini derivatives are discontinuous, researchers and analysts are 

refrained from using analytical solutions to construct optimal MEG portfolios as 

gradient-type optimizations approaches fail. 

Therefore, linear programming (LP) techniques have been proposed by Okunev 

(1991) to solve for MG efficient portfolios that minimize the Gini expressed by the 

expected value of absolute differences subject to a required portfolio mean constraint 

and a portfolio constraint.  The absolute value formulation of the Gini causes the 

primal LP problem to contain a number of constraints as large as the number of 

observations.  By moving the primal problem to the dual LP program, the number of 

constraints is reduced to the number of assets and the frontier can be easily solved for 

a small number of securities (50) but seems intractable for large portfolios.  Also, 

Okunev's LP does not offer a solution when minimizing the extended Gini portfolios. 

Recently, a simple solution to the mean-Gini portfolio optimization problem 

was obtained by Cheung, Kwan, and Miu (2005) using a standard Excel spreadsheet 

technique.  Here, we implement the approach to MEG for a smaller number of 

securities and allow for risk aversion differentiation.  This spreadsheet technique is 

limited to smaller number of securities and a sizable number of observations.  Our 

challenge was to use an advanced software package such as Mathematica to develop a 

reliable numerical optimization to find efficient portfolios that minimize the extended 

Gini subject to required expected returns for a large number of securities with and 

without short sales.  We now present the construction of MEG efficient portfolios 

using the two techniques:  
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3.1 MEG Optimization Using Excel 

 The MG portfolio optimization technique was developed by Cheung et al 

(2005).  The approach is as follows:  First, for a given set of portfolio weights, wi,  

i=1,…, n  compute the portfolio returns as 
1

N

i i
i

p w r
=

=∑ .  Hence, the portfolio's Gini is 

calculated as  

 2cov[ , ( )]p pp F pΓ = . (7) 

To estimate the CDF, rank the portfolio returns sorted in ascending order and divide 

the ordinal rank by the number of observations.  Let us consider an example of 10 

stocks and 52 returns.  In the Excel spreadsheet, write down the individual stock 

returns in columns A  to J  and rows 1  to52.  The portfolio weights are stored in row 

54 as A54:J54 . Now, calculate the portfolio returns in cells K1:K52 using the 

function=SUMPRODUCT(A1:J1,A$54:J$54) .  With the RANK  function and the 

COUNT  function create the CDF in column L as 

= RANK(K1:K52,K$1,K$52,1)/COUNT(K1:K52).  The portfolio Gini is 

calculated by: =2*COVAR(K1:K52,L1:L52).  The main feature of this process is 

rooted in the spreadsheet procedure that instantaneously and simultaneously updates 

the CDF of the portfolio whenever portfolio returns are computed for a specific set of 

weights.  This is why Excel and the RANK  function are so successful in providing an 

optimization solution for the mean-Gini frontier. 

Now, we can adapt the MG technique and construct the MEG frontier.  For a 

specific coefficient of risk-aversionν , the extended Gini of a portfolio is expressed as: 

 1( ) cov{ ,[1 ( )] }.p pp F p νν ν −Γ = − −  (8) 

The formula is calculated by =- A55*COVAR(K1:K52,(1-L1:L52)̂ (A55-1)) 

where ν is stored in cellA55 .  MEG optimization is achieved using the Excel Solver 

by minimizing the portfolio extended Gini subject to the required mean return, the 

portfolio weights constraint and whether short sales are allowed or not.  

 
 
3.2 The Mathematica  MEG Optimization Technique 

 

We use Mathematica to write a general numerical algorithm that minimizes 

the extended Gini of a portfolio for a given set of risky assets.  The algorithm is 
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structured into a main routine that calls on specific subroutines responsible for tasks 

such as finding the minimum extended Gini or constructing the efficient frontiers for 

a set of risk aversion parameters ν.  The main routine loads the data including asset 

names and asset returns.  Then, the analyst is asked to specify several parameters.  

