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Leib R, Karniel A. Minimum acceleration with constraints of
center of mass: a unified model for arm movements and object
manipulation. J Neurophysiol 108: 1646–1655, 2012. First published
June 13, 2012; doi:10.1152/jn.00224.2012.—Daily interaction with
the environment consists of moving with or without objects.
Increasing interest in both types of movements drove the creation
of computational models to describe reaching movements and,
later, to describe a simplified version of object manipulation. The
previously suggested models for object manipulation rely on the
same optimization criteria as models for reaching movements, yet
there is no single model accounting for both tasks that does not
require reminimization of the criterion for each environment. We
suggest a unified model for both cases: minimum acceleration with
constraints for the center of mass (MACM). For point-to-point
reaching movement, the model predicts the typical rectilinear path
and bell-shaped speed profile as previous criteria. We have derived
the predicted trajectories for the case of manipulating a mass-on-
spring and show that the predicted trajectories match the observa-
tions of a few independent previous experimental studies of human
arm movement during a mass-on-spring manipulation. Moreover,
the previously reported “unusual” trajectories are also well ac-
counted for by the proposed MACM. We have tested the predic-
tions of the MACM model in 3 experiments with 12 subjects,
where we demonstrated that the MACM model is equal or better
(Wilcoxon sign-rank test, P � 0.001) in accounting for the data
than three other previously proposed models in the conditions
tested. Altogether, the MACM model is currently the only model
accounting for reaching movements with or without external de-
grees of freedom. Moreover, it provides predictions about the
intermittent nature of the neural control of movements and about
the dominant control variable.

reaching movement; Pontryagin’s minimum principle; optimal control

CONSIDER A WAITER SERVING a full cup of coffee and his col-
league reaching to grasp and lift an empty cup. Clearly, the
tasks are different, because the first requires more dexterity
than the second; however, the brain may employ similar
principles in the motor planning of both tasks. In the motor
control research, a simplified version of the second task is the
well-studied unconstrained reaching movement (Abend et al.
1982; Flash and Hogan 1985; Morasso 1981), whereas a
simplified version of the first task is the manipulation of
mass-on-spring (see Fig. 1) during reaching movement (Din-
gwell et al. 2002).

It was hypothesized that smoothness is a primary goal of the
motor system. According to this hypothesis, optimization cri-
teria were suggested for reaching, e.g., minimum hand jerk
(Flash and Hogan 1985), and later for object manipulation,

e.g., minimum object crackle (MOC) (Dingwell et al. 2004),
minimum hand jerk (MHJ), and minimum hand driving force
change (MHFC) (Svinin et al. 2005).

Although providing logical solutions for object manipula-
tion, as detailed in METHODS, the MOC (Dingwell et al. 2004;
Huegel et al. 2009; Svinin et al. 2006) and MHJ models (Svinin
et al. 2005) do not fit well to experimental data for some mass
and spring values. Moreover, the MOC model is specific to the
mass-on-spring task and cannot be extended to multiple masses
(Svinin et al. 2006), whereas the solution of MHFC for reach-
ing movements may be unstable because it is a numeric
solution calculated using an iterations scheme.

The common feature for all criteria is the need to reminimize
the criteria under the dynamic constraints imposed by the
environment, e.g., for reaching, simple object manipulation, or
complex object manipulation, i.e., multiple masses. Therefore,
we have developed a single model that covers all these cases
without reminimization of the criterion based on the environ-
ment.

Recently, a model based on minimizing hand acceleration
was proposed to account for reaching movements. This model
suggested minimizing hand acceleration while constraining the
maximum value of hand jerk (Ben-Itzhak and Karniel 2008).
The minimization results in a three-part constant intermittent
control signal, which depends on the jerk constraint. The
ability to account for experimental results (Berret et al. 2011),
the prediction of intermittence control, and the biological
reasoning of sensing and computing acceleration make this
model a serious candidate to explain the nature of reaching
movements.

Most studies of reaching movements have concentrated
on hand trajectory. Suzuki et al. (1997) questioned the role
of the endpoint during reaching planning: while considering
the complex configuration of the hand, comparison of reach-
ing movements between different points revealed that al-
though the endpoint trajectory may be altered, the hand
center-of-mass (CoM) trajectory remains invariant, empha-
sizing the important role of the CoM in planning reaching
movements.

