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Abstract

We propose a set of axioms for the measurement of school-based segregation with

any number of ethnic groups. These axioms are motivated by two criteria. The first is

evenness: how much do ethnic groups’ distributions across schools differ? The second

is representativeness: how different are schools’ ethnic distributions from one another?

We prove that a unique ordering satisfies our axioms. It is represented by an index

that was originally proposed by Henri Theil (1971). This “Mutual Information Index”

is related to Theil’s better known Entropy Index, which violates two of our axioms.
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1 Introduction

Segregation is a pervasive social issue. The segregation of men and women into different

occupations helps explain the gender gap in earnings.1 Racial segregation in schools is

thought to contribute to low educational achievement among minorities.2 Residential seg-

regation has been blamed for black poverty, high black mortality, and increases in prejudice

among whites.3 In other contexts, segregation is viewed more positively. The formation

of homogeneous living areas has been discussed as a solution to highly polarized conflicts in

the Middle East, Yugoslavia, and elsewhere.

The literature on segregation measurement has generated over 20 different indices (see

Massey and Denton [37] and Flückiger and Silber [20]). While some papers have analyzed

the properties of various indices, very few of them have provided a full characterization,

and none of these have used purely ordinal axioms. Further, the existing characterizations

treat only the two-group case. In this paper we provide a full ordinal characterization of a

segregation index for the multigroup case.

Axiomatizations are important because they characterize an index in terms of basic

properties and thus facilitate the comparison of different measures. Ordinal axioms are more

appealing than cardinal ones because they refer to bilateral comparisons and not to their

specific functional representations. Multigroup segregation orderings are important because

they allow us to study units (cities, school districts, etc.) with more than two ethnic groups

and to compare units with different numbers of groups.

In this paper we focus on contexts in which geography is unimportant. In some cases,

such as residential neighborhoods, this might be a strong assumption. In others, it is more

innocuous. For instance, the presence of other schools near a given student’s school typically

does not have a great effect on the student’s educational outcomes. Hence, our presentation

will focus on school district segregation.

1See Cotter et al [14], Lewis [34], and Macpherson and Hirsh [36].

2Recent studies include Boozer, Krueger, and Wolkon [3] and Hanushek, Kain, and Rivkin [25].

3See Cutler and Glaeser [16], Collins and Williams [12], and Kinder and Mendelberg [33], respectively.
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Formally, we define a segregation ordering as an ordering on school districts: a ranking

from most segregated to least segregated. We propose a set of axioms that, we argue, such

an ordering should satisfy. We then prove that there is a unique ordering that satisfies

our axioms. It is represented by a simple index: the total entropy of the school district,

minus the within-school entropy. We call this the “Mutual Information” index. It can

be interpreted as the average amount of information a student’s school reveals about her

ethnicity.

The Mutual Information index was first proposed by Theil [52, p. 653] and was applied

by Fuchs [23] and Mora and Ruiz-Castillo [38, 41] to study gender segregation in the labor

force.4 It is related to the more widely used Entropy index (Theil [53]; Theil and Finizza

[54]), which equals one minus the ratio of within-school entropy to total entropy. While

the Entropy index is normalized to reach a maximum value of one, the Mutual Information

index has no maximum value. However, the Entropy index violates two of our axioms.

In order to judge our axioms, one must have an idea of what we are trying to measure.

A starting point is James and Taeuber’s [32] definition of segregation as the tendency of

ethnic groups to have different distributions across locational units such as schools or neigh-

borhoods. In a later paper, Massey and Denton [37] discern five different dimensions of

segregation. The first, evenness, agrees with James and Taeuber’s definition. The sec-

ond dimension is isolation from the majority group. The three other dimensions rely on

geographic information and thus are not relevant to our study.5

While evenness generalizes easily to the multigroup setting, isolation is more of a chal-

lenge, since there is more than one other ethnic group from which a student can be “isolated.”

Hence, we replace isolation with the related concept of representativeness: to what extent do

students attend schools that have different ethnic compositions than the district as a whole?

The concepts are related, since racially isolated schools are, by definition, not representative

4See also Herranz, Mora, and Ruiz-Castillo [26]. Some of the properties of the Mutual Information index
have been previously noted by Mora and Ruiz-Castillo in the case of two ethnic groups [39, 40].

5These dimensions are concentration in a small area, centralization in the urban core, and clustering in
a contiguous enclave.
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of their districts. But unlike isolation, representativeness is not based on exposure to just

one other group.

The concept of representativeness is connected to economic issues such as equality of op-

portunity. Boozer, Krueger, and Wolkin [3] and Hoxby [27] find that the ethnic composition

of a school affects individual students’ achievement. In the presence of such ethnic-based

peer effects, a lack of representativeness can create unequal educational opportunities among

students of different races. Evidence for this appears in Hanushek, Kain, and Rivkin [25],

who find that the higher proportion of blacks in the school attended by the typical black

student can explain a large portion of the black-white wage gap.

Representativeness and evenness are dual concepts. In Table 1 we depict a school

district as a matrix, where the rows are ethnic groups, the columns are schools, and the cells

contain numbers of students. A deviation from evenness (representativeness) corresponds

to differences in the row (column) percentages. The Mutual Information index treats these

deviations symmetrically: if the matrix is transposed, the Mutual Information of the district

is unchanged. This property is a result of our axiomatization rather than an assumption.

District X
School A School B

Blacks 500 200
Whites 100 400

Table 1: Matrix representation of a district.

We study segregation with respect to a particular choice of locations (schools, classrooms,

etc.). The segregation ranking of a district is sensitive to this choice. However, one can

study segregation at several nested levels at once by exploiting the additive decomposability

of the Mutual Information index: segregation between the classrooms of a district equals

segregation between the district’s schools plus the population-weighted mean level of segre-

gation within the schools (Mora and Ruiz-Castillo [39]). This property is not satisfied by

the other common segregation indices.

We also study segregation with respect to a particular ethnic schema. Sensitivity to
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the choice of ethnic schema is a property of any nontrivial segregation measure.6 However,

the Mutual Information index is also decomposable with respect to ethnic groups. For

instance, if students are classified by both race and language spoken at home, then total

segregation equals segregation by race plus the population-weighted mean level of segregation

by language within the racial groups. This property can be used to study segregation with

several nested ethnic schemas simultaneously and is not satisfied by other common indices.

In our analysis, we will assume that each ethnic group can be distributed in arbitrary

real proportions across the schools in a district. This assumption ensures, by appropriately

distributing students, that all schools can be representative of the district, i.e., be small copies

of it. It is a good approximation when the ethnic groups have many more members than

there are schools in the district and when capacity constraints on schools are not binding.

It would not be suitable, for instance, if there were three equal-size ethnic groups and a

maximum capacity of two students per school; or if there were an ethnic group with two

members to be allocated among three schools. These are not the intended applications of

our model.

The rest of the paper is organized as follows. Notation is introduced in section 2. In

section 3 we explain our axioms. The main result appears in section 4. In section 5,

we survey other multigroup segregation indices and consider three other properties that an

index might satisfy. We survey related literature in section 6. Proofs are collected in an

appendix.

2 Notation

Formally, we define a (school) district as follows:

Definition 1 A district X consists of

6Consider a district with two schools, one with 50 Hispanic whites and the other with 50 Anglo whites.
Ignoring Hispanic origin, the district is completely integrated; taking it into account, the district is completely
segregated.
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• A nonempty and finite set of ethnic groups G(X)

• A nonempty and finite set of schools N(X)

• For each ethnic group g ∈ G(X) and for each school n ∈ N(X), a nonnegative number

Tn
g : the number of members of ethnic group g that attend school n.