The first parameter determines whether the required expected return on the portfolio 

is set to specific values (RestrictRange =1) or the unconstrained minimum (extended) 

Gini is needed to be computed (RestrictRange=0).  In the case of specific required 

returns, one is requested to specify the lower bound (MPR), the step size (RPS), and 

the number of steps (NumberofSteps) for these returns.  A set of required returns is 

established for which the efficiency frontier will be computed.  Afterwards, the 

analyst is asked to choose what risk measures will be used: the Gini 

(MethodRange=0), the extended Gini (MethodRange=1), both risk measures 

(MethodRange=2), or else many extended Ginis for various risk-aversions ν 

(MethodRange=3).  For the latter, a 3-dimentional efficient frontier in the space 

spanned by expected return, the extended Gini, and the risk-aversion parameter {E(p), 

Γν(p), ν }may be constructed.  

Conditional on choosing the extended Gini optimization, the analyst is asked for 

a specific risk-aversion ν (RiskAversionParameter) or for the information required to 

construct a set of risk aversion parameters: the lower limit (RiskAversionStart), the 

step size (RiskAversionSize) and the number of steps (RiskAversionSteps).  She is also 

asked whether short sales are allowed (NoShortSales=0) or not (NoShortSales =1). 

Following this parameterization, the program loads the two subroutines 

OptPortfolioGini and OptPortfolioExtGini the tasks of which are presented in detail 

below.  The starting minimal portfolio required return is specified.  Conditional on the 

values for MethodRange and RestrictRange the routine takes different paths.  If the 

unconstrained (extended) Gini is chosen the program computes either the minimum 

Gini using OptPortfolioGini or the minimum extended Gini using 

OptPortfolioExtGini and reports these values in the object ResultVector.  If the 

decision is to compute an efficient frontier, the program enters, depending on the 

value chosen for MethodRange, into different loops.  If only one risk aversion 

coefficient is implicitly or explicitly specified, for each step of the loop 

OptPortfolioGini, OptPortfolioExtGini or both are computed, the results are added to 
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ResultVector (ResultbVector or both of them) and the required minimal portfolio 

return is increased by RPS.  

Finally, if MethodRange indicates several values for the risk-aversion 

coefficient, the routine enters the alternative branch of two nested loops following the 

risk aversion coefficient defined by RiskAversionStart.  The outer loop runs through 

the various risk aversion coefficients and the inner loop runs through the various 

required portfolio returns.  After finishing the inner loop, the risk aversion is 

increased by the value of RiskAversionSize, the results are added to ResultArray, and 

the routine starts the outer loop.  This procedure is repeated for RiskAversionSteps 

times.  

The subroutine OptPortfolioExtGini minimizes the extended Gini of the 

portfolio given a required portfolio return for a specified risk aversion parameter.  The 

extended Gini is computed in the subroutine PortfolioExtGini.  The minimization 

method used is a linear programming technique based on a simplex algorithm.  

Similarly, OptPortfolioGini computes the portfolio by minimizing the Gini for a 

required return and an input matrix of asset returns.  The portfolio Gini is calculated 

in the subroutine PortfolioGini.  

The flowchart presented in Figure 3 visualizes the logic structure of the 

software package explained above. 
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4.  Empirical Analysis and Results 

 
We use as data the monthly returns of 100 most valued traded stocks on the US 

financial markets from March 1992 until June 2007.  Most of these firms appear in the 

S&P 100 index.  The 183 returns were calculated from monthly close price adjusted 

for dividends and splits downloaded from finance.yahoo.com.  The summary statistics 

(mean, standard deviation and Gini mean difference are presented in Table 1 together 

with the Jarque-Bera test statistic for the normality of returns.  For most of the firms 

normality is rejected, justifying the use of the Gini as an appropriate risk measure to 

obtain SSD portfolios. 

