FIGHTING CYBER-THREATS WITH CROWDSOURCED INTELLIGENCE

ZOHAR DUCHIN, PRINCIPAL RESEARCHER RSA DMBI 2016

Why Are We Loosing The Cyber Arena?

- Security analysts as lone rangers
 - Each analyst sees only tiny part of the picture
 - Nobody knows everything
 - Repeating mistakes that others already did

Defenders

Heroic but separated and unorganized

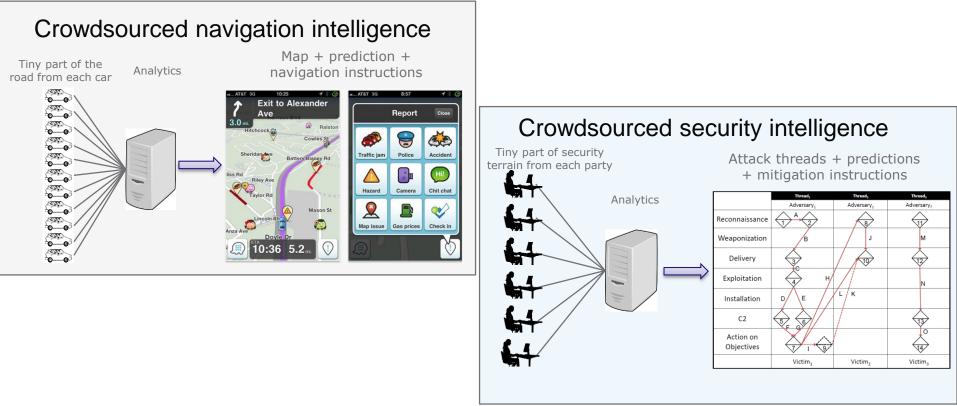
2

Attackers

Well organized and motivated (organized crime, nation state actors)

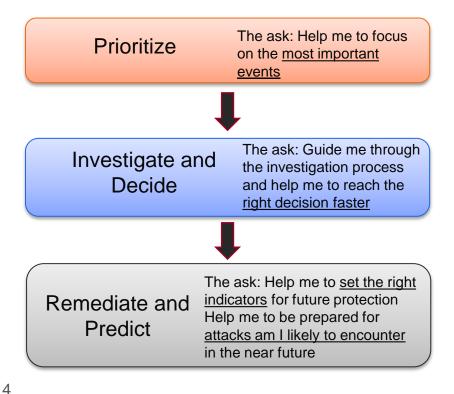
RSA

How Can Crowdsourcing Help?



Helping the Analyst with Crowdsourced Intelligence

The analyst daily job



RSΛ

Prioritization with Crowdsourced Intel'

Use cases

- Others opinion on the same / similar events
- Trends of same events in the community
- Overall reputation
- Example: prioritizing suspicious IP addresses with community reputation
- Aggregating feedback from the community
- Using lower bound interval of Wilson score to be conservative
- Include time decay as IP addresses are dynamic

$$Score = \frac{\hat{p} + \frac{1}{2n}z^2 - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{z^2}{4n^2}}}{1 + \frac{1}{n}z^2}$$

Where:

n = total number of customers that have the IP decayed with time i.e.:

$$n = \sum_{i} 1 \{customer_{i} has IP\} * e^{-\Delta t_{ni}/\omega}$$

$$\hat{p} = \frac{\# of \ risky}{n}$$

$$\# of \ risky$$

$$= \sum_{i} 1 \{customer_{i} \ provided \ risky \ feedback\} * e^{-\Delta t_{fi}/\omega}$$

$$w = \text{Constant that controls the speed of decay}$$

$$\Delta t_{fi} = age \ of \ feedback \ from \ customer \ i$$

$$\Delta t_{ni} = age \ of \ IP \ at \ customer \ i$$

$$z = 1.96$$

Investigation with Crowdsourced Intel'

- Use cases:
- Best practices: Investigation steps that others have taken
- If I have found this event, what related items should I look for?
- What is the most valuable information that will help my decision?

Example

- Filling attack kill chain using various sources in the community
 - Different customers with different detectors
- Guiding users to investigate the missing link in the chain

6

Interacting with contributors to fill missing info

Phase	Indicator	Contributed by	
Reconnaissance	NA		
Weaponization	Benign File: tcnom.pdf	User C: Endpoint	
Delivery	?	User B: Network	
Exploitation	CVE-2009-0658 [shellcode exploiting]	External source	
Installation	fssm32.exe IEUpd.exe IEXPLORE.hlp	User A: Endpoint User C: Endpoint	
C2	202.abc.xyz.7 [HTTP request]	User B: Network	
Actions on Objectives	Key logging	User B: SecOps	

RSA

Use Case: Remediate & Predict

Remediate and Predict with Crowdsourced Intel'

User cases:

- ▶ What customers like me have encountered
- Recommend best known methods for protection

Example

- Recommending rules for policy of Web Fraud Detection management
- Using user-user collaborative filtering
- We will explore this in the next slides...