For instance, in the districtX depicted in Table 1,G(X) = {Black ,White},N(X) = {A,B},

TA
Black = 500, and so on. The district in Table 1 is depicted in matrix format. We will

also sometimes specify a district in list format:

(Tn

g )g∈G
®
n∈N. For instance, h(1, 2) , (3, 1)i

denotes a district with two ethnic groups (e.g., blacks and whites) and two schools. The first

school, (1, 2), contains one black and two whites; the second, (3, 1), contains three blacks

and one white. For any two districts X and Y , X ] Y denotes the result of combining

the schools in X and the schools in Y into a single district.7 If X is a district and α

is a nonnegative scalar, then αX denotes the district in which the number of students in

each group and school has been multiplied by α; for instance, if X = h(1, 2) , (3, 1)i, then

2X = h(2, 4) , (6, 2)i. Also, c(X) denotes the district that results from combining the schools

in X into a single school.

7Formally, X ] Y denotes the district

(Tn

g )g∈G
®
n∈N, where G = G(X) ∪ G(Y ) is the set of ethnic

groups that are present in either district and N =N(X)∪N(Y ) is the set of all schools in the two districts.
Naturally, if an ethnic group g is present only in one district, then Tn

g , the number of members of group g
in school n, equals zero for all schools n in the other district.
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The following notation will be useful:

Tg =
X
n∈N

T n
g : the number of students in ethnic group g in the district

T n =
X
g∈G

Tn
g : the total number of students who attend school n

T =
X
g∈G

Tg: the total number of students in the district

Pg =
Tg
T
: the proportion of students in the district who are in ethnic group g

P n =
Tn

T
: the proportion of students in the district who are in school n

png =
Tn
g

Tn
(for Tn > 0): the proportion of students in school n who are in ethnic group g

The group distribution of a district X is the vector (Pg)g∈G of proportions of the students

in the district who are in each ethnic group. The group distribution of a nonempty school n

is the vector
¡
png
¢
g∈G of proportions of students in school n who are in each ethnic group.

A school is representative if it has the same group distribution as the district that contains

it.

3 Axioms

Let C be the set of all districts. A segregation ordering < is a complete and transitive binary
relation on C. We interpret X < Y to mean “district X is at least as segregated as district

Y.” The relations ∼ and Â are derived from < in the usual way.8 A related concept is the

segregation index : a function S : C → R. The index S represents the segregation ordering

< if, for any two districts X,Y ∈ C,

X < Y ⇐⇒ S(X) ≥ S(Y ) (1)

8That is X ∼ Y if both X < Y and Y < X; X Â Y if X < Y but not Y < X.
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Every index S induces a segregation ordering that is defined by (1).

We impose axioms not on the segregation index but on the underlying segregation or-

dering. These approaches are not equivalent. As in utility theory, a segregation ordering

may be represented by more than one index, and there are segregation orderings that are

not captured by any index.

A district’s segregation ranking or simply its segregation is its place in the segregation

ordering. We will sometimes say that if a transformation σ : C → C is applied to a district

X, then “the segregation of the district is unchanged” or “the district’s segregation ranking

is unaffected.” By this we mean that σ(X) ∼ X. If this holds for all districts X, then we

will say that the segregation in a district is invariant to the transformation σ.

Evenness and representativeness are properties of the row and column percentages of the

district matrix. Nothing in these concepts suggests that the rows or columns should be

treated asymmetrically. Accordingly, our first axiom states that the order of the schools or

groups and their labels such as “black”, “Roosevelt School,” etc., do not matter: all that

matters is the number of each group who attend each school.

Symmetry (SYM) The segregation in a district is invariant to any relabeling or reordering

of the groups or the schools in the district.

One type of research for which this axiom may not be suitable is work that focuses on the

problems that face a particular ethnic group. For instance, if one is interested in the social

isolation of blacks from all other groups, then one may want to treat blacks differently (see,

e.g., Echenique and Fryer [18]).

The criteria of evenness and representativeness pertain to the row and column percentages

in the district matrix. Multiplying the whole matrix by a scalar does not affect these

percentages, so it should not affect the segregation ranking of a district. Hence, we assume

the following axiom.

Weak Scale Invariance (WSI) The segregation ranking of a district is unchanged if the

numbers of agents in all ethnic groups in all schools are multiplied by the same positive

scalar: for any district X ∈ C and any positive scalar α, X ∼ αX.
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This axiom implies that the districts X = h(106, 0) , (0, 106)i and Y = h(100, 0) , (0, 100)i

are equally segregated. One may argue that X is more segregated than Y because X is less

likely to be the outcome of random assignment of students to schools (see, e.g., Cortese, Falk,

and Cohen [13]). However, an important motivation for this paper is to produce a measure

that can be used to study the effects of segregated schools on their students. In this context,

realized segregation would appear to be the appropriate concept.9 For researchers who desire

a test of random assignment, Mora and Ruiz-Castillo [40] show that a transformation of the

Mutual Information index can be used for this purpose.

We motivate the next three axioms with a brief discussion of the concepts of within-

cluster and between-cluster segregation. Suppose we partition a district into K clusters, C1

through CK, each consisting of a subset of schools in the district. Define segregation within

a given cluster as the segregation ranking of the cluster viewed in isolation, as a distinct

school district. Define segregation between the K clusters as the segregation ranking of a

district with K schools k = 1, ...,K, where school k consists of the students in cluster k in

the original district. We would like the district’s segregation ranking to be a function of

segregation within each cluster, segregation between the clusters, and the relative sizes of

the different clusters. Naturally, a district’s segregation ranking should be a nondecreasing

function of both segregation within each cluster and segregation between the K clusters.

The first axiom that uses this principle is illustrated in Figure 1. In panel a, we divide a

district into two clusters. The first, cluster C1, consists of all schools except a single school

n. The second, cluster C2, consists of school n alone. In panel b, school n has been torn

down and replaced by two new schools, n1 and n2. Each student who formerly attended

school n now attends either school n1 or n2; all other students attend the same schools as

before.

This change should not lower segregation in the district. Why? The only factor affected

by the split is segregation within cluster C2. There has been no change in segregation within

cluster C1, segregation between the clusters, or the relative sizes of the two clusters. Since

9For a colorful defense of realized segregation measures, see Taeuber and Taeuber [51, p. 886]
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Figure 1: The School Division Property. In panel a, a district has been partitioned into two
clusters, one containing a single school n. In panel b, school n has been divided into schools n1
and n2. The School Division Property states that segregation is no lower in panel b than in panel
a and, moreover, that segregation is the same in the two panels if schools n1 and n2 have the same
ethnic distribution.

initially cluster C2 was not segregated at all, splitting school n cannot lower segregation in

this cluster. Accordingly, splitting school n should not lower segregation in the district either.

If schools n1 and n2 have the same ethnic distribution, then cluster C2 is not segregated at all

after the split, since each school is representative of the cluster. In this case, the segregation

ranking of the district should not change. These conclusions are formalized in the following

axiom.

School Division Property (SDP) Let X ∈ C be a district in which the set of schools is

N. Let X 0 be the result of splitting some school n ∈ N into two schools, n1 and n2.

Then X 0 < X. If both schools have the same ethnic distribution, then X 0 ∼ X.

