
Lightweight Monitoring of
Distributed Data Streams

ARNON LAISERSON

DANNY KEREN

ASSAF SCHUSTER

LIGHTWEIGHT MONITORING OF DISTRIBUTED STREAMS 1

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
FP7-ICT-2013-11 under grant agreement No 619491 and No
619435.

2

 Large scale and widespread networked
systems

 Continuous production of data

 High volume

 Dynamic nature

 Required to detect a global condition

 Often in (near) real time

Distributed Stream Networks

5/19/2016 3

Air Quality Monitoring

 Sensors monitoring the
concentration of air
pollutants.

 Each sensor holds a data vector comprising
measured concentration of various pollutants
(NO, NO2, CO, CO2, SO2, O3, etc.).

 A function on the average readings determines
the Air Quality Index (AQI)

 Issue an alert in case the AQI exceeds a given
threshold.

5/19/2016 4

Sensor Networks
 Sensors monitoring the temperature in a server

room (machine room, conference room, etc.)
 Ensure uniform temp.: monitor variance of readings

 Alert in case variance exceeds a threshold

 Temperature readings by n sensors x1, …, xn

 Each sensor holds a data vector vi = (xi
2, xi)T

 The average data vector is v =

 Var(all sensors) =
2

1 1

1 1
T

n n

i i

i i

x x
n n

2

2

1 1

1 1
n n

i i

i i

x x
n n

5/19/2016 5

Search Engine

 Distributed datacenter/warehouse
 “Our logs are larger than any other data by orders of

magnitude. They are our source of truth.” Sridhar
Ramaswamy. SIGMOD’08 keynote on “Extreme Data Mining”

 Monitoring the logs: “for which pairs of keywords
the correlation index becomes high?”
 Can change in seconds

 Thousands simultaneous tasks
 “Network bandwidth is a relatively scarce resource in

our computing environment”. Dean and Ghemawat.
MapReduce paper, OSDI’04

Cloud Health Monitoring

5/19/2016 6

Amazon Web Services » Service Health Dashboard

Amazon S3 Availability Event: July 20, 2008
Amazon S3 Availability Event: July 20, 2008

“At 8:40am PDT, error rates in all Amazon S3 datacenters began to quickly climb and
our alarms went off. By 8:50am PDT, error rates were significantly elevated and
very few requests were completing successfully. By 8:55am PDT, we had multiple
engineers engaged and investigating the issue. Our alarms pointed at problems
processing customer requests in multiple places within the system and across
multiple data centers. While we began investigating several possible causes, we tried
to restore system health... At 9:41am PDT, we determined that servers within
Amazon S3 were having problems… By 11:05am PDT, all server-to-server
communication was stopped, request processing components shut down, and the
system's state cleared…. “

http://aws.amazon.com/
http://status.aws.amazon.com/

Cloud Health Monitoring – Take 2

5/19/2016 7

Amazon Web Services » Service Health Dashboard

Summary of the Amazon EC2 and Amazon RDS Service Disruption in the US East Region

April 29, 2011

Now that we have fully restored functionality to all affected services, we would like to share more

details with our customers about the events that occurred with the Amazon Elastic Compute

Cloud (“EC2”) last week, our efforts to restore the services, and what we are doing to prevent

this sort of issue from happening again. We are very aware that many of our customers were

significantly impacted by this event, and as with any significant service issue, our intention is to

share the details of what happened and how we will improve the service for our customers.

The issues affecting EC2 customers last week primarily involved a subset of the Amazon Elastic

Block Store (“EBS”) volumes in a single Availability Zone within the US East Region that became

unable to service read and write operations. In this document, we will refer to these as “stuck”

volumes. This caused instances trying to use these affected volumes to also get “stuck” when they

attempted to read or write to them. In order to restore these volumes and stabilize the EBS cluster in that Availability Zone

http://aws.amazon.com/
http://status.aws.amazon.com/

Monitoring over dynamic, distributed, streaming data

• Research initiated in 2003

• Supported by: ISF, BSF, Google, EC 7th Program (“LIFT” 2010-2013, “FERARI”
2014-2017, “SPEEDD” 2014-2017, “VaVEL” 2016-2019), others.

