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 The MUSEEC (MUltilingual SEntence Extraction and Compression) summarization tool 

implements several extractive summarization techniques – at the level of complete and 

compressed sentences – that can be applied, with some adaptations, to documents in multiple 

languages. MUSEEC currently supports three languages (English, Hebrew and Arabic) and 

provides the following summarization methods:  

 

 1.  MUSE (MUltilingual Sentence Extractor) (Last and Litvak, 2012) – a supervised 

summarizer, based on a genetic algorithm (GA), that ranks document sentences and extracts top–

ranking sentences into a summary.  MUSE implements a supervised learning approach to 

extractive summarization, where the best set of weights for a linear combination of sentence 

scoring metrics is found by a GA trained on a collection of documents and their gold standard 

summaries. MUSE training can be performed from the MUSEEC tool. The obtained weighting 

vector is used for sentence scoring in future summarizations. In the MultiLing 2015 competition 

of multilingual summarization tools, MUSE has outperformed all other participating systems on 

English and Arabic corpora, and all systems, except one, on the Hebrew corpus in the single-

document summarization task. In the multi-document summarization task, on the other hand, 

MUSE has outperformed all systems on the Hebrew corpus, and all systems, except one, on 

English and Arabic corpora. The user can choose a subset of sentence metrics that will be 

included by MUSE in the linear combination. By default, MUSEEC will use the 31 language-

independent metrics presented in (Last and Litvak, 2012). MUSEEC also allows the user to 

employ additional, linguistic features, which are currently available only for the English 

language. These features are based on lemmatization, multi-word expressions (MWE), named 

entity recognition (NER), and Part-of-Speech tagging (POS), all performed with Stanford 

CoreNLP package for English. 

 

 2. POLY (POLYnomial summarizer using POLYtopes) (Litvak and Vanetik, 2013) – an 

unsupervised summarizer, based on linear programming (LP), that selects the best extract of 

document sentences. Following the maximum coverage principle, the goal of POLY is to find the 

best subset of sentences that, under length constraints, can be presented as a summary. It is 

obvious that the number of potential extracts is exponential in the number of sentences. 

Therefore, POLY uses an efficient text representation model with the purpose of representing all 

possible extracts without computing them explicitly. This approach saves a great portion of 

computation time. Each sentence is represented by a hyperplane, and all sentences derived from 

a document form hyperplane intersections (polytope). Then, all possible extracts can be 

represented by subplanes of hyperplane intersections that are located close to the boundary of the 

polytope. Intuitively, the boundary of the resulting polytope is a good approximation for extracts 

that can be generated from a given document. 

 



 3. WECOM (WEighted COMpression) (Vanetik et al., 2016) – an unsupervised 

summarizer that compiles a document summary from compressed sentences. We propose to 

shorten sentences by iteratively removing Elementary Discourse Units – EDUs (grammatically 

independent parts of a sentence (Marcu, 1997)). We preserve the important content by 

optimizing the weighting function that measures cumulative importance and preserves a valid 

syntactic structure of a sentence. The implemented approach consists of the following steps: 

weight assignment to each term occurrence in the document, preparing and ranking the list of 

candidate EDUs for removal, and iteratively removing the least significant EDUs from the 

summary, subject to the summary length constraint. 

 

 Tables 1, 2, and 3 contain the summarized results of automated evaluations for the 

MultiLing 2015, single-document summarization (MSS) task. The quality of the summaries is 

measured by ROUGE-1 (Recall, Precision, and F-measure), (C.-Y, 2004). We also demonstrate 

the absolute ranks of each submission–P-Rank, R-Rank, and F-Rank–with their scores sorted by 

Precision, Recall, and F-measure, respectively. Only the best submissions (in terms of F- 

measure) for each participating system are presented and sorted in descending order of their F-

measure scores. As can be seen, MUSE outperformed all other participating systems except for 

CCS in Hebrew. MUSEEC also participated in the multidocument summarization (MMS) task, 

on English, Hebrew and Arabic. MUSE got first place on Hebrew, and 2nd places on English 

and Arabic languages, out of 9 participants. POLY got third place on Hebrew, 4th place on 

English, and 5th place on Arabic languages, out of 9 participants. Table 4 contains results for 

POLY and WECOM summarizers on the DUC 2002 dataset. Statistical testing (using a paired T-

test) showed that there is a significant improvement in ROUGE-1 recall between ILP concept-

based extraction method of Gillick and Favre (2009) and WECOM with weights generated by 

Gillick and Favre’s method. Another significant improvement is between ILP extraction method 

of McDonald (2007) and WECOM with weights generated by McDonald’s method. 
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Table 1: MSS task. English. 

 

 
Table 2: MSS task. Hebrew. 

 

 
Table 3: MSS task. Arabic 

 

 
Table 4: ROUGE-1 and -2 scores. DUC2002. 

 