In this study we propose a single smoothness minimization
criterion to account for reaching movements with or without
external degrees of freedom, a minimum acceleration of the
center of mass (MACM). We derive the prediction of the
MACM for the CoM trajectory of a mass-on-spring. We
demonstrate that our model accounts for previously reported
trajectories, including trajectories unaccountable by other cri-
teria. Moreover, we report new experimental results demon-
strating the superiority of our model.
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METHODS

Object Manipulation Task

We used the same task as originally suggested by Dingwell et al.
(2002). The task consists of transporting a mass-on-spring attached to
the hand from an initial point to a target point in the horizontal plane
(Fig. 1). This environment sets the following dynamics derived from
Newton’s Second Law: an object motion equation,

k(xh � xo) � moẍo (1)

and a hand motion equation,

F � k(xo � xh) � mhẍh (2)

where F indicates the forces the hand is generating during movement.
The primary objective of transferring both hand and object between

points sets 12 boundary conditions that depend on the movement
duration, T, and movement length, L. For the hand,

xh(t � 0) � 0, ẋh(t � 0) � ẍh(t � 0) � 0

xh(t � T) � L , ẋh(t � T) � ẍh(t � T) � 0
(3a)

For the object,

xo(t � 0) � 0, ẋo(t � 0) � ẍo(t � 0) � 0

xo(t � T) � L , ẋo(t � T) � ẍo(t � T) � 0
(3b)

To capture the smoothness character for movement with the
object, the problem was defined as an optimization problem in
which a cost function of state variables is minimized (Dingwell et
al. 2004; Flash and Hogan 1985; Hogan 1984). The minimization
is achieved by using the Euler-Poisson equation, resulting in an
expression for object position. To get the hand position, the
different expressions for the object position are substituted into the
object motion equation (Eq. 1).

Minimum object crackle model. Dingwell et al. (2004) suggested
minimizing the fifth derivative of an object’s position, the object
crackle:

�
0

T �d5(xo)

dt5 �2

dt (4)

The resulting object position model depends on the movement dura-
tion and movement length. After substituting the expression for object
position into Eq. 1, we get the resulting hand position model, which

depends on the ratio between object mass and spring constant as well
as on the movement length and duration. The solution for minimizing
this criterion indeed satisfies the boundary conditions (Eq. 3) and can
be considered to be a reasonably descriptive model for the object
manipulation task.

As discussed by Dingwell et al. (2004), if the ratio between object
mass and spring remains constant, the model predicts identical hand
kinematics. As described below, we have designed three experimental
conditions to test this prediction.

To describe reaching movements, we can change the criteria, for
example, minimization of hand crackle. However, for more com-
plex environments, such as a chain of masses-on-springs, the
minimum object crackle (MOC) does not satisfy the boundary
conditions, requiring higher order derivatives for the optimization
criterion (Svinin et al. 2006). Altogether, the MOC model seems to
be specific to the mass-on-spring task because it needs to be altered
according to the task and environment, resulting in different
criteria defined in different sets of coordinates (hand or object)
while using different derivative orders (e.g., crackle, snap, or
higher derivatives).

Minimum hand jerk model. Another criterion, suggested by Svinin
et al. (2005, 2006), is the minimum hand jerk (MHJ) model, mini-
mizing the hand position third derivative:

�
0

T �d3(xh)

dt3 �2

dt (5)

This criterion was used to describe unconstrained reaching move-
ments (Flash and Hogan 1985); however, for object manipulation
tasks, the object motion equation (Eq. 1) must be used, transforming
the criterion in Eq. 5 to

�
0

T �mo

k

d5(xo)

dt5 �
d3(xo)

dt3 �2

dt (6)

The resulting hand position model depends on the ratio between
object mass and spring constant as well as on the movement length
and duration. Similar to the MOC model, the hand kinematics pre-
dicted by this model will not change as long as the object mass-spring
ratio is kept constant.