The School Division Property is related to two properties that are discussed by James

and Taeuber [32] and subsequent authors. The first is organizational equivalence: if a school

is divided into two schools that have the same group distribution, the district’s level of

segregation does not change. The second is the transfer principle. When there are two

demographic groups, the transfer principle states that if a black (white) student moves

from one school to another school in which the proportion of blacks (whites) is higher,

then segregation in the district rises. In the case of two ethnic groups, SDP follows from
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Figure 2: Type I Independence (IND1). Panel a shows two districts, X and Y , that have the
same size and ethnic distribution. IND1 states that adjoining the same cluster containing a single
school to the two districts (panel b) does not affect which district is more segregated.

organizational equivalence and the transfer principle.10 But while SDP applies directly with

any number of groups, it is unclear what form the transfer principle should take with more

than two groups.11

Our next axiom is illustrated in Figure 2. In panel a, two districts, X and Y , are being

compared. The districts are assumed to have the same number of students and ethnic

distribution. In panel b, a cluster that contains a single school has been adjoined to each

of these districts. The axiom states that the addition of this cluster should not affect

which district is more segregated. That is, the district on the left hand side in panel b is

more segregated than the district on the right hand side in panel b if and only if X is more

segregated than Y .

Type I Independence (IND1) Let X,Y ∈ C be two districts with equal populations and

equal group distributions. Then for any district Z that contains a single school, X

< Y if and only if X ] Z < Y ] Z.

10Proof available on request.

11For instance, suppose a black student moves to a school that has higher proportions of both blacks and
Asians but fewer whites. Since there are more blacks, one might argue (using the transfer principle) that
segregation has gone up. On the other hand, blacks are now more integrated with Asians. One attempt to
overcome this difficulty appears in Reardon and Firebaugh [45].
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Figure 3: In panel a, a given district, Z, is combined with each of two districts, X and Y , which
have the same total number of students but possibly different ethnic distributions. In panel b, all
the schools in Z have been combined into a single school. Type II Independence states that this
merger does not affect which combined district is more segregated.

For an intuition, we once again rely on the concepts of within-cluster and between-cluster

segregation, where the clusters are nowX, Y , and Z. Since X and Y have the same size and

group distribution, in each combined district in panel b the between-cluster segregation is

the same. Moreover, segregation within cluster Z is the same in the two combined districts.

Hence, which of the combined districts in panel b is more segregated reduces to whether

segregation within cluster X is greater than segregation within cluster Y .

A second type of independence is depicted in Figure 3. In panel a, a given district, Z,

is paired with each of two districts, X and Y . As in Figure 2, X and Y have the same total

number of students; unlike that case, their ethnic distributions may differ. In panel b, all the

schools in Z have been combined into a single school; the resulting cluster is denoted c(Z).

Type II Independence states that this merger of schools does not affect which combined

district is more segregated.

Type II Independence (IND2) Let X,Y, Z ∈ C be three districts such that T (X) =

T (Y ). Let c(Z) be the cluster that results from combining the schools in Z into a

single school. Then X ] Z < Y ] Z if and only if X ] c(Z) < Y ] c(Z).
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Amotivation is as follows. Suppose that, in panel a, the combination of X and Z is more

segregated than the combination of Y and Z. What must be driving this? Segregation

within cluster Z is the same in the two districts in panel a. So the combination of within-

X segregation and between-X-and-Z segregation must exceed the combination of within-Y

segregation and between-Y -and-Z segregation. Moreover, since X and Y are of the same

size, the relative importance of within-cluster and between-cluster segregation is the same in

the two cases. Now consider panel b. Merging the schools in Z does not affect segregation

between this cluster and either X or Y . Consequently, if in panel b the district containing

cluster X is more segregated than the district containing cluster Y , then the combination

of within-X segregation and between-X-and-Z segregation must exceed the combination of

within-Y segregation and between-Y -and-Z segregation, just as in panel a. Moreover, since

the merger does not affect the size of any cluster, it does not change the relative importance

of within-cluster and between-cluster segregation. Accordingly, merging the schools in Z

should not affect which merged district is more segregated. In other words, the degree of

segregation within a given cluster should not affect the relative importance of between-cluster

segregation and segregation within the other clusters in the district. In section 5 we show

that if an ordering violates Type II Independence, then an index that represents it cannot

be decomposable across schools in a particular simple way (Observation 1).

The next axiom is used to compare districts with different ethnic distributions. It states

that segregation is invariant to the division of an existing ethnic group into two identically

distributed subgroups. For instance, if white students are divided into those with blue eyes

and those with brown, and these groups have the same distribution across schools, then the

segregation of a district should not change.

Group Division Property (GDP) Let X ∈ C be a district in which the set of ethnic

groups is G. Let X 0 be the result of partitioning some ethnic group g ∈G into two

ethnic groups, g1 and g2, such that both ethnic groups have the same distribution

across schools:
Tng1
Tg1
=

Tng2
Tg2

for all n ∈ N.12 Then X 0 ∼ X.

12Note that X 0 has the same set N of schools as X and for each school n ∈ N , Tn
g = Tn

g1 + Tn
g2 .
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A motivation is as follows. Suppose we partition the ethnic groups of X into K sets

or “supergroups.” Define within-supergroup segregation to be the segregation of the district

that would result if all students who are not members of the given supergroup were removed.

Let between-supergroup segregation be the segregation of the district that would result from

treating each supergroup as a single ethnic group. Then segregation in X should be a

function of segregation within each supergroup, segregation between the supergroups, and

the relative sizes of the supergroups.

This principle helps motivate GDP in the following way. Let us partition the ethnic

groups of X into two supergroups, one consisting of group g alone and the other consisting

of all other groups. Suppose group g is split into two groups, g1 and g2, which have the same

distribution across schools. This change clearly does not affect segregation within either

supergroup, nor does it affect segregation between the supergroups or the relative sizes of

the two supergroups. Hence, the district’s segregation ranking should not be affected by

the split. In section 5 we show that an ordering that violates GDP cannot be represented

by an index that is decomposable over groups in a particular way (Observation 1).

The next axiom is a technical continuity property. We rely on this axiom to prove that

the segregation ordering is represented by a segregation index.

Continuity (C) Let X,Y,Z ∈ C be three districts. Then the sets

{c ∈ [0, 1] : cX ] (1− c)Y < Z} and {c ∈ [0, 1] : Z < cX ] (1− c)Y } are closed.

Our final axiom states that there exist two districts with two nonempty ethnic groups

that are not equally segregated. It is needed to rule out the trivial segregation ordering.

Nontriviality (N) There exist districts X,Y ∈ C, each with exactly 2 nonempty ethnic

groups, such that X Â Y .
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4 Results

The entropy of any discrete probability distribution q = (q1, . . . , qK) is defined by h(q) =PK
k=1 qk log2

³
1
qk

´
. (When p = 0, the term p log2(1/p) is assigned the value limp→0 [p log2(1/p)] =

0.) The Mutual Information index equals the entropy of the district’s ethnic distribution

minus the average entropy of the ethnic distributions of its schools:

M(X) = h(P )−
X
n∈N

P nh(pn)

where P = (Pg)g∈G is the district ethnic distribution and pn = (png )g∈G is the ethnic distrib-

ution of school n. If the ethnic group and school of a randomly selected student are thought

of as random variables eg and en, then the Mutual Information equals the mutual information
of these variables: the reduction in uncertainty about one variable that occurs when one

learns the value of the other (Cover and Thomas [15, pp. 18 ff.]). Since mutual information

is a symmetric concept,13

Observation 1 the Mutual Information index is unchanged if the district matrix is trans-

posed (i.e., relabeling ethnic groups as schools and vice-versa).

