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Abstract 

In order to study the neurobiological 
mechanisms of learning, we developed a research 
tool that includes the brainstem of a lamprey and a 
two-wheeled robot interconnected in a closed loop. 
Two electrodes applied stimulations to the neural 
tissue. The stimulation frequency was set to be 
proportional to the light intensity measured by 
sensors on the right and left sides of the mobile 
robot.  The velocity commands to the right and left 
wheels were proportional to the population spike 
rates recorded by two recording electrodes.  In most 
cases, the robot moved approximately in the 
direction of the source of light.  

We fitted ten two-input/two-output neural 
network models and observed the generalization 
error of each model.  We found that a dynamic 
model was significantly superior to a static model 
even when the number of parameters was smaller. 
Additional findings led us to conclude that the main 
origin of this dynamic behavior is local ipsilateral 
influence of the previous state on the current state.  
An analysis of the model that fits adaptive behavior 
of the preparation showed a significant change in 
one of the recurrent connections.  We discuss these 
results in the context of possible cellular 
mechanisms that might explain the behavior of this 
neuro-robotic preparation. 

1.  Introduction 
Interconnecting artificial systems to the human 

body is an old engineering dream with promising 
applications for the physically disabled and for extending 
the functionality of the old as well as the young (see Levine 
et al. 2002).  The crown of this research is the attempt to 
interconnect and augment the human brain.  Recent studies 
in monkeys showed that the information measured in the 
motor cortex could be used to guide a robotic arm or to 
move a computer cursor. (Wessberg et al. 2000, Mussa-
Ivaldi 2000, Serruya et al. 2002).  However, teaching a 
monkey (that sees the robotic arm) to control it is still a 
daunting task (Helms Tillery et al. 2001, Taylor and 
Schwartz 2001).  In order to study adaptation in a simple 
biological motor control system, we have developed a 
research tool that includes a portion of living brain tissue of 
a lamprey and a two-wheeled robot interconnected in a 
closed loop (Reger et al. 2000). 

The Lamprey is an eel-like fish, whose nervous 
system has been extensively studied particularly for what 
concerns its ability to generate and modulate locomotor 
behavior  (Grillner et al. 2000).  We have selected a portion 
of the neural circuitry that in normal circumstances 
receives vestibular and other sensory signals and issues 
motor commands to stabilize the orientation of the body 
during swimming (Rovainen 1979, Deliagina 1997).  This 
system has been shown to be adaptive, as unilateral lesions 
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of the vestibular capsules are followed by a slow 
reconfiguration of neuronal activities until the correct 
postural control is recovered (Deliagina 1997).   

In our hybrid system, vestibular signals were 
replaced by light intensity signals.  Two electrodes applied 
stimulations to the axons of the octavomotor nuclei.  The 
stimulations rates were proportional to the light intensity 
measured by sensors on the right and left sides of the 
mobile robot.  The mobile robot has two wheels that 
received velocity commands proportional to the population 
spike rates recorded by two electrodes in the spinal cord.  
Therefore, the natural stabilizing behavior – in which the 
lamprey tracks the vertical axis – corresponds, in the hybrid 
system to tracking a source of light.  Indeed in most cases 
the robot moved towards the source of light. 

The nervous system between the four electrodes 
assumed the function of a controller, with two inputs and 
two outputs that determine the behavior of the robot in a 
closed feedback loop.  In this paper we concentrate on the 
analysis of various possible neuronal models for this 
controller.  Section 2 describes the hybrid system, i.e., the 
neuronal preparation, the robot and the interface (see also 
Reger et al. 2000).  Section 3 describes the experimental 
protocol, and section 4 describes the data analysis and the 
various models that were considered.  Then the results are 
presented in section 5 and discussed in section 6. 

2. The hybrid system 
The system includes three elements: neuronal 

preparation, a robot and an interface (Figure 1). 

