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Abstract - The biological motor control system is an 
adaptive system exhibiting vast redundancy at all its 
hierarchical levels.  Redundancy improves reliability and 
flexibility and might be the salient reason for the superb 
dexterity of human motor control.  However, introducing 
redundancy in an inversely controlled object results in an 
ill-posed problem.   
We describe a general two-way model for redundancy 
control.  This model includes the selection of a single 
solution by the dynamics of the system at the lower level, 
and a multiple controller that can use different solutions 
under different circumstances at the higher level.  We 
demonstrate the role of the system dynamics in facilitating 
the stereotypical features of rapid movements, and suggest 
an architecture as well as a theoretical framework for 
many-to-one function approximation and inversion.   
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I. INTRODUCTION 

The Russian physiologist Bernstein considered redundancy as 
the most remarkable feature of the biological system (see 
Bernstein 1967, and Latash and Turvey 1996).  The quality of 
redundancy improves both flexibility and reliability.  We have 
excess resources in many parts of our body, and this property 
allows us to perform the same task in many different possible 
ways.  The question is how the biological motor control 
system learns to master many possible solutions and how it 
chooses a single solution for the specific execution of a given 
motor task.   
We concentrate on open loop feed-forward control.  This view 
is justified for rapid movements where there is no time for 
effective use of the sensory information due to the large 
delays in the biological system.  In this control method, the 
best controller is an inverse of the controlled system (see Inbar 
and Yafe 1976).  The control of redundant systems involves 
an ill-posed problem of inverting a many-to-one mapping. 
Most of the previous work addressed this issue using a 
pseudo-inverse or other criteria to find a single solution, see, 
e.g., Jordan (1990).  The recent progress in computer 
technology and in the field of neurocomputation enables us to 
consider an architecture that finds and retains all the solutions, 
and chooses one of them in real time according to a criterion 
that might be altered under different circumstances.  This 

framework involves many new problems in control and 
learning theory, see, e.g., Demers (1993) for a model to 
control redundant robot.   
In addition to these high level computational issues, one 
cannot ignore the important role of the system dynamics.  For 
example, there are many motor units that could be activated in 
many different ways; however, the size principle (see 
Hanneman et al. 1965) dictates a single recruitment order; 
Mussa-Ivaldi et al. (1994) found that muscle synergies 
produce force fields that can be combined linearly.  These and 
many other finding suggests that the system dynamics can 
simplify the computational task of the higher level.   
We suggest a general two-way model for learning motor 
control of redundant systems (Figure 1).   

Figure 1:  An illustration of a biologically plausible general two-way 
model for learning redundant system control.  In the lower level, the 
dynamic of the system determines the solution, and in the higher 
level, a multiple controller can choose different solutions in different 
circumstances. 

We examine two different approaches to the problem.  The 
first puts the emphasis on the dynamic properties of the 
muscles and the spinal cord, and the second approach 
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emphasizes the higher nervous system and computational 
methods to learn the control commands.  We suggest that 
there is no contradiction between these approaches since we 
locate them in different places in the motor control hierarchy 
(see also Latash and Anson 1996, in response to a 
commentary). 
This paper summarizes a longer study that is fully described in 
Karniel (1999).  Parts of this study have already been 
presented in Karniel and Inbar (1997), Karniel et al. (1998), 
Karniel and Inbar (1999), and Karniel et al. (1999). 
In the Models and Methods section, the general model is 
presented and the two parts of this model are described.  The 
results section lists the main contribution of this study; and the 
discussion section concludes this paper. 

