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Feed-forward control schemes require an inverse mapping of the controlled
system.  In adaptive systems as well as in biological modeling this inverse
mapping is learned from examples.  The biological motor control is very
redundant, as are many robotic systems, implying that the inverse problem is
ill posed.  In this work a new architecture and algorithm for learning multiple
inverses is proposed, the polyhedral mixture of linear experts (PMLE).  The
PMLE keeps all the possible solutions available to the controller in real time.
The PMLE is a modified mixture of experts architecture, where each expert is
linear and more than a single expert may be assigned to the same input region.
The learning is implemented by the hinging hyperplanes algorithm.  The
proposed architecture is described and its operation is illustrated for some
simple cases.

  1 . Introduction

One of the salient characteristics of the biological motor control system is its
apparent redundancy (Bernstein 1967).  The controller has to act on a many to one
(MTO) system and has to choose one of the many possible actions to obtain the same
desired target.  It was suggested that the nervous system contains an inverse model of
the musculoskeletal system that is contextually being updated (see Inbar and Yafe
1976 for analysis of this idea, and Jordan 1996 for a review of recent modeling with
artificial neural networks).  The inverse problem is illustrated in Fig 1.

Fig 1. The inverse problem: Given a desired output yd, find x such that F(x)=yd.

This problem gets more complicated when the mapping F(X) is unknown or
uncertain.  Then the inverse mapping should be learned from examples of input and
outputs pairs (xl,yl).  This description is appropriate for biological motor control
learning, and can be also appropriate for certain robotics applications.  Most of the
proposed architectures and models to solve this problem choose an arbitrary solution
that is the closest to the training set and to the initial conditions of the network (see
for example Jordan 1996).
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The Mixture of Experts (ME) architecture proposed by Jacobs et al. (1991) is a
modular artificial neural network where each module is called an expert and is a
parametric function of the inputs.  An input dependent gate chooses the weights of
each expert in the output of the mixture (see Fig 2a).  The gate is also a parametric
function, and all the parameters are learned from examples.  In the case where each
expert is a linear function and the gate chooses just one expert for a given input, the
ME constructs a piecewise linear approximation of the learned mapping.  We call
this special architecture Polyhedral Mixture of Linear Experts (PMLE).
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Fig 2. (a) The Mixture of Experts Architecture: Each expert (E) computes a function of
the input.  The gate (G) determine the weight of each expert in the output.  (b) An
illustration of  Hinging Hyperplanes and Hinge function(Bold) in one dimension.

The Hinging Hyperplanes (HH) method proposed by Breiman (1993) is an elegant
and efficient way of identifying piecewise linear models based on data collected from
an unknown system.  A hinge function y=h(x) consists of two hyperplanes
continuously joined together at a hinge.  An illustration in one dimension is given in
Fig 2b.  In an M-dimensional space, taking x0=1, that is x=[1,x1,...xM] T, the two
hyperplanes are given by y=xT⋅β+ and y=xT⋅β-, and are joined together on
{ x|xT⋅(β+-β-)=0}.  The vector, ∆≡β+-β-, or any multiple of  ∆, is defined as the hinge.
The explicit form of the hinge function is either max(xT⋅β+, xT⋅β-) or min(xT⋅β+, xT⋅β-).
Given data from an unknown function f(x) one can construct an approximation of
this function as a sum of hinge functions.  (see Breiman 1993 for the description of
the algorithm)
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In this work the HH algorithm is used to estimate a piecewise linear model of the
system, and then these estimated parameters are transformed to the PMLE
parameters to enable multiple inverse model.  In the next section the PMLE
architecture is described, and proven to be capable of approximating any inverse
function. In section 3, a simulation for a nonlinear functions is given and  finally
conclusions are drawn.
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  2 . Polyhedral Mixture of Linear Experts

  2 .   1 . The Architecture

The Mixture of Experts (ME) architecture of Jacobs et al. (1991) illustrated in Fig 2a
can be formulated as follows, where fi are the experts and gi are the gate functions.

( ) ( )y g x f x wi
i

i= ⋅∑ , ,θ ;   ( )g xi
i

,θ∑ = 1   ;        ( )g xi ,θ ≥ 0 (2)

The Polyhedral Mixture of Linear Experts (PMLE) is a special case of the ME
architecture where each expert is a linear function, and the gate function is an
indicator function that separates the input space into a polyhedral partition and
assigns to each polyhedron a unique linear expert, as in equation (3).
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Where: x=[1,x1,...xM] T,  w=[w0,w1,...wM] T.  A polyhedron is a subspace of Rn

composed of the intersection of a finite number of half spaces.  This architecture is
actually an implementation of a piecewise linear mapping.

  2 .   2 . The Ability to Approximate Inverse Functions

In this section it will be shown that the PMLE is able to approximate any inverse
map.  Let us recall the definition of the ability to approximate inverse function from
Sontag (1992).  The following is a property of the class of functions Fp

m, from Rp to
Rm .
(INV) For any m and  p, any continuous function f:Rm→Rp, any compact subset
              C⊆Rp included in the image of f, and any ε>0, there exist some Φ∈ Fp

m

              so that ( )( )I [ [ [ &Φ − < ∈ε IRU DOO .

