
Lightweight Monitoring of 
Distributed Data Streams

ARNON LAISERSON

DANNY KEREN

ASSAF SCHUSTER

LIGHTWEIGHT MONITORING OF DISTRIBUTED STREAMS 1

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
FP7-ICT-2013-11 under grant agreement No 619491 and No
619435.



2

 Large scale and widespread networked 
systems

 Continuous production of data

 High volume

 Dynamic nature

 Required to detect a global condition

 Often in (near) real time

Distributed Stream Networks
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Air Quality Monitoring

 Sensors monitoring the 
concentration of air
pollutants.

 Each sensor holds a data vector comprising 
measured concentration of various pollutants 
(NO, NO2, CO, CO2, SO2, O3, etc.).

 A function on the average readings determines 
the Air Quality Index (AQI)

 Issue an alert in case the AQI exceeds a given 
threshold.
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Sensor Networks
 Sensors monitoring the temperature in a server 

room (machine room, conference room, etc.)
 Ensure uniform temp.: monitor variance of readings

 Alert in case variance exceeds a threshold

 Temperature readings by n sensors x1, …, xn

 Each sensor holds a data vector vi = (xi
2, xi )T

 The average data vector is  v =

 Var(all sensors) = 
2

1 1

1 1
T

n n

i i

i i

x x
n n

 

 
 
 
 
 

2

2

1 1

1 1
n n

i i

i i

x x
n n

 

 
 
 
 

 



5/19/2016 5

Search Engine 

 Distributed datacenter/warehouse
 “Our logs are larger than any other data by orders of 

magnitude. They are our source of truth.” Sridhar 
Ramaswamy. SIGMOD’08 keynote on “Extreme Data Mining”

 Monitoring the logs: “for which pairs of keywords 
the correlation index becomes high?”
 Can change in seconds

 Thousands simultaneous tasks
 “Network bandwidth is a relatively scarce resource in 

our computing environment”. Dean and Ghemawat.
MapReduce paper, OSDI’04



Cloud Health Monitoring
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Amazon Web Services » Service Health Dashboard

Amazon S3 Availability Event: July 20, 2008
Amazon S3 Availability Event: July 20, 2008

“At 8:40am PDT, error rates in all Amazon S3 datacenters began to quickly climb and 
our alarms went off. By 8:50am PDT, error rates were significantly elevated and 
very few requests were completing successfully. By 8:55am PDT, we had multiple 
engineers engaged and investigating the issue. Our alarms pointed at problems 
processing  customer requests in multiple places within the system and across 
multiple data centers. While we began investigating several possible causes, we tried 
to restore system health...   At 9:41am PDT, we determined that servers within 
Amazon S3 were having problems…   By 11:05am PDT, all server-to-server 
communication was stopped, request processing components shut down, and the 
system's state cleared….  “

http://aws.amazon.com/
http://status.aws.amazon.com/


Cloud Health Monitoring – Take 2
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Amazon Web Services » Service Health Dashboard

Summary of  the Amazon EC2 and Amazon RDS Service Disruption in the US East Region 

April 29, 2011

Now that we have fully restored functionality to all affected services, we would like to share more 

details with our customers about the events that occurred with the Amazon Elastic Compute 

Cloud (“EC2”) last week, our efforts to restore the services, and what we are doing to prevent 

this sort of  issue from happening again. We are very aware that many of  our customers were 

significantly impacted by this event, and as with any significant service issue, our intention is to 

share the details of  what happened and how we will improve the service for our customers.

The issues affecting EC2 customers last week primarily involved a subset of  the Amazon Elastic 

Block Store (“EBS”) volumes in a single Availability Zone within the US East Region that became 

unable to service read and write operations. In this document, we will refer to these as “stuck” 

volumes. This caused instances trying to use these affected volumes to also get “stuck” when they 

attempted to read or write to them. In order to restore these volumes and stabilize the EBS cluster in that Availability Zone

http://aws.amazon.com/
http://status.aws.amazon.com/


Monitoring over dynamic, distributed, streaming data

• Research initiated in 2003

• Supported by: ISF, BSF, Google, EC 7th Program (“LIFT” 2010-2013, “FERARI” 
2014-2017, “SPEEDD” 2014-2017, “VaVEL” 2016-2019), others.