II. MODELS AND METHODS 

The General Model 
A comprehensive model should permit the following methods 
to exploit redundancy.   (i) A simple fixed optimization that is 
dictated by the dynamics of the mechanical and neural 
systems, for example the size principle of motor unit 
recruitment and the smooth speed profile of reaching 
movements.  (ii) A systematic registration of all the solutions 
and a mechanism to choose the optimal one in real time. 
Figure 1 is an illustration of our general model that includes 
these methods and their speculated place in the biological 
system.  The first method, i.e., fixed optimization, can be the 
result of the muscles' dynamics and of the spinal cord (SC) 
dynamics.  We relate to the mechanism by which the 
dynamics of the system determine the single solution by the 
acronym DDSS.  The second method can be implemented by a 
multiple controller (MC).  
To be more concrete, let us think about the control of rapid 
movements and see how it fits into our general model.  Rapid 
movements have been intensively studies and were found to 
be generally performed according to a set of stereotyped 
features.  See for examples, Robinson (1964) for invariant 
features of saccadic eye movements, and Flash and Hogan 
(1985) for the speed profile of reaching movements.  Invariant 
features of the speed profile were also found in the octopus 
arm movements, see Gutfreund et al. (1996).  We suggest that 
these stereotyped features are the result of the dynamics of the 
lower level, i.e., the result of the DDSS part of our general 
model.  We suggest that the CNS has to determine just a 
simple set of parameters and the trajectory of the movement is 
determined by the dynamics of the lower level.  We will 
supply evidence for this view in the next subsection.  
However, the redundancy is still there even after this stage and 
one can choose many possible ways to perform the same task 
by means of these stereotyped rapid movements.  For 
examples, one can look at the a desired target by mean of eye 
saccade, head movement or body movement; complex 
movements can be a combination of many possible sets of 
stereotyped arm reaching movements; and the octopus can 
reach for his target by means of many possible arms. We 
suggest that the motor control system can learn to use many 
possible methods to perform the same task, and to use 
different solutions under different circumstances.  This is the 

idea of the MC in the higher level of our general model.  After 
the next subsection, we describe a new theoretical framework 
for the purpose of analyzing the performance of MC. 

Muscles model: 

As a demonstration of the DDSS block in our general model, 
we present here two simulation studies of two different 
nonlinear models of the system dynamics.  Both studies 
suggests that the dynamics of the system have a significant 
role in simplifying the control strategy and producing the 
stereotypical features of rapid movement, i.e., determining the 
single solution out of many possible solutions.   
The first model is the Hill-Type model (see Zangemeister et 
al. 1981).  We have previously demonstrated that the bell 
shaped speed profile that was observed in rapid movements 
could be achieved with simple control signals, see the right 
plate in Figure 2.  This result was achieved without any 
complex computational method as needed for the linear 
muscle model.  For further details, see Karniel and Inbar 
(1997). 

 

0 0.05 0.1 0.15 0.2
0.2

0.22

0.24

0.26
Duration 

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

Amplitude  

Maximum Speed

0 0.1 0.2 0.3 0.4
0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 End point speed 

Time   

Figure 2:  Two simulation studies that demonstrates the DDSS 
concept and the role of the nonlinear muscles properties in producing 
the stereotypical features of rapid movements with a simple 
rectangular control signals.  On the right, the bell shaped speed 
profile that is a result of a Hill-type mechanical model.  On the left, 
the log-like relationship between amplitude and duration and the 
quasi-linear relationship between amplitude and maximum velocity 
as a result of a fractional power dumping  model.  For further details, 
see Karniel and Inbar (1997) and Karniel and Inbar (1999). 

The second model is a fractional power dumping model, that 
is also known as the one-fifth power law (see Wu et al. 1990).  
This is a simple nonlinear model that successfully modeled 
human wrist movements.  Following Barto et al. 1999, we 
used this model with a simple step and hold control signals.  
We generated simulated movements with various pulse 
amplitudes, and fixed all the other parameters to typical 
values.  We found that the simulated reaching movements 
obey the well-observed stereotypical relationships between 
duration, peak velocity and amplitude of rapid movements.  
See the two plates on the left of Figure 2.      



 
 

These two recent results along with many previous ones 
reinforce the notion of the DDSS that is suggested in our 
general model at the lower level.  