• Recent publications: SIGMOD12 (dynamic case), ICDE12 (sensor networks),

TKDE12 (shape sensitive), VLDB13 (sketches), ICDE14 (skyline), NDSS14

(privacy), TKDE14 (heterogeneous case), IPDPS14 (cloud health

monitoring), VLDB15 (convex decomposition), KDD15 (Regression),

KDD16 (convex bounds).

Distributed Monitoring Model
 Distributed streams 𝑆𝑖 continuously update the local statistics vectors 𝑣𝑖 at the
nodes

 The remote nodes communicate with a designated coordinator 𝐺

 The coordinator 𝐺 must issue an alert when the global condition 𝑓
 𝑣𝑖

𝑘
≤ 𝑇 is

breached

LIGHTWEIGHT MONITORING OF DISTRIBUTED STREAMS 9

𝑣𝑘𝑣3𝑣2𝑣1

𝐺

𝑆𝑘𝑆3𝑆2𝑆1

𝑓
 𝑣𝑖
𝑘

≤ 𝑇 ? A rather general model,
which describes many
practically important
problems. Can be further
enriched by augmenting
the local vectors 𝑣𝑖 with
functions of their raw
coordinates.

Naïve monitoring
 When an update arrives at a node, the node calculates the statistics vector and
updates the coordinator

 The coordinator has the true global state at all times, and it can check for
threshold crossing

 This scheme suffers from huge
 communication overhead
 bandwidth requirement
 computational load on the nodes and on the coordinator
 energy overhead for computation and communication

 “less naïve”? Periodical update of coordinator leads to inherent tradeoff
communication vs. latency

LIGHTWEIGHT MONITORING OF DISTRIBUTED STREAMS 10

Minimizing communication - GM
[SIGMOD 2016, Best Paper Honorary Mention]

 We want to communicate only if the global condition might be breached

 The key is to decompose the global threshold condition into a set of local conditions on
the statistics vectors at the nodes.

 As long as all local conditions are upheld no communication is required. “Quiescence”

 In case one of the conditions has been violated, the nodes need to communicate in
order to resolve the violation.

 Great results but high computational complexity, problem for wireless environments

LIGHTWEIGHT MONITORING OF DISTRIBUTED STREAMS 11

Monitoring convex functions [KDD16]

 If 𝑓(𝑣𝑖) ≤ T holds at every node, it also holds that 𝑓
𝑣1+⋯+𝑣𝑛

𝑛
≤ 𝑇

 Monitoring 𝑓 (from above) is trivial – simply monitor its value at every node

𝑣1 𝑣2

𝑓

T

𝑣1 𝑣2

𝑓

T

Left: The function is convex, so if 𝑓(𝑣1) ≤ T and 𝑓(𝑣2) ≤ T then
𝑓(𝑣1)+𝑓(𝑣2)

2
≤ 𝑇 ⇒ 𝑓(

𝑣1+𝑣2

2
) ≤ 𝑇

Right: The function is non-convex 𝑓
𝑣1+𝑣2

2
> 𝑇

𝑓(𝑣1) + 𝑓(𝑣2)

2

𝑓(𝑣1) + 𝑓(𝑣2)

2

𝑓(
𝑣1+𝑣2

2
)

𝑓(
𝑣1+𝑣2

2
)

𝑓(𝑣1) 𝑓(𝑣1)

𝑓(𝑣2) 𝑓(𝑣2)

LIGHTWEIGHT MONITORING OF DISTRIBUTED STREAMS 14

Reminder:
we wish to monitor

𝑓
𝑣1+⋯+𝑣𝑛

𝑛
≤ 𝑇

𝑣1 + 𝑣2
2

𝑣1 + 𝑣2
2

Local Violations
 If the global threshold is crossed some local condition must be violated

 However a local condition may be violated, while the global condition holds

𝑣1 𝑣2

𝑓

T

𝑣1 𝑣2

𝑓

T

Local violation only. 𝑓 𝑣2 > 𝑇 , but 𝑓
𝑣1+𝑣2

2
≤ 𝑇 Local & Global violation. 𝑓 𝑣2 > 𝑇 and 𝑓

𝑣1+𝑣2

2
> 𝑇

𝑓(
𝑣1+𝑣2

2
)𝑓(𝑣1)

𝑓(𝑣2)

𝑓(𝑣1)

𝑓(𝑣2)
𝑓(
𝑣1+𝑣2

2
)

LIGHTWEIGHT MONITORING OF DISTRIBUTED STREAMS 15

Synchronization
 At t=0, the coordinator collects all the local vectors 𝑣𝑖

 It calculates the ref point − p0 =
𝑣1+⋯+𝑣𝑛

𝑛
, and updates the nodes.