The first stage consists of constructing the MEG efficient frontier for a variety 

of ν using the Excel routine.  The efficient portfolios are calculated when short sales 

are not allowed for ν = 2, 3, 4, 6, 8, 10, 15, 20, 40, 60, 80, 100. The results are shown 

in Figure 2. In general, the various portfolio frontiers seem almost the same in shape, 

concavity, and mean return corresponding to the minimum extended Gini.  But still a 

sizeable change in the trade-off between the mean return of the portfolio and the risk 

expressed in (extended) Gini can be observed.  A reduction of the mean return from 

0.023 to 0.021 yields a risk improvement of 0.02 for ν = 2, but reduces risk by almost 

0.1 for ν=100. Hence, the trade-off worsens considerably, reflecting the higher risk 

aversion of the investor.  The holdings of the minimum extended Gini portfolios are 

presented in Table 2.  The results display similar patterns with respect to the efficient 

frontiers.  Some sizable differences between the various portfolios can be observed: 

the portfolios with higher risk aversion ν  engage in stronger diversification and the 

optimal portfolios with lower ν  rely on a relative low number of assets. 

The second stage of the optimization is performed by using the Mathematica 

software.  It generates efficient portfolios frontiers by varying the mean return, the 

extended Gini, and the risk aversion parameter.  The resulting 3-dimentional efficient 

frontiers surfaces are displayed in Figure 4.  In here, a rising risk aversion parameter 

is accompanied by an increase in the risk compensation needed for a given reduction 

in expected return.  Furthermore, the figure illustrates that the speed of the trade-off 

change does not follow a monotone pattern, but rather appears as a volatile process. 

On the margin, it turns out that not even the change in the trade-off is a strictly 

monotone function in the risk aversion parameter.  
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This rather unexpected result cannot only be explained by the non-continuous 

adjustments in the optimal weights of the remaining assets whenever security is added 

or removed from the optimal portfolio, but also from trade-offs inherent in the risk 

aversion parameter itself.  This argument can be explained using the elasticity of the 

extended Gini with respect to the risk aversion parameter ν. From Equation (3) we 

obtain the derivative of the extended Gini. Therefore, the elasticity w.r.t. ν  is: 

1

0

( ) 2 1
ln(1 )

1
x

x

d
ν ν ν

ν ϕ ϕ
ν ν

∂Γ −
= + −

∂ Γ − ∫  (9) 

The  ratio 
( )
2 1

1

ν
ν
−

−
 and the second term of Equation (9) create trade-offs that can lead 

to non-monotony.  In particular, this ratio exhibits singularity when ν → 1 or ν → 0 

implying that near these values the extended Gini elasticity is non-monotonous.  This 

feature adds on top of the trade-off between risk bearing and diversification that can 

raise the required mean returns.  

 

 

5. Conclusions 

 
We have presented a new approach to construct MEG portfolios by inserting the 

coefficient of risk-aversion into the optimization program.  Hence the results show a 

three dimensional frontier where the risk-aversion coefficient can be chosen to 

enhance the risk inherent in the portfolios.  Not only the results deliver stochastic 

dominant portfolios but they allow the analyst to offer a variety of alternatives for 

risk-averse investors. 

In addition, the paper provides some innovations of a more technical nature. 

These include a Mathematica algorithm consisting of several interdependent 

Mathematica packages and a notebook that allows for the efficient computation of 

hulls by varying portfolios for a predefined set of assets.  The size of this set is only 

restricted by the computational resources available.  In any case, these resources can 

be improved by using the inherent parallel computing capacities of Mathematica. In 

this way, the number of elements within the set of assets serving as the main input to 

the algorithm can be almost unlimited. 