Accordingly, the Mutual Information index captures the criteria of evenness and representa-

tiveness in a symmetric fashion. Also by symmetry, the Mutual Information index can be

interpreted both as the information that a student’s school conveys about her ethnicity, as

well as what her ethnicity tells us about her school.

Our main result is that the segregation ordering represented by the Mutual Information

index is the unique ordering that satisfies all of our axioms:

Theorem 1 The Mutual Information ordering is the only segregation ordering that satisfies

SYM, WSI, SDP, IND1, IND2, GDP, C, and N.

13See Cover and Thomas [15] for a survey of this and other properties of mutual information.
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The Mutual Information index is related to the more widely used Entropy segregation

index (Theil [53]; Theil and Finizza [54]), which is given by

H(X) = 1−
P

n∈N P nh(pn)

h(P )
(2)

The Entropy index is the result of dividing the Mutual Information index by its maximum

value, the entropy h of the district ethnic distribution. Thus, the Entropy index takes a

maximum value of one, while the Mutual Information index has no maximum value. These

indices do not give the same segregation ordering. For instance, the Entropy index ranks all

districts with no ethnic mixing as equally segregated, while the Mutual Information index

assigns a higher segregation level to districts in which there is more initial uncertainty about

a student’s ethnicity.

Two examples illustrate this point. In the two districts h(1, 0, 0) , (0, 1, 0) , (0, 0, 1)i and

h(1, 0) , (0, 1)i, learning a student’s school uniquely determines her ethnicity. However, in

the first district, there initially is more uncertainty about the student’s ethnicity since there

are three equal-size groups instead of two. According to the Mutual Information index, the

first district is strictly more segregated (M = 1.6) than the second one (M = 1.0). The

Entropy index treats these districts as equally segregated, assigning both an index of 1.0.

A student’s ethnicity is determined by her school in the districts X = h(99, 0) , (0, 1)i and

Y = h(50, 0) , (0, 50)i as well. But in the second district there initially is more uncertainty

about a student’s ethnicity than in the first. According to the Mutual Information index, the

second district is more segregated (M = 1.0) than the first one (M = 0.08), these districts

both have an Entropy index of 1.0.

In the context of school segregation, are normalized indices desirable? Clotfelter [7]

argues not, on the grounds that they do not reflect changes in interracial contact well. To

illustrate his point, consider merging the two schools in district X or district Y , defined in

the prior paragraph. In district X, such a merger has a much smaller effect on the interracial

exposure of the typical student, since 99% of students see only a 1% change in the percentage

of minorities. The effects in Y are much greater, since 50% of each student’s schoolmates
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are now of the other racial group. While the Entropy index falls by the same amount, 1.0,

in both cases, the Mutual Information index falls by 0.08 in district X versus 1.0 in Y .

5 Other Indices

This section presents and analyzes other indices that have been used in the literature on

school segregation. In addition to our axioms, we also consider an additional property,

Scale Invariance, and two decomposability properties.

Scale Invariance states that the segregation of a district is invariant to proportional

changes in ethnic group size:14

Scale Invariance (SI) For any district X, ethnic group g ∈ G(X), and constant α > 0,

let X 0 be the result of multiplying the number of group-g students in each school n in

district X by α. Then X 0 ∼ X.

This property has both supporters and opponents in the field of school segregation (Taeuber

and James [50, p. 134]; Coleman, Hoffer, and Kilgore [10, p. 178]).

The next property states that, for any partition of a district’s schools into clusters, total

segregation in the district is the sum of between-cluster and within-cluster segregation (which

are defined in section 3):

Strong School Decomposability (SSD) An index S satisfies Strong School Decompos-

ability if, for any partition X = X1 ] · · · ] XK of the schools of a district into K

clusters,

S(X) = S(c(X1) ] · · · ] c(XK)) +
KX
k=1

P kS(Xk) (3)

where S(c(X1) ] · · · ] c(XK)) is segregation between the K clusters, S(Xk) is segre-

gation within cluster k, and P k is the proportion of students in cluster k.

14This property is also known as Compositional Invariance (e.g., James and Taeuber [32, pp. 15-16]).
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Mora and Ruiz-Castillo [39] show that the Mutual Information index satisfies SSD in

the case of two groups. SSD and weaker forms of separability have also been extensively

discussed in the literature of the measurement of income inequality. Bourguignon [4], for

instance, shows that a property analogous to SSD fully characterizes the Theil inequality

index (a close relative of the Mutual Information index) within the class of differentiable rel-

ative inequality indices. Foster [22] obtains a further characterization of the Theil inequality

index by replacing the differentiability requirement by a more appealing transfer principle.

Within the literature on the measurement of segregation, Hutchens [29] uses a weaker version

of separability to help characterize a segregation index that represents the ordering induced

by the Atkinson index (Atkinson [1]).

The second, analogous property states that, for any partition of a district’s groups

into sets or “supergroups”, total segregation is the sum of between-supergroup and within-

supergroup segregation (which are defined in section 3):

Strong Group Decomposability (SGD) An index S satisfies satisfies Strong Group De-

composability if, for any partition of the ethnic groups of a district X into K super-

groups,

S = SK +
KX
k=1

PkSk (4)

where SK is segregation between the K supergroups, Sk is the segregation within

supergroup k, and Pk is the proportion of students who are in supergroup k.

SSD and SGD have strong ordinal implications:

Proposition 1 If S is a segregation index that satisfies Strong School Decomposability, then

the segregation ordering represented by S satisfies IND1 and IND2. If S satisfies Strong

Group Decomposability, then the induced segregation ordering satisfies GDP.

A consequence is that if a segregation ordering does not satisfy GDP (respectively, either

IND1 or IND2), then it cannot be represented by an index that satisfies SGD (respectively,

SSD). The Mutual Information index is decomposable in both ways:
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Proposition 2 M satisfies SSD and SGD.

It is easy to verify that the Mutual Information index does not satisfy SI. In the following

claims, we state which of the ten properties SYM, WSI, SDP, IND1, IND2, GDP, C, N, SSD,

and SGD are violated by other indices in the school segregation literature. Where we say

that an index violates SSD or SGD, we also mean that the underlying ordering has no

alternative representation that satisfies the given property. The proofs are straightforward

and appear in an unpublished appendix (Frankel and Volij [21]). For proofs regarding SI, the

reader is referred to Reardon and Firebaugh [45]. If a property is not mentioned, the index

satisfies it.15 The notation I denotes the Simpson Iteraction Index, I =
P

g∈G Pg(1 − Pg)

(Lieberson [35]).

5.1 Index of Dissimilarity

The Multigroup Dissimilarity Index D of Morgan [42] and Sakoda [47], a generalization of

the 2-group index of Jahn, Schmid, and Schrag [30], is as follows:

D =
1

I
D0 where D0 =

1

2

X
g∈G

X
n∈N

P n
¯̄
png − Pg

¯̄
and

Intuitively, D0 equals the minimum proportion of the population that would have to change

schools, keeping school sizes fixed, in order for each school to be representative of the district.

I is what this proportion would be under complete segregation. Hence, the Multigroup

Dissimilarity Index, D, is a normalization of D0 that take a maximum value of 1.16 In the

two-group case, the formula for D simplifies to 1
2

P
n∈N

¯̄̄
Tn1
T1
− Tn2

T2

¯̄̄
.