2.1  The neuronal preparation 
The neural component of the hybrid system is a 

portion of the brainstem of the Sea Lamprey (Petromyzon 
marinus) in its larval state. After anesthetizing the larvae 
with tricane methanesulphonate, the whole brain was 
dissected and maintained in continuously superfused, 
oxygenated and refrigerated Ringer's solution; details in 
Alford et al. (1995). 
We recorded extracellularly the activity of neurons in a 
region of the reticular formation, a relay that connects 
different sensory systems (visual, vestibular, tactile) and 
central commands to the motor centers of the spinal cord.  
We placed two recording electrodes in the axons of the 
right and left Posterior Rhombencephalic Reticular Nuclei 
(PRRN). We also placed two unipolar tungsten stimulation 
electrodes among the axons of the Intermediate and 
Posterior Octavomotor nuclei (nOMI and  nOMP). These 
nuclei receive inputs from the vestibular capsule and their 
axons form synapses with the rhombencephalic neurons on 
both sides of the midline.  The recorded signals were 
acquired at 10kHz by a data acquisition board (National 
Instruments PCI-MIO-16E4) on a Pentium II 200MHz 
computer (Dell Computer Corp.). 
  

       
 

 
Figure 1:  The Hybrid system:  The neuronal preparation, a 

lamprey’s brainstem in a physiological solution (Top-left).  The 
two-wheeled robot (Khepera module, Top-right).  The interface 
(Bottom) between the robot (right) and the Lamprey preparation 

(left) implemented in LabVIEW. 

 
While the axons of the nOMI remain ipsilateral, 

those of the nOMP cross the midline.  As a result, the 
activity of one vestibular capsule affects both the ipsi- and 
contralateral reticulospinal (RS) nuclei.   We placed each 
stimulating electrode near the region in which the axons of 
the nOMI and nOMP cross.  This placement of the 
electrodes also induced predominantly excitatory responses 
in the downstream neurons.  The recording electrodes were 
placed on either side of the midline, near the visually 
identified neurons of the PRRN.  To verify the placement 
of the stimulating electrodes we delivered brief single 
stimulus pulses (200µs) and observed the response in both 
the ipsi- and contralateral PRRN neurons.  Once it was 
determined that the stimulation electrodes were properly 
placed, the recording electrodes were moved caudally in 
order to pick up population spikes.  In some experiments, 
the stimulation had a biphasic (negative current followed 
by a positive current) rather than a monophasic (negative 
current only) waveform.  The biphasic stimulation was 
used because it causes less charge buildup and less redox 
reaction at the stimulating electrode surface.  This has the 
effect of increasing the length of time the preparation is 
stable and decreasing the likelihood of tissue damage 
during the barrage of stimuli that accompanies “sensing” 
and moving in the robot. 
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2.2 The robot and the workspace 
The robot system is the base Khepera module (K-

Team; Figure 1).  Its small size allowed us to use a small 
workspace (Figure 2).  A circular wall was constructed 
with a 2 foot diameter and then painted black to reduce the 
amount of reflected light.  Placed along the circumference 
of the robot are eight sensors each providing proximity and 
light intensity information.  The sensors are located on 
opposite sides of the robot's midline at 10,o 45o, 85o, and 
165o from the front position.  Two wheels provide a means 
of locomotion for the small robot.  Our computer system 
communicates with the robot through the serial port and a 
custom designed LabVIEW© application.  Eight lights are 
mounted at the edge of the robot workspace at 45o 
intervals.  The lights are computer controlled using the 
digital outputs of our acquisition card.  These lights 
generate the stimulus that elicits a phototactic response. 

 
Figure 2:  The robot in the workspace and typical screen of the 
LabView program that implement the interface to the neuronal 

tissue of the Lamprey. 

2.3 The interface 
The interface acts as an interpreter between the 

neural signals and the robot control system (Figure 1).  It is 
responsible for the transformation of the robot’s light 
sensor information into vestibular inputs and then 
processing in real time the neural activity of the reticulo-
spinal nuclei and translating it into motor commands for 
the robot.   