 It is exactly this computational power that allows also for a high degree of 

flexibility in the design of the objective function within the process of the portfolio 
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optimization (5).  Hence, future extensions of this research could include taking into 

account higher moments and/or co-moments, additional parameters besides the risk- 

aversion parameter and even a more general functional.  Another potentially 

interesting extension would be to include an objective function that not only reflects 

the trade-off between return and risk, but also uses a measure of financial stability so 

that minor shocks on the exogenous parameters and variables would not result in 

major portfolio restructuring.  Building on this argument, integrating transaction costs 

into the objective function could potentially convey interesting results as well. 
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Table 1: Summary Statistics for 100 stocks (Monthly Returns March 1992 – June 2007) 
 

JB Stat Gini Std Dev  Mean  Firm  JB Stat  Gini  Std Dev  Mean  Firm  

6.76 6.14% 10.88% 1.64% HPQ 131.82 5.25% 9.30% 1.38% AA 
36.34 3.64% 6.45% 0.78% IFF 6.26 3.36% 5.96% 1.09% ABT 
15.33 5.15% 9.13% 1.40% IBM 8.67 8.32% 14.75% 2.31% AAPL 
7.71 6.81% 12.07% 2.23% INTC 9.82 3.43% 6.07% 0.86% AEP 

21.22 4.33% 7.68% 0.61% IP 263.03 9.23% 16.37% 2.21% AES 
0.42 3.41% 6.05% 1.22% JNJ 22.71 3.64% 6.46% 1.37% AIG 

32.40 5.05% 8.95% 1.50% JPM 55.14 5.59% 9.91% 1.56% AMGN 
14.84 3.64% 6.45% 0.86% KO 292.58 5.20% 9.22% 1.75% AVP 
11.00 5.55% 9.84% 1.21% LTD 49.9 3.88% 6.87% 1.66% AXP 
10.67 3.85% 6.82% 1.23% MCD 37.76 4.41% 7.82% 1.26% BA 
5.75 3.96% 7.02% 1.64% MDT 28.43 3.92% 6.95% 1.34% BAC 

10.53 5.40% 9.57% 2.06% MER 73.44 4.24% 7.51% 1.20% BAX 
29.54 3.35% 5.94% 1.15% MMM 5.47 5.54% 9.82% 1.58% BHI 
35.37 4.70% 8.33% 1.46% MO 28.73 3.85% 6.82% 0.83% BMY 
1.51 4.44% 7.86% 0.94% MRK 2.58 3.87% 6.87% 1.38% BNI 

30.74 5.74% 10.18% 1.95% MSFT 0.23 2.74% 4.86% 1.02% BUD 
1247.2 6.74% 11.94% 0.67% MAY 3.87 4.85% 8.60% 1.25% BDK 
41.94 7.13% 12.63% 1.46% MEE 69.95 5.40% 9.57% 1.07% BC 
13.19 4.51% 7.99% 1.18% NSC  4.74% 8.39% 2.06% C 
8.23 9.21% 16.32% 2.27% NSM 31.22 4.72% 8.36% 1.92% CAT 

953.11 11.03% 19.55% 1.30% NT 18.58 5.88% 10.42% 2.54% CCU 
77.35 8.03% 14.23% 3.20% ORCL 222.53 5.03% 8.92% 1.83% CI 
1.96 4.95% 8.77% 0.96% OMX 94.87 4.04% 7.15% 1.41% CL 

14.84 4.32% 7.65% 1.58% OXY 7.51 5.30% 9.39% 1.66% CMCSA 
74.30 3.48% 6.17% 1.10% PEP 8.4 3.86% 6.84% 1.51% COP 
1.57 3.85% 6.82% 1.21% PFE 2.8 3.69% 6.54% 0.97% CPB 