The definitions of redundancy and of a multiple controller 

We define a redundant system as being many-to-one function 
and suggest a set of definitions for different types of 
redundancy.   These definitions provide a solid ground for 
discussing learning issues and for suggesting and analyzing 
new architectures for the control of redundant systems. 
Definition-1: A system is defined by a function YXf →: .   

Remember that a definition of a function includes a definition 
of a mapping and definitions of input and output domains.  In 
this definition, we do not restrict the input and output 
domains; they can be scalars, vectors, continuous or discrete 
functions, or Laplace or Z  transform domain functions.   
Definition-2: A system YXf →:  is redundant if there exist 

,  ,  , 21 XxXxYy ∈∈∈  such that 21 xx ≠  and 
( ) ( ) yxfxf == 21 . 

Thus, a system is redundant if and only if it is not injective 
(injective being a one-to-one mathematical function).  We 
further differentiate between three types of redundancy, finite, 
countable and uncountable according to the maximal size of 
the set of solutions that is available for any given output 
element.  
The main idea behind the concept of a multiple controller is to 
learn all the possible control signals and choose one of them in 
real time according to a modifiable criterion. 
When the system is redundant, finding an inverse is an ill-
posed problem.  We suggest to regulate the redundant system 
by expanding the output space Y to PY ⊕ , where ⊕  stands 
for a direct sum (i.e., each element in the expended space 
consist of one element from Y and one element from P).  Then 
we suggest constructing a multiple inverse function )(yf d

MI
P , 

where MI stands for Multiple Inverse and the parameter p  
determine which of the many possible solutions is chosen.   
Definition-3: Let YXf →:  be a redundant system.  The 
system ( ) XPYyf MI

p →⊕:  is called the multiple inverse 
system (or function or controller) if for every input value 

Xx ∈ , there is a parameter Pp ∈ , such that ( )( ) xxff MI
p = . 

In practice, the system ( )xf  is frequently unknown, and we 
are given a series of input and output vectors { }ll yx , , 
representing the unknown system.  In this case the formal 
requirement is that for any given accuracy value ε , one can 
construct MI

Pf̂ , such that for any value of dy , and for any 
value of the parameter p , the following inequality will hold. 

                 ( ) ε<dd
MI

P y-)(yff   ˆ    

In order to construct a good approximation for a multiple 
inverse controller, this requirement should be coupled with a 
requirement for completeness, i.e., that all the solutions are 
achievable.   

Polyhedral Mixture of Linear Experts (PMLE) 
The PMLE architecture is suggested to serve as a multiple 
inverse controller.  The PMLE learns a piecewise linear 
approximation of the system.  Each area is governed by a 
linear function, which is called an expert, and one can invert 
each expert and get the multiple inverse.  In the general case 
where the dimension might be greater than one, each expert 
governs a polyhedral region in the input space and hence the 
name polyhedral mixture of linear experts.  The advantage of 
the PMLE over other forward models is in the simplicity of 
the construction of the multiple inverse PMLE (MI-PMLE).  
This architecture was first presented in Karniel et al. (1998) 
and it was shown to be capable of approximating inverse 
functions.  For further details about this architecture, see 
Karniel (1999).   

III. RESULTS 

1. We suggest a general model for learning motor control of 
redundant systems where the dynamics determines the single 
solution (DDSS) at the lower level; and a multiple controller 
(MC) can learn and use all the possible solutions at the 
higher level. 

2. We present two simulation studies that suggest that the 
properties of the system dynamics have a role in simplifying 
the control strategy and producing the stereotypical features 
of movements.  These examples demonstrate the role of the 
DDSS block in the general model. 

3. We suggest a general framework and algorithms for 
learning multiple controllers of redundant systems.  We 
present a new architecture named the PMLE. 

