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a b s t r a c t

While the exponential learning equation, indicating a gradually diminishing improvement, is one of the
standard equations to describe learning, a sigmoid behavior with initially increasing then decreasing
improvement has also been suggested. Herewe show that the sigmoid behavior ismathematically derived
from the standard exponential equation when the independent variable of the equation is restricted to
the successful trials alone. It is suggested that for tasks promoting success-based learning, performance
is better described by the derived sigmoid curve.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

The exponential learning equationhas beenderived analytically
by several researchers (Estes, 1950; Hull, 1943; Thurstone, 1919)
and is one of the standard equations to describe the improvement
in the performance of tasks with practice (Heathcote, Brown, &
Mewhort, 2000; Ritter & Schooler, 2001):

Pn = P∞ − (P∞ − P0) · e−α·n,

where n denotes trial number, Pn the performance measure at trial
n, and p0, p∞ the initial and asymptotic performance, respectively
and α is a constant rate coefficient. The concavity of Pn implies a
monotonically decreasing improvement (∆n = Pn−Pn−1 < ∆n−1).
However, a sigmoid behavior in which the improvement initially
increases then decreases has been persistently suggested based
on either empirical observations (Culler, 1928; Culler & Girden,
1951; Gallistel, Fairhurst, & Balsam, 2004;Woodworth, 1938) or on
analytical derivation from assumptions on the underlying learning
process (Gulliksen, 1934, 1953; Mazur & Hastie, 1978; Newell, Liu,
& Mayer-Kress, 2001; Thurstone, 1930). Here we note that by an
alternative interpretation of the independent parameter n, this
presumably contradictory observation of sigmoid behavior can in
fact be predicted by the traditional exponential equation.
In conventional usage of the exponential equation, where the

independent parameter n equals the number of trials, all trials
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are assumed to equally affect the learning process. This approach
is justified for certain applications of the learning equation. For
instance, when describing improvement in the response time
of well-practiced tasks, such as in the frequently cited cigar-
rolling study (Crossman, 1959), it is reasonable to attribute
equal weights to all trials. However, applying the equation to
describe the improvement in the success rate of a task requires
a clear distinction between successful and failed trials. When the
successful responses are a small fraction of all possible responses, a
successful responsemay provide significantlymore information to
the learner than a failed response. In the extreme case, when the
range of possible responses is very large, a single failed response
may provide little (if any) information for improving performance.
We therefore propose that for such tasks, the exponential learning
equation should be re-defined in terms of the number of successful
trials only, rather than the total number of trials, and we show in
thenext section that thismodification leads to the classical sigmoid
behavior. In a subsequent section the general case in which the
weighted average of success and of failure in facilitating learning
is addressed, demonstrating a gradual shift towards a sigmoid
function as the weight of successful trials is increased.

2. Success-based learning

Consider a behavioral non-trivial task (i.e. one which requires
numerous repeated trials to master) in which each trial is either a
success or a failure. In such a case one needs to average the success
over a group of trials in order to obtain a non-binary measure of
success. If the trial in the standard learning curve is replaced by a
block of trials, we obtain
Pn = P∞ − (P∞ − P0) · e−α·b·n,
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n = block number; b = number of trials in each block; pn =
performance measure, defined as the probability of success on a
binomial trial in block n.
Practice is assumed to either improve the performancemeasure

or leave it unchanged; therefore, ∀n pn+1 ≥ pn. The above learning
equation is modified by replacing the number of trials by the
accumulated sum of all previous performances:

pn = p∞ − (p∞ − p0) · e−α·sn , (1)

sn = accumulated sum of all previous performances until, but not
including block n:

sn =


0 n = 0
p0 n = 1
n−1∑
k=0

pk n > 1.
(2)

Note that for every n ≥ 0, sn+1 = sn + pn.
Rewriting Eq. (1) for n+ 1,

pn+1 = p∞ − (p∞ − p0) · e−α·sn+1

= p∞ − (p∞ − p0) · e−α·sn · e−α·pn . (3)

Substituting (1) into (3) and rearranging terms, we obtain

pn+1 = p∞ − (p∞ − pn) · e−α·pn , n ≥ 0. (4)