389.57 3.48% 6.17% 1.22% PG 134.2 5.68% 10.07% 1.41% CSC 
9.66 3.23% 5.72% 0.91% RF 5.12 6.83% 12.11% 2.89% CSCO 

83.38 5.24% 9.30% 2.36% ROK 28.54 4.42% 7.84% 1.30% CVS 
162.61 4.78% 8.48% 0.92% RTN 14.86 3.14% 5.56% 1.35% CVX 

0.98 6.42% 11.38% 1.56% RSH 5.47 4.94% 8.76% 1.52% CEN 
65.71 5.31% 9.42% 1.33% S 0.51 3.79% 6.71% 0.89% DD 
37.35 3.98% 7.05% 0.74% SLB 5.98 8.34% 14.79% 3.42% DELL 
27.79 3.06% 5.42% 1.58% SO 13.08 4.23% 7.50% 0.89% DIS 
11.74 4.12% 7.31% 1.12% T 131.58 4.28% 7.59% 1.03% DOW 
54.91 7.16% 12.69% 1.91% TEK 42.66 4.77% 8.45% 0.57% EK 
2.58 4.48% 7.93% 1.79% TGT 1.83 8.35% 14.79% 3.40% EMC 

88.95 9.07% 16.08% 4.03% TWX 150.36 6.18% 10.96% 1.28% EP 
10.17 7.27% 12.89% 2.50% TXN 23.56 3.62% 6.42% 1.65% ETR 

207.48 5.56% 9.86% 1.66% TYC 50.88 3.86% 6.85% 1.55% EXC 
131.57 4.19% 7.43% 1.42% USB 20.96 5.39% 9.56% 0.86% F 
125.09 3.97% 7.04% 1.73% UTX 21.41 4.77% 8.45% 1.59% FDX 
152.00 4.11% 7.29% 0.98% VZ 1951.85 5.14% 9.10% 2.70% GD 
47.55 4.08% 7.24% 0.94% WB 3.49 3.43% 6.08% 1.36% GE 
19.20 3.72% 6.59% 1.56% WFC 0.49 5.42% 9.61% 0.88% GM 

267.65 7.34% 13.01% 2.18% WMB 9.69 6.19% 10.97% 1.87% HAL 
4.43 4.03% 7.14% 1.02% WMT 4.13 4.55% 8.07% 1.30% HD 
0.49 4.18% 7.41% 1.14% WY 112.68 6.06% 10.74% 2.25% HET 

505.79 7.21% 12.79% 1.18% XRX 0.79 3.15% 5.58% 0.93% HNZ 
56.74 2.68% 4.74% 1.35% XOM 339.23 5.17% 9.16% 1.40% HON 
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Table 2: Holdings of Minimum Extended Gini Portfolios for various ν, showing only the non-
zero positions 