Theorem:
The class of functions that are computable by the PMLE satisfies (INV), i.e., any
inverse function can be approximate by the PMLE.
Proof:
Recall the following proposition and lemma from Sontag (1992)
Proposition 2.4: Fp

m, The set of maps computable by two-hidden-layer nets with
processors of type H, satisfies (INV).   (H is H(x)=0 if x<0 and H(x)=1 if x≥ 0)
Lemma 3.6: A function f is piecewise constant if and only if it is computable by a
two-hidden-layer net with processors of type H.
Now all we have to add is the trivial observation that a piecewise constant function is
a special case of a piecewise linear function, so that the PMLE can satisfy any
piecewise constant function.  Based on lemma 3.6 one can conclude that  the PMLE
can compute any function that is computable by a two-hidden-layer net with
processors of type H.    From this conclusion and Proposition 2.4 the theorem is
proven.
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  2 .   3 . Parametrization via Hinging Hyperplanes

In this section the relationship between the parameters of  the PMLE (see 2,3) and
the HH function approximation (1) are derived, that is, given the number of hinge
functions K, the hinges ∆ k

, and the hyperplanesβ βk k
− +,  , the parameters of the

PMLE, θ and w, and the structure of the gate functions gi are derived.
In order to make the description compact and readily programmable with MATLAB,
the parameters are written in vector and matrix notation as follows:  D is the hinges
matrix where each row k is ∆ k

, B+ and B-  are the matrices af all β βk k
− +,  

respectively.  These matrices are learned from examples by Breimans algorithm
(1993).  The gating function of the PMLE contains a vector Θi for each expert that
describes its side for each hinge function, and each expert possesses a weight vector
Wi as follows:
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For a given input x, the gate can decide which expert describes the function at that
point.
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The following algorithm transforms the parameters of the Hinging-Hyperplanes
function approximation to the parameters of the PMLE.  The algorithm uses linear
programming (LP) to find the position of each hinge in relation to each expert.  LP is
chosen for its efficient algorithmic implementability.  See Karniel et al. (1997) for a
more detailed description of this algorithm.

Initiation: For the first hinge,  D=∆, B+=β+, B-=β-.  
Construct two experts as follows:  [ ] [ ] [ ] [ ]Θ Θ

� � � �
� �= + = − = =� �

: :β β

For each new hinge, k:
   For each expert, i:
       Check the position of the hinge according to expert i by LP:
       Calculate Mn and Mx which are the maximum and minimup of  [

7

N
⋅ ∆

       If Mn>0 and Mx>0 the hinge is in one side:   Wi=Wi+β+, 
L�N

Θ = +�

       If Mn<0 and Mx<0 the hinge is in the other side:  Wi=Wi+β-,  
L�NΘ = −�

       else:  the hinge goes through this expert, split to get two experts:  
       : : : :

1 L L L+
+ −= + = + = + = −

�
� �β β

1 �� �N L�N
Θ Θ

   end (for expert i)
   Add the columns ∆k , β+ and β-  to  the matrixes D, B+,B- respectively.
end (for hinge k)
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  2 .   4 . Constructing the Complete Inverse Approximation

One can use the PMLE in order to construct the complete inverse approximation.
For the one-dimensional problem, one can invert each expert and get a
candidate-solution which should be validated for being in that experts’ range of
operation. This can be done with the inverse PMLE and the regularization problem
is now reduced to a problem of choosing one of the possible solutions.  We can give
each solution an identification number, call it p, and add this parameter as a
regularization input.  At this point the solution to the problem in Fig 1 can be
illustrated as in Fig 3.

Fig 3.  The proposed solution to the inverse problem.  The multiple inverse (MI)
approximation can be implemented by the IPMLE.

Further investigation is needed in order to describe the values of the parameter p and
in choosing the appropriate solution, but this stage depends on the specific control
problem, its constraints and goals.

  3 . Simulations

The first example demonstrates the construction of the complete inverse of  a smooth
function which is not injective.  We have drawn 400 examples from the function
y=sin(x2)  Where xi was uniformly distributed in the range [-2,2].  The results of the
HH algorithm are given in  Fig4a.
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Fig 4.  Simulation of the HFA. (a) Re-fitting the three hinges from to the examples from
the function y=sin(x2).  The dots are the examples and the lines are the hinge functions.
(b) The hinge functions over the examples of the 2d function.
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Let us demonstrate the results of the IPMLE: The complete inverse of the target
value 0.5 is the following 4 answers:

» [X] = ipmle(D,W, teta,0.5)  X =
  1.0000    1.0000    1.0000    1.0000

-1.6102   - 0.7285    1.6185    0.7485
⇒











And the complete inverse of the target value -0.5 is the following 2 answers:

» [X] = ipmle(D,W,teta,-0.5)  X =
   1.0000    1.0000

 -1.9394    1.9478
⇒











In the second example we examine a two dimensional function.  We have chosen to
check the algorithm on the following function which can be presented as a typical
control problem.  We have drawn 4000 examples from the following function
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 Where x1 and x2 were uniformly distributed in the

range [-2,2].  This function was taken from Lee and Lee (1995) who used it for a
similar goal with another architecture.  The results are presented in Fig 4b.

  4 . Conclusions

A new architecture for learning the inverse of a redundant system was proposed.
The polyhedral mixture of linear experts (PMLE) can learn from examples a
piecewise linear approximation of the system and can then be easily inverted.  The
structure of the architecture was presented, its ability to approximate any inverse
function was proven, and an algorithm to learn its parameters from examples was
demonstrated.  The problem of  choosing the proper solution from all the possible
solutions will be the focus of future research.
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