The light intensities detected by the robot sensors 
determine the frequencies at which the right and left 
vestibular pathways are stimulated.  As stated above, there 
are eight light sensors on the robot.  We weight the sensors 
to give the greatest strength to sources of light that come at 
45o and to ignore the rear sensors.  The weighted sum of 
the sensors on each side is multiplied by a gain factor, 
which determines the maximum stimulation frequency. The 
final result is the frequency at which we stimulate each 
side. We use the digital counter on the acquisition board to 
generate a pulse train.  This pulse train is delivered to the 
neural preparation by the tungsten electrodes after passing 
through ISO-Flex stimulus isolators. 

The spiking activities of the PRRN as recorded 
near the axons are analyzed through a five steps process 
(Figure 1).  The signal picked up by the recording 
electrodes contains a combination of spikes, stimulus 
artifacts, excitatory and inhibitory postsynaptic potentials 
(PSP) and noise.  To suppress the slow PSP components, 
this signal is first put through a high pass filter (cutoff at 
200 Hz).  The output of this filter contains high frequency 
noise, stimulus artifacts, and the spikes generated by 
multiple neurons in the vicinity of the electrode. Stimulus 
artifacts are canceled by zeroing the recorded signals over 
temporal windows of 4 ms following the delivery of each 
200 µs triggering pulse.  The remaining signal is rectified, 
and a threshold is applied to separate the spikes from the 
background noise - under the assumption that the spike 
amplitude is much larger than the noise amplitude.  The 
resulting train of spikes is put through a low pass filter (5 
Hz), which effectively generates a rate coded signal.  The 
mean of this signal over 300 milliseconds is used as a 
velocity control signal for each of the robot's wheels. 

3. Experimental protocol 

3.1 Interface calibration 
The interface was calibrated so as to account for 

random differences between the recorded responses from 
the left and right side of the brainstem.  Indeed, the net 
intensity of the signal picked up by each electrode is 
affected by a number of uncontrollable factors, such as the 
actual distance from signal sources. To compensate for 
these random factors, we made the working assumption 
that when both left and right sides are stimulated at the 
same frequency, the same motor response should be 
obtained on each side of the robot.  This corresponds to 
considering all initial asymmetries between right and left 
side as accidental features of no significance.  Accordingly, 
all initial difference between right and left responses to the 
same right and left signals were balanced by regulating two 
output gains. 

In most cases, the right and left sides of the neural 
preparation were connected both in input and in output 
with the corresponding sides of the robot (direct mode).  
However, in some cases it was necessary to implement a 
reverse mode option.  When connected in reverse mode, 
the right recording electrode is connected through the 
interface to the controller of the left wheel and vice versa. 

3.2 Plasticity Protocol 
Following studies that demonstrated compensation 

in behaving lampreys (Deliagina 1997), we tested the 
hypothesis that we could induce a plastic change in neural 
connections using the following protocol: First, we 
electronically “blinded” the left side of the robot by 
substantially reducing the gain of the light sensors on the 



The SAB'2002 Workshop on Motor Control in Humans and Robots: on the interplay of real brains and artificial devices.   Edinburgh, Scotland, 2002 

’s 
brain is the following static linear model (see Fi re 3a). 

left side of the robot from 1.0 to 0.1.  Thus, all stimulation 
to the left side of the lamprey PRRN was eliminated, 
simulating a unilateral labyrinthectomy or lesion in the 
lamprey.  Next, the robot moved about the workspace for 
20 min, guided by random stimulation provided by either 
following a flashlight held by the experimenter or moving 
toward the workspace perimeter lights after starting from 
the center of the workspace.  Trajectory sets were measured 
(with the gain of the left light sensors at 1.0) for an hour 
before the plasticity protocol and for an hour afterwards 
allowing a resting period of 5-10 minutes between 
trajectory sets.   

4. Neuronal Models 
The purpose of the hybrid system is to investigate 

the computational properties of neural tissue.  For each 
individual experiment, we obtained a model of the 
empirical input/output transformation for the left and right 
PRRN by fitting a bivariate function to the light sensor data 
(stimulus/input) and wheel motor commands 
(response/output).  In this section we describe the various 
models that were considered and the data for the fitting and 
testing procedure. 