              Firms ν=2 ν=3 ν=4 ν=6 ν=8 ν=10 ν=15 ν=20 ν=40 ν=60 ν=80 ν=100 

ABT 2.99% 4.69% 5.48% 5.58% 5.64% 5.28% 5.14% 4.63% 5.07% 5.07% 5.07% 5.07% 

AAPL 0.23% 0.61% 1.01% 2.10% 3.39% 4.84% 5.49% 6.00% 7.11% 7.12% 7.12% 7.12% 

AMGN 1.40% 1.21% 0.97% 0.82% 0.75% 2.60% 2.53% 2.94% 2.16% 2.16% 2.16% 2.16% 

BNI 1.68% 1.76% 1.72% 1.51% 1.22% 0.10% 0.10% 0.09% 0.08% 0.08% 0.08% 0.08% 

BUD 17.50% 15.20% 13.85% 12.24% 11.55% 11.79% 11.71% 11.24% 13.16% 13.18% 13.18% 13.18% 

COP 0.00% 0.00% 0.09% 0.09% 0.09% 0.13% 0.14% 0.14% 0.13% 0.13% 0.13% 0.13% 

CPB 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 

CVX 8.91% 8.38% 7.21% 5.72% 4.87% 4.26% 3.68% 2.15% 0.69% 0.69% 0.69% 0.69% 

CEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.50% 0.50% 0.50% 0.50% 

DOW 2.22% 2.55% 2.44% 2.25% 2.65% 3.87% 3.61% 2.51% 1.25% 1.25% 1.25% 1.25% 

EK 2.96% 3.63% 3.76% 4.15% 4.38% 3.39% 3.57% 4.03% 5.05% 5.06% 5.06% 5.06% 

EXC 5.29% 4.34% 3.84% 3.46% 3.50% 3.13% 1.84% 1.18% 1.19% 1.19% 1.19% 1.19% 

FDX 0.70% 0.76% 0.79% 0.78% 0.69% 0.34% 0.33% 0.32% 0.31% 0.31% 0.31% 0.31% 

GD 2.02% 1.18% 0.78% 0.51% 0.46% 0.84% 1.12% 2.74% 7.05% 7.05% 7.05% 7.05% 

HET 0.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.20% 0.20% 0.20% 0.20% 0.20% 

HNZ 8.00% 8.10% 8.47% 7.82% 8.16% 8.05% 8.54% 8.08% 4.02% 4.02% 4.02% 4.02% 

LTD 0.00% 0.63% 0.74% 0.91% 1.16% 3.87% 4.17% 5.06% 5.42% 5.41% 5.41% 5.41% 

MDT 2.01% 2.26% 2.25% 1.72% 1.34% 0.00% 0.00% 0.00% 0.60% 0.60% 0.60% 0.60% 

MER 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.06% 0.06% 0.06% 

MMM 4.27% 3.65% 2.71% 2.12% 1.80% 0.21% 0.20% 0.16% 0.14% 0.14% 0.14% 0.14% 

MO 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 0.11% 0.11% 0.11% 0.11% 

MSFT 3.61% 2.61% 2.39% 2.42% 2.22% 1.69% 1.33% 1.10% 0.59% 0.59% 0.59% 0.59% 

NSM 1.05% 0.87% 0.87% 0.91% 0.70% 0.14% 0.15% 0.11% 0.09% 0.09% 0.09% 0.09% 

ORCL 1.53% 2.27% 2.59% 3.60% 3.69% 4.12% 3.92% 3.55% 3.91% 3.90% 3.90% 3.90% 

PG 0.15% 0.11% 0.10% 0.10% 0.10% 0.17% 0.18% 0.13% 0.11% 0.11% 0.11% 0.11% 

RSH 3.62% 4.31% 4.40% 3.91% 3.26% 2.08% 1.36% 0.65% 0.28% 0.28% 0.28% 0.28% 

S 0.00% 0.68% 0.86% 0.91% 0.91% 0.45% 0.44% 0.40% 0.30% 0.30% 0.30% 0.30% 

SLB 0.00% 0.00% 0.00% 0.04% 0.04% 0.04% 0.04% 0.05% 0.05% 0.05% 0.05% 0.05% 

SLE 0.00% 0.00% 0.00% 0.84% 0.88% 1.44% 1.66% 1.77% 1.57% 1.57% 1.57% 1.57% 

SO 19.66% 23.58% 25.70% 28.02% 29.11% 31.13% 32.48% 33.32% 31.94% 31.86% 31.86% 31.86% 

T 0.00% 0.00% 0.00% 1.27% 1.44% 2.79% 2.82% 2.78% 0.70% 0.70% 0.70% 0.70% 

TEK 2.75% 2.44% 2.60% 2.91% 3.12% 3.11% 3.31% 4.32% 5.74% 5.73% 5.73% 5.73% 

Total 92.91% 95.80% 95.62% 96.73% 97.13% 99.88% 99.88% 99.81% 99.61% 99.54% 99.54% 99.54% 
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 Figure 1: The Absolute Lorenz Curve 
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Figure 2: Efficient Frontiers for Various νs 
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Figure 2: cont. 
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Figure 3: Flowchart for Mathematica Package 
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Figure 4: 3-D Efficiency Frontier Mean Extended Gini 
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