Although the optimization criterion does not change between the
two tasks of simple reaching and object manipulation, there is a
need for reminimization of the criterion for each of these tasks and

Fig. 1. Experimental setup. A: haptic device setup. The subject looks at a projection of the experiment from a projector located overhead while holding
the handle of a robotic haptic device. B: the visual display used in the experiment. The blue disk represents the initial moving point, the green disk
represents the target point, the gray square represents the subject’s hand, and the red square represents the object. L is the distance between the initial
point and the target, and the dashed arrows represent the orthogonal forces keeping the movement within a 1-dimensional channel. C: diagram of the hand
as a point mass, mh, and the simulated mass, mo, attached (virtually) to the hand by a spring with constant k. The hand position is denoted by xh, and the
object position is denoted by xo. F indicates the forces the hand is generating during movement. The center of mass (xcm) is derived as a weighted sum
of the hand position and the object position.
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again for more complex objects. Moreover, this criterion could not
account for some of the previous experimental results, in the sense
of accurate prediction of the number of phases exhibited dur-
ing movement, as demonstrated in the work of Svinin et al.
(2005).

Minimum hand driving force change model. A third model, sug-
gested by Svinin et al. (2005), considers the force the hand is
producing during movement with the object, F. This variable is an
equivalent representation of the joint torque as suggested by Uno et al.
(1989).

According to this model, the optimal trajectory is found by mini-
mizing the square changes in force:

�
0

T

�Ḟ�2
dt (7)

The suggested cost function is then transformed using the hand
motion equation (Eq. 2) and object motion equation (Eq. 1):

�
0

T �mhmo

k
·

d5(xo)

dt5 � (mh � mo) ·
d3(xo)

dt3 �2

dt (8)

This model also depends on the hand mass value, unlike models
resulting from the criteria described in Eqs. 4 and 5, in addition to
the dependency on the object mass, spring constant, and movem-
ent length and duration. Unlike in previous models, keeping the ob-
ject mass-spring ratio constant while changing each parameter
value will create different predictions of hand kinematics in this
model.

The criterion in Eq. 7 can also be used to describe unconstrained
reaching movements. Unlike the process of transferring this crite-
rion (Eq. 7) to the criterion for object manipulation (Eq. 8), for
reaching movement there is no need of such transformation.
Without an external object, the optimization problem needs to be
resolved according to the criterion in Eq. 7, and not the criterion in
Eq. 8; i.e., there is a need to find the optimal trajectory by
reminimization of the criterion. As shown by Svinin et al. (2005),
the solution for minimizing this criterion for unconstrained reach-
ing movement is a numerical one similar to the iterative scheme
solution of the minimum joint torque-change model (Uno et al.
1989). As suggested in the same study, the solution is not guar-
anteed because it may not converge. Extending the criterion to
more complex environments is done in a similar way to the MHJ
model, suggesting that there is a need to reminimize the criterion
for each environment and task.

Minimum acceleration with constraints applied to the center of
mass. We propose to examine a state variable that combines both
hand and object, namely, the system CoM. As in previous studies
where the hand complex configuration and dynamics are ignored
and the hand is considered as a point mass, the system CoM is
defined as

xcm �
mhxh � moxo

mh � mo
(9)

This assumption overlooking the complex dynamics of the hand and
treating it as a point mass is not new (Svinin et al. 2005) and serves
as a first approximation of the hand. Moreover, because the feedback
given to the subject in this and previous studies is a visual point at the
location of the hand, the subject is not required to control hand
configuration.

To achieve smooth trajectory of the hand and object, we mini-
mize the CoM acceleration from an initial to a final position in a
given time T:

�
0

T

�ẍcm�2dt (10)

To solve the optimization problem, we suggest using the solution of the
minimum acceleration with constraints criterion (MACC) for reaching
movements (Ben-Itzhak and Karniel 2008). This will provide us with a
description of the CoM trajectory, thus solving the optimization problem
for the mass-on-spring system. By using this solution, derived for uncon-
strained reaching movements, we do not need to resolve the optimization
problem given the new environment. The position of the CoM is given by

xcm ��
1

6
1c0t3�

1

2
1c1t2�1c2t � 1c3, 0 � t � t1

1

6
2c0t3�

1

2
2c1t2�2c2t � 2c3, t1 � t � t2

1

6
3c0t3�

1

2
3c1t2�3c2t � 3c3, t2 � t � T

1c0�u 1c1�1c2�1c3�0

2c0�
�24uL

uT3 � 24L � �uT3(uT3 � 24L)