• Recent publications:  SIGMOD12 (dynamic case), ICDE12 (sensor networks),

TKDE12 (shape sensitive), VLDB13 (sketches), ICDE14 (skyline), NDSS14 

(privacy), TKDE14 (heterogeneous  case), IPDPS14 (cloud health 

monitoring), VLDB15 (convex decomposition), KDD15 (Regression), 

KDD16 (convex bounds).



Distributed Monitoring Model
 Distributed streams 𝑆𝑖 continuously update the local statistics vectors 𝑣𝑖 at the 
nodes

 The remote nodes communicate with a designated coordinator 𝐺

 The coordinator 𝐺 must issue an alert when the global condition 𝑓
 𝑣𝑖

𝑘
≤ 𝑇 is 

breached
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𝑣𝑘𝑣3𝑣2𝑣1

𝐺

𝑆𝑘𝑆3𝑆2𝑆1

𝑓
 𝑣𝑖
𝑘

≤ 𝑇 ? A rather general model, 
which describes many 
practically  important 
problems. Can be further 
enriched by augmenting 
the local vectors 𝑣𝑖 with  
functions of their raw 
coordinates.



Naïve monitoring
 When an update arrives at a node, the node calculates the statistics vector and 
updates the coordinator

 The coordinator has the true global state at all times, and it can check for 
threshold crossing

 This scheme suffers from huge
 communication overhead
 bandwidth requirement 
 computational load on the nodes and on the coordinator
 energy overhead for computation and communication 

 “less naïve”? Periodical update of coordinator leads to inherent tradeoff 
communication vs. latency
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Minimizing communication - GM 
[SIGMOD 2016, Best Paper Honorary Mention]

 We want to communicate only if the global condition might be breached

 The key is to decompose the global threshold condition into a set of local conditions on 
the statistics vectors at the nodes. 

 As long as all local conditions are upheld no communication is required. “Quiescence”

 In case one of the conditions has been violated, the nodes need to communicate in 
order to resolve the violation.

 Great results but high computational complexity, problem for wireless environments
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Monitoring convex functions [KDD16]

 If 𝑓(𝑣𝑖) ≤ T holds at every node,  it also holds that 𝑓
𝑣1+⋯+𝑣𝑛

𝑛
≤ 𝑇

 Monitoring 𝑓 (from above) is trivial – simply monitor its value at every node

𝑣1 𝑣2

𝑓

T

𝑣1 𝑣2

𝑓

T

Left: The function is convex, so if 𝑓(𝑣1) ≤ T and 𝑓(𝑣2) ≤ T then  
𝑓(𝑣1)+𝑓(𝑣2)

2
≤ 𝑇 ⇒ 𝑓(

𝑣1+𝑣2

2
) ≤ 𝑇

Right: The function is non-convex 𝑓
𝑣1+𝑣2

2
> 𝑇

𝑓(𝑣1) + 𝑓(𝑣2)

2

𝑓(𝑣1) + 𝑓(𝑣2)

2

𝑓(
𝑣1+𝑣2

2
)

𝑓(
𝑣1+𝑣2

2
)

𝑓(𝑣1) 𝑓(𝑣1)

𝑓(𝑣2) 𝑓(𝑣2)
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Reminder:
we wish to monitor 

𝑓
𝑣1+⋯+𝑣𝑛

𝑛
≤ 𝑇

𝑣1 + 𝑣2
2

𝑣1 + 𝑣2
2



Local Violations
 If the global threshold is crossed some local condition must be violated