Claim 1 The multigroup dissimilarity index D satisfies all properties but IND1, IND2,

GDP, SSD, and SGD. It satisfies SI only in the two-group case.

15More precisely, the index satisfies the restriction of the property to cities with at least two nonempty
groups. Unlike the Mutual Information index, the indices in this section are not defined on the (albeit
uninteresting) set of cities that contain only one nonempty group.

16Some researchers (e.g., Watts [55], in the case of occupational gender segregation) have instead used the
unnormalized version, D0.
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5.2 Gini

The multigroup Gini index of Reardon [44], is a generalization of the two-group Gini index

of Jahn, Schmidt, and Schrag [30]:

G = 1

2I

X
g∈G

X
m∈N

X
n∈N

PmP n
¯̄
pmg − png

¯̄
Claim 2 The multigroup Gini index G satisfies all properties but IND1, IND2, GDP, SSD,

and SGD. It satisfies SI only in the two-group case.

5.3 Entropy Index

The Entropy index is defined in equation (2).

Claim 3 The Entropy index H satisfies all properties but IND2, GDP, SI, SSD, and SGD.

5.4 Normalized Exposure

The Normalized Exposure index was originally proposed by Bell [2] for the case of two groups.

Its multigroup version, formulated by James [31], is

P =
X
g∈G

X
n∈N

P n
(png − Pg)

2

1− Pg

In the case of two groups (say whites and blacks, denoted 1 and 2, respectively), the index

equals P2−E∗
P2

where E∗ = 1
T1

P
n∈N T n

1 p
n
2 is the “exposure”of whites to blacks: the proportion

black in the school attended by the average white student, and P2 (the proportion black in

the district) is the maximum value E∗ can take.17 Thus, the two-group index measures

the exposure of whites to blacks, normalized by the maximum possible such exposure. The

index is symmetric: it also measures the normalized exposure of blacks to whites.

17Proof available on request.
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Claim 4 The Normalized Exposure index P satisfies all properties but GDP, SI, IND2, SSD,

and SGD. It satisfies IND1 only in the two-group case.

5.5 Other Measures of School Segregation

Research that relies on the above indices includes Reardon and Yun [46] and Taeuber and

James [50], both of whom use D, G, and H, and Zoloth [56], who uses D, P , and H. In

addition, P is used by Coleman, Kelly, and Moore [11] and Coleman, Hoffer, and Kilgore [10].

Other research on school segregation relies on different measures. One is the percentage of

blacks or nonwhites who attend schools in which at least some proportion κ of students are

nonwhite. If we simplify by assuming two groups, whites (group 1) and blacks (group 2),

this index can be written

Cl(X) =
1

T2

X
n∈N(X):pn2≥κ

Tn
2 (5)

This measure is also used by Clotfelter [8] (who also uses P , D, and G), Clotfelter, Ladd,

and Vigdor [9] (who also use P ) and Boozer, Krueger, and Wolkon [3].

Claim 5 The index Cl violates SYM, SDP, IND2, SI, and SSD. It satisfies WSI, N, IND1,

and C.

There is ambiguity regarding how to generalize Cl to an arbitrary number of groups, so we

cannot say whether it satisfies GDP or SGD.

Card and Rothstein [5] compute the average fraction black or Hispanic in the schools

attended by the typical black and white student, and define segregation as the difference

between these figures. Letting whites, blacks, and Hispanics be indexed by 1, 2, and 3,

respectively, this index equals

CR(X) =
X

n∈N(X)

µ
Tn
2

T2
− Tn

1

T1

¶
Tn
2 + T n

3

T n

Claim 6 The index CR violates SYM, SDP, IND1, IND2, SI, and SSD. It satisfies WSI,

N, and C.
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Since CR is defined for three particular groups, GDP and SGD cannot be evaluated.

5.6 Summary of Results

The results of this section are summarized in the following table. A check mark indicates

that the property is satisfied; “×” indicates that it is violated.

Index SYM WSI SDP IND1 IND2 GDP C N SI SSD SGD
Modified Entropy X X X X X X X X × X X
Entropy X X X X × × X X × × ×
Dissimilarity X X X × × × X X 2 × ×
Gini X X X × × × X X 2 × ×
Normalized Exposure X X X 2 × × X X × × ×
Cl × X × X × N/A X X × × N/A
CR × X × × × N/A X X × × N/A

Table 2: Properties of School Segregation Indices. A check mark indicates that the property is satisfied
by the index. An “×” indicates that it is not. “2”indicates that it is satisfied only in the 2-group case. The
properties are Symmetry (SYM), Weak Scale Invariance (WSI), the School Division Property (SDP), Type
I Independence (IND1), Type II Independence (IND2), the Group Division Property (GDP), Continuity
(C), Nontriviality (N), Scale Invariance (SI), Strong School Decomposability (SSD), and Strong Group
Decomposability (SGD).

6 Related Literature

The first to study segregation axiomatically was Philipson [43], who provides an axiomatic

characterization of a large family of segregation orderings that have an additively separable

representation. The representation consists of a weighted average of a function that depends

on the school’s ethnic distribution only.

In two papers, Hutchens [28, 29] studies the measurement of segregation in the case of two

ethnic groups. Hutchens [28] characterizes the family of indices that satisfy a set of mostly

cardinal properties. Hutchens [29] strengthens one axiom and obtains a unique segregation

index, which is based on the Atkinson inequality index [1]. Both of these papers assume

Scale Invariance.
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Echenique and Fryer [18] use data on individuals’ social networks to measure the strength

of an individual’s isolation from members of other ethnic groups. They rely on cardinal

axioms and require data on social networks, while our measure relies only on ordinal axioms

and uses data on the numbers of students in each ethnic group and school.

A Proofs

Proof of Theorem 1. We first show that the ordering represented by the Mutual Informa-

tion index satisfies the axioms. Axioms N, SYM, and WSI are trivial, and C follows from

the fact that the index M is a continuous function of the T n
g ’s (the number of students of

each group in each school). Axioms IND1, IND2,and GDP follow from Propositions 1 and

2. So it remains to show that SDP is satisfied. Let X ∈ C be a district and let n be a school

of X. Let X 0 be the district that results from dividing n into two schools, n1 and n2. Since

X and X 0 have the same group distribution,

M(X 0)−M(X) = Pnh((png )g∈G(X))− P n1h((pn1g )g∈G(X))− P n2h((pn2g )g∈G(X))

= Pn

µ
h((png )g∈G(X))−

P n1

P n
h((pn1g )g∈G(X))−

P n2

P n
h((pn2g )g∈G(X))

¶

But for all g, png =
Pn1

Pn p
n1
g + Pn2

Pn p
n2
g so, recalling that h((qg)g∈G) =

P
g∈G qg log2(

1
qg
) is a

concave function, M(X 0)−M(X) ≥ 0, with strict inequality only if schools n1 and n2 have

different group distributions. This verifies SDP.

We now show that the Mutual Information ordering is the only segregation ordering that

satisfies all the axioms. Let < be a segregation ordering that satisfies them. For any district
X, let the schools be numbered n = 1, . . . , N and the groups g = 1, . . . , G.

For any group distribution P = (Pg)
G
g=1, let X(P ) denote the district, with population 1,

with group distribution P , and with G uniracial schools, and let X(P ) denote the one-school

district with group distribution P and population 1:

X(P ) = h(P1, 0, ..., 0), ...(0, ..., 0, PG)i and X(P ) = h(P1, ..., PG)i .
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For any integerG ≥ 1, letXG
= h(1/G, 0, ..., 0) , ..., (0, ..., 0, 1/G)i denote the completely seg-

regated district of population 1 with G equal sized ethnic groups. LetXG = h(1/G, ..., 1/G)i

denote the one-school district with the same group distribution and population.