4.1  Ten models 
Each model is a two inputs two outputs system.  

Let uL and uR indicate light intensity transformed into the 
frequencies of the stimuli delivered by the left and right 
electrodes and let yL and yR indicate the firing rates 

recorded in response to these stimuli from the right and left 
PRRNs transformed into wheel speeds directed to the 
robot’s wheels. Then, a simple model for the lamprey

gu
)1()1()( −+−= nuwnuwny RLRLLLL  

)1()1()( −+−= nuwnuwny RRRLRLR  
The parameters, wij, were determined by least-

square approximation of the input/output data and form 
collectively a 2 × 2 matrix W.  The elements of W can be 
considered as connection weights between vestibular axons 
and reticular neurons.  Positive weights represent excitatory 
connections and negative weights inhibitory connections.  
This simple linear static model (Figure 3a) can generate 
various behaviors, such as moving towards a light, away 
form the light or circling a light source (see Braitenberg 
1984).  We used this model as a baseline and compared the 
performance of other more complex models to this linear 
static model. For each lamprey and in each condition 
during the experiment, the data of one set of trajectories 
(testing set) were not used for the fitting. The parameters 
that best approximated the rest of the data (fitting set) were 
used to predict the network output over this testing set of 
trajectories.  This procedure was repeated for each set of 
trajectories in order to achieve a good estimate of both 
fitting an

e also considered nonlinear functions of the 
inputs,   

d testing (i.e., generalization) errors.      
W

{ })1(),1()( −−= nunuPny RLLL  
n { })1(),1()( −−= nunuPy RLRR  
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Figure 3:  Models for the Lamprey’s brainstem circuits between the electrodes.   a. Static linear model.   b.  Static polynomial model.  
c.  Dynamic linear model.   d.  Dynamic model with polynomial input function.   e.  Dynamic linear model without ipsilateral 

dynamic connections.   f.  Dynamic linear model without contralateral dynamic connections. 
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functions are known to be capable of approximating any 
smooth function).  For example a second order polynomial 
model took the following form: 

ters; 
3rd degr

rst order 
dynamic model was the following (see Figure 3c) 

e considered four static models, 
and six dynamic models.  

4.2 The data for fitting and testing 

fitting, s

eneralization errors were the output 
of this data analysis.  

4.3 Simulation of the whole system 

) with a continuous model for the 
robot an

er static (Figure 3a,b) or first order dynamic 
(Figure 3c-f). 

5. Results 

 order to account for 
behavior as well as for plasticity.     

5.1 Dynamic properties 
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In this study, we considered polynomials up to the 
4th degrees. The number of parameters increased with 
polynomial degrees as follows: 2nd degree, 10 parame
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ee, 18 parameters; 4th degree, 28 parameters. 
Furthermore, we explored the additional 

explanatory power of linear dynamic models, i.e., models 
that take into account the previous neuronal activity and 
therefore represents recurrent loops and/or memory 
phenomenon in the time scale of seconds.  The fi
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We then considered polynomial input functions as 

described above with the dynamic model, and finally, since 
the first order static model was found to be most 
appropriate, we also explored the role of ipsilateral and 
contralateral connections by considering two models that 
included only one type of these connections (see Figure 
3e,f).  Altogether we hav

)1()1()( +−+−= nuwnuwny RRRLRLR

The basic set of data is a single trajectory of the 
robot that starts to move from the center of the workspace 
(Figure 2), as a response to a light that is turned on.  We 
used the values of inputs and outputs measured and 
generated at the time steps of the control loop (twice in 
each second).  Each of the five lights was turned on - one 
after the other - with a short break for returning the robot to 
the initial position.  Each trajectory lasted about 5-10 
seconds and typically contained more than 10 sampling 
points.  In each condition (before and after 
adaptation/control protocol), a few sets of 5 trajectories 
were recorded (typically 4 sets).  To explain the fitting and 
generalization error calculations in each condition, we 
denote the number of sets (each of 5 trajectories) by n.  For 
the n possible combinations of n-1 sets, each model was 
best fitted to the data of 5*(n-1) trajectories yielding the 
least mean square error (MSE).  The parameters of the best 
model were used to predict the output of the other set that 
was not used for the fitting.  The mean over the n sets of 
each error (fitting and testing) was calculated and is 
referred to as learning error and generalization error for 