While this first-order nonlinear difference equation can be solved
recursively, it is of limited value for analysis purposes. We are
unable to solve for its closed form; nevertheless, its continuous
analog is tractable, and its closed form solution is the classical
sigmoid function.
Define p(t) as

p(t) = p∞ − (p∞ − p0) · e−α·s(t), t ≥ 0 (5)

s(t) =
∫ t

0
p(x)dx. (6)

Eq. (5) is implicit in p(t). An explicit expression is obtained by
noting that if p(t) is continuous it is also differentiable and

ṗ = αp(p∞ − p), p(0) = p0 (7)

whose solution is

p(t) =
p0p∞

p0 − (p0 − p∞) e−α·p∞·t

=

{
0 p0 = 0

p∞
1+ e−α·p∞·t+C

p0 6= 0
(8)

C = ln [(p∞ − p0) /p0] .

The function p(t) in Eq. (8) is the classical sigmoid functionwith
its inflection point at ti satisfying p(ti) =

p∞
2 . For 0 ≤ t < ti, p(t)

is convex and for t > ti it is concave. If p0 >
p∞
2 , p(t) is fully

concave. Note that without success there is no learning (p0 =
0 ⇒ p(t) = 0), which is a reasonable outcome when one asserts
success-based learning.

2.1. The general case

When all trials are treated equally, the classical exponential
learning function is obtained, while a sigmoid curve is derived
when assuming a success-based learningmechanism that restricts
learning to successful trials only. In fact the original equation
can be generalized to account for both cases. This is done by
considering the weighted average of success, s(t), and failure, F(t),
ŝ(t) = A · s(t)+ (1−A) · F(t). Eqs. (5) and (6) are then replaced by

Ŝ (t) = A
∫ t

0
p(x)dx+ (1− A)

∫ t

0
[1− p(x)] dx

= (1− A) t + (2A− 1)
∫ t

0
p(x)dx; 0 ≤ A ≤ 1 (9)

and

p(t) = p∞ − (p∞ − p0) · e−αŝ(t), (10)

where 0 < p0 ≤ p (t) ≤ p∞ < 1, and p(t) is a monotonically
increasing function of t . It can easily be seen that these constraints
are reasonable behaviorally. For example, if the initial performance
value p0 is zero and one learns from success trials only, the
performance function p(t)will remain zero.
When A = 0.5, i.e. success and failure equally affect learning,

the learning curve reduces to the standard exponential equation:

p(t) = p∞ − (p∞ − p0) · e−0.5α·t . (11)

When A = 1, learning progresses solely from successful trials,
and the learning equation reverts to the original sigmoid equation.
When A = 0, Ŝ (t) = t −

∫ t
0 p (x) dx,

ṗ
(p−p∞)(1−p)

= −α and

p (t) =
(p∞ − p0) exp [−αt (1− p∞)]− p∞ (1− p0)
(p∞ − p0) exp [−αt (1− p∞)]− (1− p0)

. (12)

When A 6= 0, 0.5, 1, p(t) satisfies

ṗ (t)
[p(t)− p∞]

= −α · [(1− A) p∞ + (2A− 1) p (t)] and

p (t) =
{
C1 − p∞

p0 − C1
p0 − p∞

exp [−C2 (C1 − p∞) t]
}/

{
1−

p0 − C1
p0 − p∞

exp [−C2 (C1 − p∞) t]
}
, (13)

where C1 = (1−A)
(1−2A) ; C2 = α · (2A− 1).

Fig. 1 demonstrates the weighted average-based learning
curves. Each curve describes the performance resulting from a
different weighted average combination. It can be seen that the
learning function exhibits a sigmoid behavior when A > 0.5.
Furthermore, as more of the learning capacity is assigned to failed
trials (‘A’ decreases, in moving from the rightmost curve towards
the left), early stage performance rates increase since failures
dominate this stage. However, it is not the optimal strategy since
as learning progresses the successful trials dominate the results.
Conversely, as more weight is assigned to successful trials (‘A’
increases, in moving from the leftmost curve towards the right),
early stage performance rates decrease, but the later phase of the
learning process, dominated by successful trials, is characterized
by higher performance rates. The continuous solution p(t) and
the recursively calculated pn were found to compare very well,
e.g., when we tried to include in Fig. 1 both solutions the lines
simply overlap.