We first state and prove some preliminary lemmas. By applying IND1 repeatedly, one

can show the following apparently stronger (but actually equivalent) property, which will be

used interchangeably with IND1.

Lemma 1 Suppose the segregation ordering < satisfies IND1. Let X,Y ∈ C be two districts

with equal populations and equal group distributions. Then for all districts Z ∈ C containing

any number of schools, X < Y if and only if X ] Z < Y ] Z.

Proof. Let the schools of Z be enumerated: n1, ..., nN . By IND1, X < Y if and only if

X ] hn1i < Y ] hn1i, where hn1i denotes a district that consists of school n1 alone. The

districts X 0 = X ] hn1i and Y 0 = Y ] hn1i have the same size and group distribution since

X and Y do. Hence, by IND1, X 0 < Y 0 if and only if X 0 ] hn2i < Y 0 ] hn2i. The result

follows by repeating the same argument for schools n3, ..., nN . Q.E.D.

Lemma 2 1. All districts in which every school is representative have the same degree

of segregation under <.

2. Any district in which every school is representative is weakly less segregated under <
than any district in which some school is unrepresentative.

Proof.

1. Consider any district Y that consists of N representative schools. By WSI we can

assume w.l.o.g. that T (Y ) = 1. For each i = 1, ..., N , let Yi be the school district

consisting of schools i+ 1 through N of Y as well as a single school that contains the

students in schools 1 through i of Y . By SDP, for each i = 1, ..., N − 1, Yi ∼ Yi+1.

Hence, by transitivity, Y = Y1 ∼ YN . YN contains a single school. By GDP, YN ∼ X1,

and hence Y ∼ X1.
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2. Consider any district Y in which at least one school is unrepresentative. The above

procedure yields Y = Y1 < Y2 < · · · < YN ∼ X1. By transitivity, Y < X1.

Q.E.D.

Lemma 3 For any district Z with G ethnic groups, let σ(Z) ∈ C be such that the number

of persons of ethnic group g in school n in Z equals the number of persons of ethnic group

(g + 1)modG in school n in σ(Z). Define σ1(Z) = σ(Z) and, for integers j > 1, let

σj(Z) = σ(σj−1(Z)).18 Then 1
G

UG
j=1 σ

j(Z) < Z.

Proof. Consider the following statement:

³Un
j=1 Z

´
]
³UG

j=n+1 c(Z)
´
4
³Un

j=1 σ
j(Z)

´
]
³UG

j=n+1 σ
j(c(Z))

´
(6)

For n = 0, (6) simply states
UG

j=1 c(Z) 4
³UG

j=1 σ
j(c(Z))

´
, which holds by Lemma 2.

Assume that (6) holds for some n = k, with 0 ≤ k < G− 1. Then, taking into account that

σG is the identity permutation,

³Un
j=1 Z

´
]
³UG

j=n+2 c(Z)
´
] c(Z) 4

³Un
j=1 σ

j(Z)
´
]
³UG−1

j=n+1 σ
j(c(Z))

´
] c(Z)

=⇒
³Un

j=1 Z
´
]
³UG

j=n+2 c(Z)
´
] Z 4

³Un
j=1 σ

j(Z)
´
]
³UG−1

j=n+1 σ
j(c(Z))

´
] Z by IND2

∼ σ
³³Un

j=1 σ
j(Z)

´
]
³UG−1

j=n+1 σ
j(c(Z))

´
] Z

´
by SYM

∼
³Un+1

j=2 σ
j(Z)

´
]
³UG

j=n+2 σ
j(c(Z))

´
] σ(Z) by def. of σ³Un+1

j=1 Z
´
]
³UG

j=n+2 c(Z)
´
4

³Un+1
j=1 σ

j(Z)
´
]
³UG

j=n+2 σ
j(c(Z))

´
That is, (6) also holds for n = k + 1. By induction it also holds for n = G − 1. That is,UG

j=1 Z 4
UG

j=1 σ
j(Z) which, by SDP and WSI implies Z 4 1

G

UG
j=1 σ

j(Z). Q.E.D.

Lemma 4 For any district X with G groups and group distribution P , X
G < X(P ) < X.

18Note that σG(Z) = Z.

25



Proof. By WSI, w.l.o.g. we can assume that T (X) = 1 . X can be converted into a

completely segregated district by dividing each school n into G distinct schools, each of

which includes all and only the members of a single ethnic group. By SDP, this procedure

results in a weakly more segregated district. By then combining all schools containing a

given ethnic group, this can be converted to X(P ) without changing the segregation level

(by SDP). To see that X
G < X, note that by Lemma 3, 1

G

UG
j=1 σ

j(X(P )) < X(P ). But

by SDP, the left hand side district is as segregated as X
G
. Q.E.D.

Lemma 5 For any integer G ≥ 1, XG 4 X
G+1
.

Proof. Let X be the (G+ 1)-group district that results after splitting one ethnic group in

X
G
up into two equally distributed subgroups. By Lemma 4 and GDP, X

G+1 < X ∼ X
G
.

Q.E.D.

Lemma 6 Let X and X 0 be two districts with the same size and group distribution such that

X Â X 0. Let 1 ≥ α > β ≥ 0. Then αX ] (1− α)X 0 Â βX ] (1− β)X 0

Proof. By WSI, (α − β)X Â (α − β)X 0. Since X and X 0 have the same size and group

distribution, so do (α− β)X and (α− β)X 0. So by IND1,

βX ] (α− β)X ] (1− α)X 0 Â βX ] (α− β)X 0 ] (1− α)X 0.

By SDP, αX ] (1− α)X 0 Â βX ] (1− β)X 0. Q.E.D.

Lemma 7 For any districts Z < X < Y such that Z Â Y and Y and Z have the same size

and group distribution, there is a unique α ∈ [0, 1] such that X ∼ αZ ] (1− α)Y .

Proof. The sets {α ∈ [0, 1] : αZ ] (1− α)Y < X} and {α ∈ [0, 1] : X < αZ ] (1− α)Y }

are closed by C. Any α satisfies X ∼ αZ ] (1−α)Y if and only if it is in the intersection of

these two sets. Given that Z < X < Y , these sets are each nonempty. Their union is the

whole unit interval since < is complete. Since the interval [0, 1] is connected, the intersection

26



of the two sets must be nonempty. By Lemma 6, their intersection cannot contain more

than one element. Thus, their intersection contains a single element α. Q.E.D.

Let X be a district with G groups and group distribution bP = ( bP1, ..., bPG). For any

G0 ≥ 1 and any distribution P = (P1, ..., PG0) let φP (X) be the district that results after

splitting each ethnic group g in district X into G0 ethnic groups in proportions given by P .

That is, the Tn
g members of each ethnic group g in each school n of X are split up into G0

ethnic groups of size P1Tn
g , ..., PG0T

n
g . The resulting district φP (X) has GG0 groups with

distribution
³
( bPgPg0)

G
g=1

´G0
g0=1

.