that condition.  Then, the mean over preparations and over 
different conditions was calculated.  Note that the 
bootstrapping method of choosing every possible 
combination was used to gain an accurate estimation of the 
actual MSE for the learning and generalization.  However, 
for the statistical tests reported in the results section, the 
MSE for each condition was used just once.  For further 
details about cross validation and the problem of over-

ee, e.g., Haykin (1999), Karniel and Inbar (2000).   
We report the fitting results over the data gathered 

from 31 preparations before and after adaptation/control 
experiment. Therefore, 620 values of learning errors and 
the same number of g

In order to compare the capabilities of the 
neuronal models we have conducted simulation of the 
whole system.  These simulations combined a discrete 
neural model (Figure 3

d the sensors. 
For the continuous model, the state variables were 

the position and orientation of the robot.  The light 
intensity observed by the sensors at the right and left sides 
of the robot was calculated according to the geometry of 
the system.  The light intensity at each side was a function 
of the robot’s state and of the location of the light.  Since 
the control signal dictates the velocity of the wheels and 
since the mass of the robot is negligible, the result was a 
first order nonlinear system (see Reger et al. 2000 for 
further details).  This first order dynamic system was 
controlled by the discrete neuronal model.  The neural 
model was eith

We have analyzed the fitting of various models to 
the neuronal tissue of the lamprey brainstem as it drives the 
two-wheeled robot.  We found that the dynamic properties 
are significant and, in particular, the ipsilateral dynamic 
properties. Here, we report our fitting results for the 
various models and for a few preparations with transacted 
spinal cord.  Then, we demonstrate the plasticity in one 
example, and report the analysis of the change in weights 
of the best model for nine preparations that displayed clear 
plasticity.  Altogether, our analysis indicates that the 
dynamic model with ipsilateral connections (Figure 3f) is 
the best model among the 10 tested models and that the 
dynamic properties are essential in

In our endeavor to understand the synaptic 
pathways involved in the observed behaviors, we modeled 



The SAB'2002 Workshop on Motor Control in Humans and Robots: on the interplay of real brains and artificial devices.   Edinburgh, Scotland, 2002 

the connections with polynomials of increasing order, and 
with static as well as dynamic models  (see Figure 3 and 
the Methods section).  Figure 4 shows these results.  
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Figure 4:  The reduced fitting (learning, upper plot) and testing 
(generalization, lower plot) errors with various neuronal models 
measured in percents.  The baseline is a linear static model (S1), 
and the rest of the bars stands for polynomial models upto forth 

order (S2-4), dynamic linear model (D1) and dynamic model with 
polynomial input function upto forth order (D2-4).  Di stands for 
dynamic linear model without contralateral connections, and Dc 
stands for dynamic linear model without ipsilateral connections. 

hides many details.  Nevertheless, the advantage of 

The data clearly indicate a greater error reduction 
with the dynamic scenarios over the static, even when the 
static models include more parameters.  The upper bar plot 
in Figure 4 shows learning errors. It is obviously expected 
that the error would be smaller with the increase in the 
complexity of the model.  The lower bar plot shows the 
generalization error, which is the error over data that were 
not used for the fitting. Note that the advantage of the 
dynamic model appears both in the fitting and in the testing 
errors.  A one-way analysis of variance (ANOVA) over the 
generalization errors of the eight models (S1-4, and D1-4) 
clearly rejects a null hypothesis that the models’ mean 
errors are equal (p<0.01).  A Student’s t-test shows that the 
mean error of the first order dynamic model is significantly 
lower than the errors of a first and a second order static 
model (p<0.01).  The first order dynamic model reduced 
the error by 25%. In contrast, adding further complexity to 
the model led only to reduce the error by a few percentage 
points.  Therefore, the first order dynamic model (Figure 
3c) was selected for further analysis as a better candidate 
than any static model.  One should remember that this is an 
average over preparations and over trajectories to different 
light sources. As this average included many data points,  it 

dynamic model, which contains just 8 parameters, over any 
static model is apparent. 