3. Discussion

Sigmoid performance is generally considered contradictory to
the classical exponential performance and has been explained
either as a noise artifact (Woodworth, 1938), manifestation
of a non-exponential learning rule (Culler & Girden, 1951;
Gallistel et al., 2004), improving on task-irrelevant features
(i.e. understanding the task or the apparatus being used) (Frank
Ritter, personal communication) or generated bymultiple learning
mechanisms progressing either in parallel or in stages (Brooks,
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Fig. 1. The learning equation for A = 0 (learning from failures only), A = 0.5
(learning equally from success and failure — the classical exponential curve), A =
0.9, and A = 1 (learning only from successful trials, the sigmoid curve). Curves
follow an exponential behavior when A = 0.5 and sigmoid when A > 0.5. As A
decreases, (from right most curve towards the left), the early performance rates
increase, but the late performance rates decrease. The figure was generated for
p0 = 0.01, p∞ = 0.99, α = 0.01.

Hilperath, Brooks, Ross, & Freund, 1995; Newell et al., 2001).
Here we noted that for some tasks, a sigmoid performance might
be simply an extension of the exponential learning process. We
reasoned that for success-based tasks, the learning curve equation
should be restricted to successful trials alone and showed that this
modification to the traditional learning curve gives rise to sigmoid
performance.
We suggest that the sigmoid function should be preferredwhen

modeling and fitting data of success-based tasks. Our analysis
suggests that this preference becomes more pronounced for tasks
with smaller initial success values. Intuitively, for tasks with initial
performance values above the critical value p∞2 , the performance
evolution is expected to be entirely concave and describable by
an exponential curve. As the performance at early stages of the
learning task is reduced, the convex learning patterns become
more dominant and the exponential learning patterns become less
prominent.
Is learning success-based or failure-based? Let us consider

learning in terms of a controller that uses information from
previous trials for invoking a learning mechanism, and ask what
type of information should be fed to the controller: successful
or failed trials? In typical tasks, the stimulus is associated
with a single successful and multiple failed responses. Thus,
feeding successful trials to the controller would provide most of
the information required for learning, advocating success-based
learning. However failure-based learning can be advocated from
a different perspective: as long as trials end successfully, there is
little incentive for modification. In contrast when failed responses
occur, it is crucial to feed those trials to the controller in order
to learn and avoid them in the future. This latter learning system
progresses only through failed responses resulting in failure-
based learning. These two opposing approaches to learning may
be compared to the distinction between the theory of acquired
distinctiveness (Mackintosh, 1975) and the Pearce–Hall model
(Pearce & Hall, 1980).
It should be noted that our observations, related to success-

based learning are applicable to several specific cases. They do not
contradict the reported findings in Gilovich, Vallone, and Tversky
(1985) that trials subsequent to successful trials are not improved,
since we limit our observation to the early stages of learning and
not to its peak performance level. In other learningmodels (e.g., the
early studies reviewed in Wickens, 1982), improved learning is
obtained after erroneous trials (Wills, Lavric, Croft, & Hodgson,
2007). The conditions under which subjects employ success-based
learning patterns and demonstrate slow initial learning followed
by rapid increase in performance as predicted by the sigmoid
function are an open question for future studies.
Finally, it is interesting to contrast the observed sigmoid

behavior of the system to the exponential characteristics of its
learning mechanism. Sigmoid behavior can resemble an abrupt all
or none behavior, while the exponential function is more gradual.
This may have contributed to the preference of the exponential
over the sigmoidmodel to describe learning, as the former is better
linked to underlying neurobiological behavior (Thurstone, 1919;
and others reviewed inNewell et al., 2001 andGallistel et al., 2004).
Yet, the mathematical relation we have noted,

p (t) = p∞ − (p∞ − p0) · e−α·s(t) =
p∞

1+ e−α·p∞·t+C
, (14)

demonstrates that the often observed steep all or none evolution of
learning, which in perceptual tasks has been termed ‘‘eureka’’ and
‘‘insight’’ (Ahissar & Hochstein, 1997; Rubin, Nakayam, & Shapley,
1997), does not necessarily imply a similar all or none learning
mechanism (Culler & Girden, 1951; Gallistel et al., 2004), and can
be interpreted as a mathematical result of a gradual exponential
process.
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