7

Community Recommendation				
	6 similar customers			
•	have a rule in their policies			
	that eliminated \$53,569 / 68 cases of fraud in the last 3 days			
	On your data this rule would have saved you \$3,053 / 10 cases of fraud in the last 3 days			
	View Rule Later Ignore			

Fraud Detection Policy Overview

- Credit card fraud detection engine
 - Targeted to manage fraud events and business goals
 - Consists of:
 - Machine learning based risk engine
 - Policy i.e. set of rules
- ▶ What is a rule?

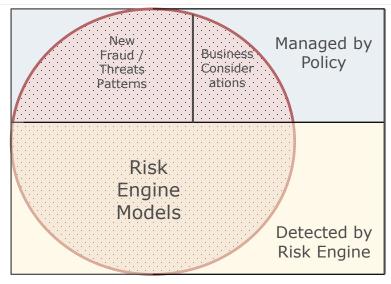
Rule = {*Conditions*, *Action*, *Meta*}

Condition = {Sensor, Operation, Value}

Action = Accept, Challenge, Block

8

Meta = {Creation time, Fraud count, Fraud amount, False positive count}



Policy Overview

Rules Recommendation System

- Constructing user-item (customer-rule) matrix
 - Rules decomposition (logical or, lists)
 - Implicit rating calculation for each rule@customer
- Similarity measure between customers
 - Similar policy
 - Similar customers attributes
- Find "good" rules
 - Potentially good rating for a customer
- Post processing
 - Recommended rules clustering
- Evaluation

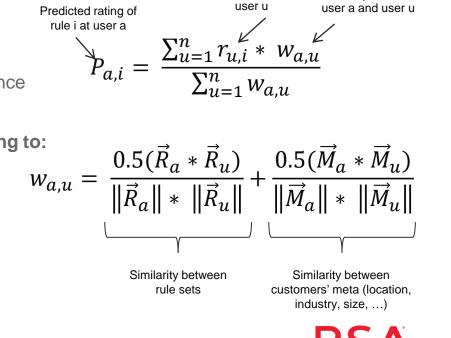
Visualization of customers – rules matrix

•						
- T	F					
	E		=	_ =		
	I					
	-		=	=		
			_	_ = _		
			=	=		
			4			
	E = = =	=				
	F		=			
		= -	= - = =	= = 1		
	=	_ =				
	E			= =		
	F = = _ = = = = =	= = = = =				
Destant						
Rules	L			= = = = = = = = = = = = = = = = =		
	E		=	- = =		
				=- = =		
	E		-			
	F -			= =		
	⊢_ [−]			= = = = = = =		
				= 3		
	E					
	F== == = ===			= = =]		
	E –					
						
	L			= = = = = = = = = = = = = = = =		
•	0 10	30	40 50 60	70 80		
← Customers>						

9

Rules Collaborative Filtering

- Predict" rating of a rule for specific customer based on the ratings at other customers
 - Weighted by similarity between customers
- Preserve each customer policy preferences
 Avoid mean centering with average rule performance
- Measure similarity between customers according to:
 - How similar are their policies
 - How similar is their context
- Selecting the rules with the highest rating
 - Also passing a threshold that is specific to each customer



Rating of rule i at

Similarity between

Collaborative Filtering 10

Evaluation

- Metrics should be specific to application
 In this case fraud detection
- Key performance indicators are:
 - Amount of money savings due to missed fraud detection the higher the better
 - Count of false alerts the lower the better
- Each customer has its own preferences

11

- \$1000 may high amount for one customer and low amount for another
- 10 false alerts may be too high for one customer and acceptable for another
- In the end of the day, online evaluation protocol is needed to fine tune the model



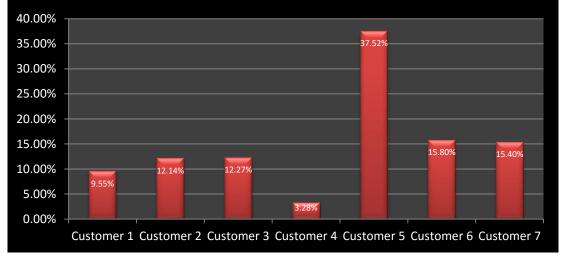
Evaluation

Rules Recommendation POC Results

Data

- 87 customers
- 306 rules
- 4 months transactions

Missed Fraud Savings Percentage



RSV

- Average increase in fraud savings: 15% (and up to 37%)
 - Adding only 9 false alerts over the test period

- Intelligence sharing is a key for fighting cyber attacks effectively
- Current intelligence sharing is very basic and manual; it is time for crowdsourcing and advanced analytics to step in
- Crowdsourcing can be leveraged in all levels of the security analyst work
 - Prioritization
 - Investigation
 - Prediction / remediation
- All these are enablers for high level co-operation that can keep the good guys one step ahead of the bad guys

Email me: zohar.duchin@rsa.com