 Each node adjusts it’s local vector to p0

 As updates arrive the vectors drift away from p0

𝑣1 𝑣2
𝑣1, 𝑣2 =

𝑣1+𝑣2

2

𝑓

T
At t=0 𝑓 𝑣2 > 𝑇 , but 𝑓

𝑣1+𝑣2

2
≤ 𝑇

Synchronization:

Calculate p0 =
𝑣1+𝑣2

2
, and broadcast to nodes.

𝑣1= 𝑣2 = 𝑝0 ⇒ 𝑓(𝑣1) = 𝑓(𝑣2) ≤ 𝑇.

LIGHTWEIGHT MONITORING OF DISTRIBUTED STREAMS 16

Monitoring non-convex functions
 Find a convex function c such that c(u) ≥ f(u)

 Monitor the condition c ≤ T.

 While c ≤ T also 𝑓 ≤ T

𝑓 𝑥 = 𝑥2 + 10sin(x)
𝑐 𝑥 = 𝑥2 + 10

T

LIGHTWEIGHT MONITORING OF DISTRIBUTED STREAMS 17

Reminder:
we wish to monitor

𝑓
𝑣1+⋯+𝑣𝑛

𝑛
≤ 𝑇

The Gap

False alarm!
For x = 4, we get c(4) > T, so we
must issue an alert, but f(4) ≤ T

T = 20

𝑓 𝑥 = 𝑥2 + 10sin(x)
𝑐 𝑥 = 𝑥2 + 10

LIGHTWEIGHT MONITORING OF DISTRIBUTED STREAMS 18

 We replaced 𝑓 ≤ 𝑇 by 𝑐 ≤ 𝑇 where c is convex and 𝑓 ≺ c

 Careful! False alarms. Can be eliminated
 At the price of high-complexity computation

 Hopefully, the gap is small and false alarms are rare

A “good bound”?
 It is impossible to choose a single global optimal c.

 The selection of the best tight bound depends on the ref-point

 … and on the future drift of the data streams

Both 𝑔1 and 𝑔2 are bounds of f.
The best bound depends on the ref point.
Clearly, 𝑔1 is better around 𝑝1, while 𝑔2 is
better around 𝑝2.

LIGHTWEIGHT MONITORING OF DISTRIBUTED STREAMS 19

Choosing a good bound
To gurantee correctness the function c -

 must be convex

 must bound f from above

To avoid false alarms – c should

 “Stick” to the monitored function as much as possible

To reduce communication – c must

 Leave large margins for the actual average to drift away from the ref point

LIGHTWEIGHT MONITORING OF DISTRIBUTED STREAMS 20

“Convexizing” threshold conditions

Lemma.
If f possesses bounded second derivatives in a domain D, it
can be expressed as the difference of two convex functions.

EFFICIENT MONITORING OF DISTRIBUTED STREAMS 21

Proof.
Since the elements of 𝐻𝑓 are bounded over 𝐷, there is an upper bound, 𝐵, on the absolute

values of 𝐻𝑓 ’s negative eigenvalues.

Define: 𝑐1(𝑢) = 𝑓(𝑢) +
𝑩

2
||𝑢||2, 𝑐2(𝑢) =

𝑩

2
||𝑢||2

Clearly 𝑓 = 𝑐1 − 𝑐2 and 𝑐2 is positive definite. Also, 𝐻𝑐1 = 𝐻𝑓 + 𝐻𝑐2 = 𝐻𝑓 + 𝐵𝐼

Hence all the eigenvalues of 𝐻𝑐1 are ≥ 0 and 𝑐1 is convex.