Let X be a district and let bP = ( bP1, ..., bPG) be an arbitrary distribution such that

X( bP ) < X and X( bP ) < X
2
. By lemmas 4 and 5 such a distribution exists. By Nontriviality,

Lemma 4, and Lemma 2, X
2 Â X2 ∼ X( bP ). Therefore, by Lemma 7 there is a unique bα

such that

X ∼ bαX( bP ) ] (1− bα)X( bP ). (7)

Similarly, by Lemma 7 there is a unique bβ such that X2 ∼ bβX( bP )](1−bβ)X( bP ). By Lemma
6, bβ > 0, as X( bP ) < X

2
.

Define the index S : C → R by

S(X) = bα/bβ (8)

For S to be well defined, bα/bβ cannot depend on the particular choice of bP . We now verify
this. Consider another distribution eP = ( eP1, ..., ePG0) such that X( eP ) < X and X( eP ) < X

2

and let eα and eβ the unique numbers such that X ∼ eαX( eP ) ] (1 − eα)X( eP ) and X
2 ∼eβX( eP ) ] (1− eβ)X( eP ). By GDP

X ∼ φP
³eαX( eP ) ] (1− eα)X( eP )´ ∼ eαφP ³X( eP )´ ] (1− eα)φP ³X( eP )´ (9)

Similarly, applying the transformation φP to (7) and using GDP,

X ∼ bαφP ³X( bP )´ ] (1− bα)φP ³X( bP )´ (10)
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Both φP
³
X( bP )´ and φP

³
X( eP )´ are districts with the same number of groups (G ∗ G0)

and (up to a permutation) the same group distribution. Further by SYM, φP
³
X( bP )´ ∼

φP
³
X( eP )´. Similarly, both φP ³X( bP )´ and φP ³X( eP )´ are districts with the same number

of groups and (up to a permutation) the same group distribution. Assume w.l.o.g. that

φP
³
X( eP )´ < φP

³
X( bP )´ and let γ be the unique number such that
φP
³
X( bP )´ ∼ γφP

³
X( eP )´ ] (1− γ)φP

³
X( eP )´

Then, applying WSI, IND1 (twice) and SDP, it follows from (10) that

X ∼ bα hγφP ³X( eP )´ ] (1− γ)φP
³
X( eP )´i ] (1− bα)φP ³X( eP )´

∼ bαγφP ³X( eP )´ ] (1− γbα)φP ³X( eP )´ (11)

Comparing (11) and (9) we obtain that eα = bαγ. Exactly the same reasoning leads to eβ = bβγ.
Consequently bα/bβ = eα/eβ. This establishes that S is well-defined.
Lemma 8 The index S defined in (8) represents <.

Proof. Let X,Y ∈ C and let G be at least as large as the number of groups in X or Y .

Then, by lemmas 4 and 5, X
G < X

2
, X

G < X and X
G < Y . Define αX , αY and β by

X ∼ αXX
G ] (1− αX)X

G

Y ∼ αYX
G ] (1− αY )X

G

X
2 ∼ βX

G ] (1− β)XG.
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Then,

X < Y ⇐⇒ αXX
G ] (1− αX)X

G < αYX
G ] (1− αY )X

G by definition of αX and αY

⇐⇒ αX ≥ αY by Lemma 6

⇐⇒ αX/β ≥ αY /β since β > 0

⇐⇒ S(X) ≥ S(Y ) by definition of S

Q.E.D.

The following results will be used to show that S is the Mutual Information index.

Lemma 9 For any group distribution P = (P1, ..., PG) (in which some entries may be zero),

let bP =
¡
P1
G
, ..., P1

G
, ..., PG

G
, ..., PG

G

¢
be the group distribution that results from dividing each

ethnic group in P into G equal sized groups. Then X( bP ) < X
G
and X( bP ) < X(P ).

Proof. For the first claim, first subdivide each ethnic group in X
G
into G groups in propor-

tions given by P . For instance, the first group is divided into G groups of sizes P1 1G , ..., PG
1
G
.

Now put each resulting group in a separate school. The group distribution of the resulting

district,
¡
P1

1
G
, ..., PG

1
G
, ..., P1

1
G
, ..., PG

1
G

¢
, is just a permutation of bP . Hence, by GDP and

SDP,X( bP ) < X
G
. The second claim follows from the first one after noting that by Lemma 4,

X
G < X(P ). Q.E.D.

Lemma 10 Let districts Z1, Z2, Z3, and Z4 all have the same population and group distri-

bution and let Z1 ∼ Z2 and Z3 ∼ Z4. Let Z5, Z6 be two districts with equal populations.

Then Z1 ] Z5 ∼ Z2 ] Z6 if and only if Z3 ] Z5 ∼ Z4 ] Z6 .

Proof. By IND2 applied twice, Z1 ] Z5 ∼ Z1 ] Z6 if and only if Z3 ] Z5 ∼ Z3 ] Z6. But

by IND1, Z1 ] Z6 ∼ Z2 ] Z6 and Z3 ] Z6 ∼ Z4 ] Z6. Q.E.D.

Lemma 11 For any districts X and Y , S(X ] Y ) = S(c(X) ] Y ) + T (X)
T (X)+T (Y )

S(X).

Proof. Let X and Y be any two districts. Let X ] Y have G ethnic groups. By

adding an empty group if needed, we can assume WLOG that G ≥ 2. For any district
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Z, let φG(Z) be the result of splitting each group g in Z into G equal-size groups, each of

which has the same school distribution as g. Let bP be the group distribution of φG(X).

By Lemma 9, X( bP ) < X
G
. Define bαX by X ∼ bαXX( bP ) ] (1 − bαX)X( bP ) and γ by

c(X) ] Y ∼ γX( bP ) ] (1− γ)X( bP ). Define
Z1 = φG(X)

Z2 = T (X)
³bαXX( bP ) ] (1− bαX)X( bP )´

Z3 = c(φG(X)) = φG(c(X))

Z4 = T (X)X( bP )
Z5 = φG(Y )

Z6 = T (X ] Y )

µ
γX( bP ) ]µ1− T (X)

T (X ] Y )
− γ

¶
X( bP )¶

To show that Z6 is well defined, we must show that γ ≤ 1− T (X)
T (X]Y ) =

T (Y )
T (X]Y ) . For this, by

Lemma 6, it is enough to show that

γX( bP ) ] (1− γ)X( bP ) 4 T (Y )

T (X ] Y )
X( bP ) ] T (X)

T (X ] Y )
X( bP ). (12)

The district c(X) ] Y has G groups since X ] Y does. By Lemma 3,

c(X) ] Y 4 1

G

UG
j=1 σ

j(c(X) ] Y ) =
1

G

UG
j=1 σ

j(c(X)) ] 1
G

UG
j=1 σ

j(Y )

Let ]c(X) = 1
G

UG
j=1 σ

j(c(X)) and Ỹ = 1
G

UG
j=1 σ

j(Y ). Each of ]c(X) and Ỹ has G groups of

equal size. By SDP,]c(X) ∼ T (X)XG and both of these districts have the same population,

T (X), and the same group distribution. Since Ỹ has G equal size groups, it is not more

segregated than T (Y )X
G
and both of these districts have the same population, T (Y ), and
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the same group distribution. Therefore,

c(X) ] Y 4 T (X)XG ] T (Y )X
G

by IND1 (twice)

∼ φG
³
T (X)XG ] T (Y )X

G
´

by GDP

∼ T (X)φG
¡
XG
¢
] T (Y )φG

³
X

G
´

by definition of φG

4 T (X)X( bP ) ] T (Y )X( bP ) by SDP

∼ T (X)
T (X]Y )X(

bP ) ] T (Y )
T (X]Y )X(

bP ) by WSI

But c(X) ] Y ∼ γX( bP ) ] (1− γ)X( bP ) so (12) holds and γ ≤ T (Y )
T (X]Y ) , as claimed.