 However a local condition may be violated, while the global condition holds

𝑣1 𝑣2

𝑓

T

𝑣1 𝑣2

𝑓

T

Local violation only. 𝑓 𝑣2 > 𝑇 , but 𝑓
𝑣1+𝑣2

2
≤ 𝑇 Local & Global violation. 𝑓 𝑣2 > 𝑇 and 𝑓

𝑣1+𝑣2

2
> 𝑇

𝑓(
𝑣1+𝑣2

2
)𝑓(𝑣1)

𝑓(𝑣2)

𝑓(𝑣1)

𝑓(𝑣2)
𝑓(
𝑣1+𝑣2

2
)
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Synchronization
 At t=0, the coordinator collects all the local vectors 𝑣𝑖

 It calculates the ref point − p0 =
𝑣1+⋯+𝑣𝑛

𝑛
, and updates the nodes.

 Each node adjusts it’s local vector to p0

 As updates arrive the vectors drift away from p0

𝑣1 𝑣2
𝑣1, 𝑣2 =

𝑣1+𝑣2

2

𝑓

T
At t=0 𝑓 𝑣2 > 𝑇 , but 𝑓

𝑣1+𝑣2

2
≤ 𝑇

Synchronization:

Calculate  p0 =
𝑣1+𝑣2

2
, and broadcast to nodes.

𝑣1= 𝑣2 = 𝑝0 ⇒ 𝑓(𝑣1) = 𝑓(𝑣2) ≤ 𝑇.  
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Monitoring non-convex functions
 Find a convex function c such that c(u) ≥ f(u)

 Monitor the condition c ≤ T.

 While c ≤ T also 𝑓 ≤ T

𝑓 𝑥 = 𝑥2 + 10sin(x)
𝑐 𝑥 = 𝑥2 + 10

T
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Reminder:
we wish to monitor 

𝑓
𝑣1+⋯+𝑣𝑛

𝑛
≤ 𝑇



The Gap

False alarm!
For x = 4, we get c(4) > T, so we 
must issue an alert, but f(4) ≤ T

T = 20

𝑓 𝑥 = 𝑥2 + 10sin(x)
𝑐 𝑥 = 𝑥2 + 10
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 We replaced 𝑓 ≤ 𝑇 by 𝑐 ≤ 𝑇 where c is convex and 𝑓 ≺ c

 Careful! False alarms. Can be eliminated 
 At the price of high-complexity computation

 Hopefully, the gap is small and false alarms are rare



A “good bound”?
 It is impossible to choose a single global optimal c.

 The selection of the best tight bound depends on the ref-point

 … and on the future drift of the data streams

Both 𝑔1 and 𝑔2 are bounds of f. 
The best bound depends on the ref point.
Clearly, 𝑔1 is better around 𝑝1, while 𝑔2 is 
better around 𝑝2.
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Choosing a good bound
To gurantee correctness the function c -

 must be convex

 must bound f from above

To avoid false alarms – c should

 “Stick” to the monitored function as much as possible

To reduce communication – c must

 Leave large margins for the actual average to drift away from the ref point
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“Convexizing” threshold conditions

Lemma. 
If f possesses bounded second derivatives in a domain D, it 
can be expressed as the difference of two convex functions.
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Proof. 
Since the elements of 𝐻𝑓 are bounded over 𝐷, there is an upper bound, 𝐵, on the absolute 

values of 𝐻𝑓 ’s negative eigenvalues.

Define: 𝑐1(𝑢) = 𝑓(𝑢) +
𝑩

2
||𝑢||2, 𝑐2(𝑢) =

𝑩

2
||𝑢||2

Clearly 𝑓 = 𝑐1 − 𝑐2 and 𝑐2 is positive definite. Also, 𝐻𝑐1 = 𝐻𝑓 + 𝐻𝑐2 = 𝐻𝑓 + 𝐵𝐼

Hence all the eigenvalues of 𝐻𝑐1 are ≥ 0 and 𝑐1 is convex.