5.2 Two types of recurrent connections 
The anatomy of the Lamprey’s nervous system 

does not support the presence of direct connections 
between reticular neurons on the two sides of the midline.  
Therefore it would be difficult to explain the contralatteral 
connections in our model.  Accordingly, we have 
considered separately a model without recurrent 
contralateral connections (Figure 3f), and a model without 
recurrent ipsilateral connections (Figure 3e).  The analysis 
clearly supports our expectations (see the two middle bars 
in Figure 4).  Guided by Occam’s razor principle among 
the equally good models, we favor the model with the 
fewer parameters, which is the dynamic linear model with 
only recurrent ipsilateral connections (Figure 3f).  Note that 
this linear model with just six parameters out performed all 
the static linear and nonlinear models. 

The known anatomy suggests the presence of 
pathways from the brainstem to the spinal cord and back 
(see e.g., Grillner et al. 2000). This is one possible 
explanation for the improved fitting of models with 
dynamic connections.  In order to test this hypothesis we 
have transected the spinal cord in four preparations and 
repeated the same protocol.  These preparations generated 
similar results as generated with intact spinal cord.  The 
learning and generalization were similar to Figure 4, and in 
particular, the reduced error with dynamic model was still 
about 25%.  Therefore we conclude that the recurrence 
afforded by bi-directional spinal cord pathways is not the 
likely reason for the dynamics expressed by the recurrent 
connections in the model.  In the discussion section we 
describe alternative accounts for the observed dynamic 
properties. 

5.4 Dynamic properties and behavior 
In order to demonstrate the implications of the 

neuronal model on the possible behavior of the robot, we 
have simulated the robot movement when it was controlled 
by the static and the dynamic neural models (Figure 5).    

In this example, the static model was a first order 
model (Figure 3a) with weights values of 0.5 at the 
crossing connections.  The dynamic model was first order 
(same values of weights) with only ipsilateral connections, 
again with a value of 0.5 (Figure 3f).    

While all the tested models are capable of 
generating a broad repertoire of behaviors in response to 
the presentation of sources of light, there are some subtle 
but potentially important differences in the robot 
trajectories produced by static and dynamic models.  For 
example (Figure 5), models with recurrent dynamics tend 
to display more undulations in the trajectories than strictly 
static models.  This seems to reflect the presence of second 
order dynamics in the neuro-robotic system. 
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5.5 Weights’ change during adaptation 
Figure 6 shows a typical result of the plasticity 

protocol, indicating a tendency of the robot to turn to the 
right after a period of training with the left sensor occluded. 
Both sets of trajectories were obtained in identical 
conditions, with inputs from both right and left sensors.  

The change in direction can be accounted for both 

reduction in the responsiveness of the reticular neurons on 
the right side, induced by a period of reduced contralateral 
input from the left vestibular afferents. 
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Figure 5:  Simulation of the robot behavior.  Each symbol 
represents the location of a light source and the trajectory of the 

robot when that light was turned on (in the simulation).  The 
controller was either a static linear model (right) or a dynamic first 

order model with only ipsilateral connections (left).  
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Figure 7:  Change in the weights of the dynamic linear model 
without crossing connections (Figure 3f) before and after the 

plasticity protocol. 

6. Discussion 
We used a hybrid neuro-robotic system to study 

the properties of the neural tissue in the brainstem of a 
lamprey as it drives a two-wheeled robot.  We have found 
that the best model of this tissue is a dynamic linear 
network with recurrent ipsilateral dynamic connections.   

6.1 The dynamic properties 
The introduction of recurrent ipsilateral 

connections appeared indeed to be essential for improving 
the ability of our network models to capture the dynamical 
behavior of the hybrid system.  We discuss here two 
possible reasons for this result. 