“Convexizing” threshold conditions
 Note that 𝑓 = 𝑐1 − 𝑐2 ≤ 𝑇 ⇔ 𝑐1 ≤ 𝑇 + 𝑐2

 The condition can be expressed as 𝑐1 ≤ 𝑐2 (where 𝑐2 = 𝑇 + 𝑐2)
 Notice that both 𝑐1 and 𝑐2 are convex

This condition is “convexization friendly” – replace 𝑐2 with its tangent at p0

p0

𝑐1 𝑐2

Tangent to 𝑐2 at p0
convexization

gap

EFFICIENT MONITORING OF DISTRIBUTED STREAMS 22

𝑐1

Application
 We used CB (Convex Bound) to monitor four popular functions:
 Inner product

 Pearson correlation coefficient

 Cosine similarity

 PCA Score

 These functions have great practical importance

 They have no simple, efficient monitoring solutions
 These functions are not linear, convex, concave, or monotonic

EFFICIENT MONITORING OF DISTRIBUTED STREAMS 23

Pearson correlation coefficient
PCC gives a value between -1 and 1

1 - total positive correlation. Whenever X appears Y also appears.

0 - no correlation. X and Y are totally independent, appearance of X says nothing about Y

-1 - total negative correlation. Whenever X appears Y does not appear.

Positive correlation Negative correlation No correlation

EFFICIENT MONITORING OF DISTRIBUTED STREAMS 24

Convexizing Pearson
 Assume T >0 , the condition

𝑧−𝑥𝑦

𝑥−𝑥2 𝑦−𝑦2
≤ 𝑇 can be written as :

𝑧 − 𝑇 𝑥 − 𝑥2 𝑦 − 𝑦2 − 𝑥𝑦 ≤ 0

 𝑥𝑦 is neither convex nor concave, so we use 𝑥𝑦 =
(𝑥+𝑦)2

4
-
(𝑥−𝑦)2

4
, to get:

𝑧 − 𝑇 𝑥 − 𝑥2 𝑦 − 𝑦2 + 𝑄2 − 𝑄1 ≤ 0

 This is difference between two convex functions – easy to convexize

convex

Q1 (convex)

convex convex

Q2 (convex)

EFFICIENT MONITORING OF DISTRIBUTED STREAMS 25

Convexizing Pearson
A concave lower bound (blue) for PCC (green).
The reference point (in red) is x0 = 0.3, y0 = 0.6,
and T = 0.4.

EFFICIENT MONITORING OF DISTRIBUTED STREAMS 26

Evaluation
Data: three real-life data sets:

 Reuters Corpus (RCV1-v2) - processed by Lewis et al
 804,414 categorized news documents , 47,236 features

Twitter crawl (Dataset-UDI-TwitterCrawlAug2012) - by Li et al.

 KDD Cup 1999

EFFICIENT MONITORING OF DISTRIBUTED STREAMS 27

Worst case runtime for a single check Overall runtime for monitoring the entire stream

Function Runtime (milliseconds) Speedup

GM CB

PCC 580 0.067 8x103

Inner-prod 1.82 0.089 20

CSIM 170,000 0.167 106

Function Runtime (minutes) Speedup

GM CB

PCC 4740 4 103

Inner-prod 200 68 3

CSIM NA 130 NA

Over 3 days!

Power Consumption

EFFICIENT MONITORING OF DISTRIBUTED STREAMS 28

1

10

100

1000

10000

100000

1000000

10000000

100000000

full kernel full kernel full kernel kernel

IP PCC PCA CSIM

En
er

gy
 -

m
W

h

Mini-PC
CB GM

1

10

100

1000

10000

full kernel full kernel

IP PCC

En
er

gy
 -

m
W

h

Edison
CB GM

Communication Reduction

EFFICIENT MONITORING OF DISTRIBUTED STREAMS 29

communication reduction results for the Inner-prod
function on TWIT, using 200 to 1000 nodes.
All methods improve as the number of nodes grow. CB
remains closer to the RLV bound and maintains its
advantage over GM.

Communication ratio to the naive for CB and GM, and a
super-optimal lower bound RLV. Each bar represents
results across multiple thresholds and datasets. CB is
always better than GM and very close to the lower
bound. Csim lacks results for GM as the experiments did
not complete in over 24 hours

Summary
 A new method for monitoring threshold functions
over distributed streams

 Runtime lower by orders of magnitude compared
to state of the art

 Reduced communication overhead

Future work:
 Further applications
 Alternative methods to “convexize” monitoring

problems
 Implementation on smart systems, IoT

EFFICIENT MONITORING OF DISTRIBUTED STREAMS 30