4. The main properties of the PMLE are encapsulated in the 
following theorem. 

Theorem:  a) The PMLE can approximate the inverse of any 
continuous function.  b) The MI-PMLE architecture is able to 
represent the multiple inverse function of any piecewise linear 
system with polyhedral decision regions. 
Comment: The MI-PMLE is able to approximate the multiple 
inverse of a broad class of function, since a broad class of 
functions can be approximated by the PMLE. 
Proof:  The proof of part a’ is based on the work of Sontag 
(1992) where he shows that a two-hidden layer network can 
approximate inverse functions.  The proof of part b’ is by 
construction, where the details of the MI-PMLE construction 
are described in Karniel (1999). 

IV. DISCUSSION 

The general model 
In our general model, we added direct arrows (dotted arrows 
in Figure 1) from the desired target block to the DDSS block 
and to the musculoskeletal block.  These arrows represent the 
direct pathways from the motor cortex to specific muscles and 
to specific neural pools in the spinal cord.  They can be used 
in order to bypass the MC for rapid execution of stereotyped 
simple movements by means of the DDSS or for conscious 
activation of specific group of muscles.  The other path is 
through the MC, which can choose out of the many possible 
solutions to achieve the task.  The MC can send a general 



 
 

command to the DDSS, e.g., parameters of excitation or of 
stereotypical movement, or alternatively a specific command 
to the musculoskeletal system.  The distinctions made in this 
model are not strict, we are not positive as to location of each 
mechanism.  It is possible that the spinal cord contains 
multiple controllers and alternatively that part of the CNS 
operates according with the DDSS notion.  Nevertheless we 
believe that the proposed general model and the introduction 
of this twofold mechanism of DDSS and MC will prove to be 
useful in future development of the human motor control 
modeling research. 

Redundancy 
In the literature, the finite and countable redundancies are not 
always considered as redundant systems (e.g., a manipulator 
without excess degrees of freedom can posses countable 
redundancy according to the definitions above, however it 
may not be considered as a redundant manipulator, see for 
example, DeMers 1993).  For linear redundant systems, only 
uncountable redundancy is possible, and a redundant system is 
sometimes defined as a system with fewer outputs than inputs 
(see, e.g., Neilson 1993).  
One should notice the difference between structural and 
functional redundancy. Tononi et al (1999) described the 
difference between redundancy and degeneracy: redundancy 
being the result of identical elements in the system and 
degeneracy of different elements that perform the same 
function.  These definitions are in the structural sense.  The 
definitions in this study are in the functional sense and in this 
sense both redundancy and degeneracy are functionally 
redundant.   
The issue of redundancy in the biological motor control 
system is sometimes being referred to as the Bernstein 
problem (Bernstrin 1967), and in other context even as the 
curse of dimensionality.  We prefer to relate to it as a virtue 
rather than a problem.  Redundancy with a good controller can 
improve the reliability and flexibility of the system and is 
probably one of the main reasons for the superb dexterity of 
human motor control (see Bernstein 1967, and Latash and 
Turvey 1996). 

Final Remark 
The main outputs of the brain are motor commands to the 
muscles.  The human brain is first of all a motor controller.  
Biological motor control is a great challenge for scientists, 
engineers and physicians.  The classical engineering and 
mathematical modeling tools are appropriate for linear time-
invariant injective systems.  The biological system does not 
comply with these qualifiers and therefore there is a place and 
a need for new modeling tools in order to describe and analyze 
the biological system, see Karniel and Inbar (2000).  In this 
study, some basic problems of motor control were illustrated.  
The possible role of the mechanical nonlinear properties of the 
muscles in simplifying the control strategy was demonstrated.  
A new architecture, learning algorithms and mathematical 
tools were suggested in order to exploit the virtue of 
redundancy.  These results constitute another step in the 
ongoing strive for a better understanding of the biological 
motor control.  An understanding of the biological motor 

control system will undoubtedly contribute significantly to the 
welfare of paralyzed and crippled patients, to a new 
generation of dexterous robots, and to a better understanding 
of the mysteries of the human mind and how it operates. 
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