By construction, Z1, Z2, Z3, and Z4 all have the same population and group distribution.

By GDP, Z1 ∼ Z2. Clearly, Z3 ∼ Z4 since these are actually the same district. Also, the

population of Z6 is T (Y ), which equals the population of Z5. Moreover,

Z4 ] Z6 = T (X)X( bP ) ] T (X ] Y )
³
γX( bP ) ] ³1− T (X)

T (X]Y ) − γ
´
X( bP )´

= T (X ] Y )
³
γX( bP ) ] (1− γ)X( bP )´ by SDP

∼ c(X) ] Y by WSI

∼ φG(c(X)) ] φG(Y ) by GDP

= Z3 ] Z5

So by Lemma 10,

Z1 ] Z5 ∼ Z2 ] Z6 (13)
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Now,

X ] Y ∼ φG(X ] Y ) by GDP

= Z1 ] Z5

∼ Z2 ] Z6 by (13)

= T (X)
³bαXX( bP ) ] (1− bαX)X( bP )´

]T (X ] Y )

µ
γX( bP ) ]µ1− T (X)

T (X ] Y )
− γ

¶
X( bP )¶

∼ (T (X ] Y )γ + T (X)bαX)X( bP ) ] T (X ] Y )

µ
1− γ − T (X)

T (X ] Y )
bαX

¶
X( bP ) by SDP

∼
µ
γ +

T (X)

T (X ] Y )
bαX

¶
X( bP ) ]µ1− γ − T (X)

T (X ] Y )
bαX

¶
X( bP ) by WSI.

We have shown that X ] Y ∼
³
γ + T (X)

T (X]Y )bαX

´
X( bP ) ] ³1− γ − T (X)

T (X]Y )bαX

´
X( bP ). By

definition of γ and bαX , c(X)]Y ∼ γX( bP )](1−γ)X( bP ) and X ∼ bαXX( bP )](1−bαX)X( bP ).
By Lemma 7, there is a unique β such that X

2 ∼ βX( bP ) ] (1− β)X( bP ). By definition of
S, S(X ] Y ) = 1

β

³
γ + T

T+T (Y )
bαX

´
= S(c(X) ] Y ) + T

T+T (Y )
S(X), as claimed. Q.E.D.

For any discrete probability distribution P = (P1, ..., PG), define the function s(P ) to

equal S(X(P )).

Claim 7 The function s is the entropy function. Namely, s(P ) = h(P ) =
Pn

i=1 Pi log2
1
Pi
.

Proof. It is known that the entropy function is the only function that satisfies the following

three properties.19

1. h(1/2, 1/2) = 1.

2. h(p, 1− p) is continuous in p.

3. h(p1, ..., pn) = h(p1 + p2, p3, ..., pn) + (p1 + p2)h
³

p1
p1+p2

, p2
p1+p2

´
.

19The statement of this result appears as an exercise in Cover and Thomas [15]. For the original proof,
see Faddeev [19].
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So it is enough to show that s satisfies them. Property 1 follows from the definition of S and

the fact that S(X(1/2, 1/2)) = S(X
2
). Property 3 follows from Lemma 11. It remains to

show property 2. Let us write X(p, 1− p) as Zp for brevity. By Lemma 7, there is a unique

αp such that Zp ∼ αpX
2 ] (1− αp)X

2. By definition of S, αp = S(X(p, 1− p)). For all p,

the sets {q : Zq < Zp} and {q : Zq 4 Zp} are closed by Continuity. Note that Zq < Zp if

and only if αq ≥ αp by Lemma 6. So the sets {q : αq ≥ αp} and {q : αq ≤ αp} are closed. If

αp is not a continuous function of p, then let the sequence (pk)∞k=1 converge to some p. By

restricting to an appropriate subsequence, we may assume that limk→∞ αpk exists. Let this

limit be c and assume by contradiction that c 6= αp. Assume that c > αp (the other case is

analogous). Since limk→∞ αpk = c > c+αp
2
, there is a k∗ such that αpk >

c+αp
2
for all k > k∗.

So the sequence {pk : k > k∗} lies in
©
q : αq ≥ c+αp

2

ª
. But limk→∞ pk = p does not lie in

this set, which contradicts the fact that this set is closed. Q.E.D.

We now show that S is the Mutual Information index. Consider any district X with N

schools, G ethnic groups, and group distribution P . Let X0 = X. Let Xn be the result

of separating the students in each school m ≤ n into G uniracial schools. For instance, if

X = h(1, 2) , (3, 4)i, then X1 = h(1, 0) , (0, 2) , (3, 4)i and X2 = h(1, 0) , (0, 2) , (3, 0) , (0, 4)i.

Note that XN is completely segregated and has group distribution P , so XN ∼ X(P ). By

Lemma 11,

S(Xn) = S(Xn−1) + P nS(X(pn)) for n = 1, ..., N.
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Thus,

S(XN) = S(X) +
NX
n=1

P nS(X(pn))

=⇒ S(X) = S(XN)−
NX
n=1

P nS(X(pn))

= S(X(P ))−
NX
n=1

P nS(X(pn))

=
GX
g=1

Pg log2
1

Pg
−

NX
n=1

P n
GX
g=1

png log2
1

png
.

where the last line follows from Claim 7. Q.E.D.

Proof of Proposition 1: IND1: Let X and Y have the same size and group distribution,

and let Z be another district. Then c(X) = c(Y ) and T (X)/T (X]Z) = T (Y )/T (Y ]Z) = p.

Then, applying SSD, M (X ] Z) ≥M (Y ] Z) if and only if

M (c(X) ] c(Z)) + pM(X) + (1− p)M(Z) ≥ M (c(Y ) ] c(Z)) + pM(Y ) + (1− p)M(Z)

⇔ M(X) ≥M(Y )

IND2: LetW,X, Y ∈ C be three districts such that T (W ) = T (X). Then, T (W )/T (W]Y ) =

T (X)/T (X ] Y ) = p. Now, applying SSD,

M(W ] c(Y )) ≥M(X ] c(Y ))⇔M(c(W ) ] c(Y )) + pM(W ) ≥M(c(X) ] c(Y )) + pM(X)

⇔ M(c(W ) ] c(Y )) + pM(W ) + (1− p)M(Y ) ≥M(c(X) ] c(Y )) + pM(X) + (1− p)M(Y )

⇔ M(W ] Y ) ≥M(X ] Y )

The proof of GDP is similar and is left to the reader. Q.E.D.

Proof of Proposition 2: Let X = X1 ] · · · ]XK be district composed of K clusters. By
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definition of M ,

M(X) = h(P (X))−
KX
k=1

X
n∈N(Xk)

P nh(pn)

Subtracting and adding
PK

k=1 P
kh(P (Xk)) on the right hand side, we obtain

M(X) = h(P (X))−
KX
k=1

P kh(P (Xk)) +
KX
k=1

P kh(P (Xk))−
KX
k=1

X
n∈N(Xk)

P nh(pn)

= h(P (X))−
KX
k=1

P kh(P (Xk)) +
KX
k=1

P k

⎛⎝h(P (Xk))−
X

n∈N(Xk)

P nh(pn)

⎞⎠
= M(c(X1) ] · · · ] c(XK)) +

KX
k=1

P kM(Xk).

This shows thatM satisfies SSD. ThatM satisfies SGD as well now follows from Observation

1. Q.E.D.
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