2c1�
�12uLT

uT3 � 24L � �uT3(uT3 � 24L)

2c2�
(12L � uT3)�uT � uT2�uT3 � 24L

4�uT3 � 24L

2c3�
(6L � uT3)�uT3 � 24L � (uT3 � 18L)�uT3

12�uT3 � 24L

3c0�u 3c1�uT 3c2�
1

2
uT2 3c3�L �

1

6
uT3

t1 �
T

2�1 �	u · T3 � 24 · L

u · T3 

t2 �

T

2�1 �	u · T3 � 24 · L

u · T3 


(11)

This analytical solution provides a descriptive model of the CoM
trajectory. This description is divided into three time intervals. The
position of the CoM in each time interval is given by a polynomial and
its related coefficients, icj, where i is time interval index and j is the
coefficient number index. As discussed in detail in the original article
(Ben-Itzhak and Karniel 2008), this model suggested minimizing the accel-
eration while constraining the maximum value of the jerk, u. The model is
derived using Pontryagin’s minimum principle, resulting in a three-part
constant intermittent control signal, which depends on the jerk constraint, u,
providing a prediction about the intermittent nature of the control signal.

Extracting the object position from Eq. 9 and substituting in Eq. 1, we
obtain the following ordinary differential equation linking the hand
position and its derivatives to the CoM position and its derivatives:

ẍh � �xh � �ẍcm � �xcm

� � k�mo � mh

mhmo

 � �2

� � �1 �
mo

mh



(12)

To get the hand position, we simply need to solve the above ordinary
differential equation. Because the CoM position is divided into three
time intervals (Eq. 11), the solution of the hand position will also be
divided into three time intervals:
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xh(t) ��
A1

1 cos(�t) � A2
1 sin(�t) �

1

6
1c0t3�

1

2
1c1t2�

1c2� � 1c0(� � 1)

�
t �

1c3� � 1c1(� � 1)

�
, 0 � t � t1

A1
2 cos(�t) � A2

2 sin(�t) �
1

6
2c0t3�

1

2
2c1t2�

2c2� � 2c0(� � 1)

�
t �

2c3� � 2c1(� � 1)

�
, t1 � t � t2

A1
3 cos(�t) � A2

3 sin(�t) �
1

6
3c0t3�

1

2
3c1t2�

3c2� � 3c0(� � 1)

�
t �

3c3� � 3c1(� � 1)

�
, t2 � t � T

(13a)

where

A1
1 � 0

A2
1 � �

1c0(� � 1)

��

A1
2 �

(a � 1) · �3c0·sin(�T � �t2) · sin(�t1)�1c0 · sin(�t2) · sin(�t1)�
�� sin(�(t1 � t2))

A2
2 � �

�1c0·cos(�t2) · sin(�t1)�3c0 · cos(�T) · cos(�t1) · sin(�t2)� · (a � 1)

�� sin��(t1 � t2)�
�

�3c0·sin(�T) · cos(�t1) · cos(�t2)� · (a � 1)

�� sin��(t1 � t2)�

A1
3 � �

3c0·sin(�T) · (� � 1)

��

A2
3 � �

3c0·cos(�T) · (� � 1)

��

�
k�0

7 (�1)k

(2k � 1)!�� ·
T

2	uT3 � 24L

uT3 
2k

�

sin�� ·
T

2

� ·

T

2

(13b)

The model depends on the object mass, spring constant, and move-
ment length and duration, as well on the hand mass value.

We have derived this solution using standard methods for
finding the homogenous solution by solving the characteristic
equation and then, for each time interval, using the method of
undetermined coefficient to find a particular solution (for an
explanation of the method, see Boyce and DiPrima 1970). It is
interesting to note that during this procedure, we had initially six
boundary conditions and six continuity conditions; however, five
were redundant, namely, identical to one of the other seven
conditions, and therefore we were left with seven equations and
seven parameters to obtain the single solution in Eq. 13. Never-
theless, because an ordinary differential equation has a unique
solution, one can simply substitute our solution into the Eq. 12 to
prove it. These seven parameters are the six undetermined coeffi-
cients A1

1, A2
1, A1

2, A2
2, A1

3, A2
3 and the jerk constraint, u. The

expression for the last parameter is not given explicitly because it
is a complex expression that contains many terms; however, one
can simply solve the high-order polynomial equation by factoring
the polynomial or using numeric methods such as the Newton
method.