“Convexizing” threshold conditions
 Note that 𝑓 = 𝑐1 − 𝑐2 ≤ 𝑇 ⇔ 𝑐1 ≤ 𝑇 + 𝑐2

 The condition can be expressed as 𝑐1 ≤  𝑐2 (where  𝑐2 = 𝑇 + 𝑐2)
 Notice that both 𝑐1 and  𝑐2 are convex

This condition is “convexization friendly” – replace  𝑐2 with its tangent at p0

p0

𝑐1  𝑐2

Tangent to  𝑐2 at p0
convexization

gap

EFFICIENT MONITORING OF DISTRIBUTED STREAMS 22

𝑐1



Application
 We used CB (Convex Bound) to monitor four popular functions:
 Inner product

 Pearson correlation coefficient

 Cosine similarity

 PCA Score

 These functions have great practical importance

 They have no simple, efficient monitoring solutions 
 These functions are not linear, convex, concave, or monotonic
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Pearson correlation coefficient
PCC gives a value between -1 and 1

1 - total positive correlation. Whenever X appears Y also appears.

0 - no correlation. X and Y are totally independent, appearance of X says nothing about Y

-1 - total negative correlation. Whenever X appears Y does not appear.

Positive correlation Negative correlation No correlation
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Convexizing Pearson
 Assume T >0 , the condition 

𝑧−𝑥𝑦

𝑥−𝑥2 𝑦−𝑦2
≤ 𝑇 can be written as :

𝑧 − 𝑇 𝑥 − 𝑥2 𝑦 − 𝑦2 − 𝑥𝑦 ≤ 0

 𝑥𝑦 is neither convex nor concave, so we use 𝑥𝑦 =
(𝑥+𝑦)2

4
-
(𝑥−𝑦)2

4
, to get:

𝑧 − 𝑇 𝑥 − 𝑥2 𝑦 − 𝑦2 + 𝑄2 − 𝑄1 ≤ 0

 This is difference between two convex functions – easy to convexize

convex

Q1 (convex)

convex convex

Q2 (convex)
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Convexizing Pearson
A concave lower bound (blue) for PCC (green). 
The reference point (in red) is x0 = 0.3, y0 = 0.6, 
and T = 0.4.
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Evaluation
Data: three real-life data sets:

 Reuters Corpus (RCV1-v2) - processed by Lewis et al
 804,414 categorized news documents , 47,236 features

Twitter crawl (Dataset-UDI-TwitterCrawlAug2012) - by Li et al.

 KDD Cup 1999 
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Worst case runtime for a single check Overall runtime for monitoring the entire stream

Function Runtime (milliseconds) Speedup

GM CB

PCC 580 0.067 8x103

Inner-prod 1.82 0.089 20

CSIM 170,000 0.167 106

Function Runtime (minutes) Speedup

GM CB

PCC 4740 4 103

Inner-prod 200 68 3

CSIM NA 130 NA

Over 3 days!



Power Consumption
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Communication Reduction
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communication reduction results for the Inner-prod 
function on TWIT, using 200 to 1000 nodes. 
All methods improve as the number of nodes grow. CB 
remains closer to the RLV bound and maintains its 
advantage over GM. 

Communication ratio to the naive for CB and GM, and a 
super-optimal lower bound RLV. Each bar represents 
results across multiple thresholds and datasets. CB is 
always better than GM and very close to the lower 
bound. Csim lacks results for GM as the experiments did 
not complete in over 24 hours



Summary
 A new method for monitoring threshold functions 
over distributed streams

 Runtime lower by orders of magnitude compared 
to state of the art

 Reduced communication overhead

Future work: 
 Further applications
 Alternative methods to “convexize” monitoring 

problems
 Implementation on smart systems, IoT

EFFICIENT MONITORING OF DISTRIBUTED STREAMS 30