One possibility is that the recurrent dynamics are 
due to an actual neuronal pathway.  We considered the 
possibility for contralateral pathways and for pathways to 
the spinal cord and back. But we found that a surgical 
transection of the spinal cord does not abolish the observed 
dynamical behavior. Therefore, a neuronal pathway to 
by a reduction in the spinning of the right wheel and by an 
increase in the spinning of the left wheel.  Therefore both a 

potentiation of the synapses on the left or a depression of 
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Figure 6:  Five trajectories of the robot before (left) and after 
(right) the plasticity protocol.  Each symbol represents the 

location of each light source and the trajectory of the robot when 
that light was turned on.  Both sets of trajectories were obtained 

in identical conditions, with inputs from both right and left 
the synapse on the right or a combination of both could 
lead to the observed behavior. 

 
To establish which kind of synaptic change was 

actually responsible for the change in robot’s motion, we 
selected the preparations that resulted in a significant 
adaptive rotation to the right (n=9) and fitted the first order 
dynamic model with recurrent ipsilateral connections 
(Figure 3f, 6 parameters).  The values of these parameters 
before and after the plasticity protocol were compared and 
the difference is presented in Figure 7.  The reduction in 
the recurrent ipsilateral connection of the right side is 
consistent with the turn to the right.  It is interesting that 
the most significant change occurred in the dynamic 
connection and we are currently interpreting it as a general 

account for this result should be spatially limited to a local 
region in the proximity of the PRRN. However, this seems 
to be at odds with the fact that the delays involved in our 
simulations are of  the order of hundreds of milliseconds.   

Another, more likely, interpretation suggest the 
presence of a local memory mechanism within each neuron 
(see Kandel et al. 2000 to explore the various possibilities).  
This could be any mechanism, such as the threshold for 
plateau potential, capable of establishing a relation between 
the tendency of a neuron to fire at one instant of time with 
the state of the neuron a few hundred milliseconds before. 
What matters here is for the neurons activity not to depend 
exclusively upon the instantaneous synaptic input. 

It is important to mention that we have 
specifically chosen to place our electrodes far from neurons 
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that are firing spontaneously.  The electrode placement was 
chosen such that there would be no firing without any input 
stimulation.  Nevertheless, it is possible that some sort of 
protracted firing was generated by these neurons or was 
induced by other nearby neurons.   

6.2 The neuro-robotic system 
Hybrid neuro-robotic systems provide an artificial 

environment that is amenable to precise control by the 
experimenter for studying the operation of the nervous 
system.  In this investigation we have introduced a 
“reversible artificial lesion”  by changing the output gain  
of light sensors. We see this procedure as alternative to 
irreversible surgical manipulations, such as the removal of   
a vestibular organ (unilateral labyrinthectomy).  One clear 
advantage of the artificial lesion over the actual lesion is 
the possibility to undo the lesion electronically (e.g., 
“unblinding”).  Another case for such neuro-robotic 
interfaces was recently presented by Zelenin et al. (2000). 
In their study an electrical motor was used to rotate the 
lamprey and therefore provide feedback through the natural 
sensory system of the lamprey rather than through direct 
excitation, as in our study.   

A significant feature of neuro-robotic interfaces is 
the control that is offered to the experimenter over the 
exact feedback that is provided through the mechanical 
system and its sensors. By manipulating this feedback it is 
possible to study neural mechanisms, such as the 
dependence of plastic changes upon the correlation 
between presynaptic input and postsynaptic activity.    

Investigation of the rules that govern synaptic 
plasticity in a hybrid system may lead  to finding some 
effective methods for “programming” neural tissue so that 
it can execute a desired task. This goal is of central 
importance for the development of effective neural 
prostheses.  Indeed, once a signal interaction is established 
between brain tissue and an external device, one can expect 
that the properties of the neurons interacting with the 
device will evolve based on the history of signal exchange. 
Neural plasticity is perhaps the most important resource for 
establishing a working interaction between brain and 
external devices. Nero-robotic interfaces provide a new 
instrument for the direct investigation of how plasticity can 
be harnessed for generating a desired behavior. 
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