A basic requirement of any model is to provide a logical descrip-
tion for 1-degree-of-freedom object manipulation while using extreme
values of the mass and spring. This can be achieved while changing
the spring and mass values to create different manipulation scenarios.
For example, when the movement is performed without the additional
mass, i.e., mo � 0, k � 0, the model describing the hand trajectory
converges to the MACC model, as expected, to describe this simple
reaching movement. Another case is when k ¡ �, which can be
considered as moving while holding a rigid object; the model again

converges to the MACC model, as expected, because the object
position coincides with the hand position.

Phase analysis of the MACM velocity profiles. To design the
experiment and test the predictions of the various models, we have
analyzed the expected velocity profiles and in particular the local
minima and maxima values. Changes between local maximum and
minimum speed values or vice versa are referred to as phase
transitions (Svinin et al. 2006). This analysis is performed on
simulation results of the model predictions provided by Eq. 13.
Because the MACM model predictions depend on the system
parameters spring constant, external mass, hand mass, movement
length, and duration, we could not create a single illustration
capturing the effect each parameter has on the velocity profile. To
find how changes in a particular constant value affect the number
of phases, one can construct a two-variable function of the hand
velocity that depends on time and the constant in question. For
example, we illustrated the velocity profiles as a function of the
hand mass while keeping a fixed value of the other constants
(Fig. 2).

Finding the saddle points in such illustrations will provide the
critical value at which phase transition occurs. These saddle points
satisfy the condition where both the acceleration and jerk become zero
(Dingwell et al. 2004; Svinin et al. 2005):

ẍh(t) � 0

x�h(t) � 0
(14)

The velocity extremum is found by setting its derivative to zero, i.e.,
finding at which time points the acceleration is equal to zero. After
finding these critical points, we want to decide whether there is a local
maximum, minimum, or saddle point. This is done by calculating the
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second derivative of velocity at these points. If the jerk is zero, this is
a saddle point; otherwise, it is a local minimum or maximum (Apostol
1967). This phase analysis can be performed using the second and
third derivative of the simulated hand position provided in Eq. 13.

Extension of the MACM Model to More Complex Environments

To further examine the abilities of the MACM model and its
advantage over previous models, we considered two parallel mass-
on-spring objects attached to the hand (Fig. 3) and demonstrated that
the MHJ and MOC models cannot be extended to account for this
case. This environment sets the following dynamics: the motion
equation of the first mass, m1,

m1ẍ1 � k1(xh � x1) (15)

the motion equation of the second mass, m2,

m2ẍ2 � k2(xh � x2) (16)

and the motion equation of the hand, mh,

mhẍh � F � k1(x1 � xh) � k2(x2 � xh) (17)

where boundary conditions for the task are as follows: for the hand,

xh(t � 0) � 0, ẋh(t � 0) � 0, ẍh(t � 0) � 0

xh(t � T) � L, ẋh(t � T) � 0, ẍh(t � T) � 0
(18)

for the first object,

x1(t � 0) � 0, ẋ1(t � 0) � 0, ẍ1(t � 0) � 0

x1(t � T) � L, ẋ1(t � T) � 0, ẍ1(t � T) � 0
(19)

and for the second object,

x2(t � 0) � 0, ẋ2(t � 0) � 0, ẍ2(t � 0) � 0

x2(t � T) � L, ẋ2(t � T) � 0, ẍ2(t � T) � 0
(20)

Minimum hand jerk. As suggested by (Svinin et al. 2006), to create
a descriptive model using the MHJ criterion (Eq. 5), the two-objects
problem should be separated into two independent 1-degree-of-free-
dom problems. However, solving the problem for one object deter-

Fig. 2. Predictions of the minimum acceleration of center-of-mass (MACM) model. A–D: examples of the hand velocity (Vh) profiles predicted by the MACM
model for transporting the mass-on-spring, a 4-kg object with a spring stiffness equal to 120 N/m, while the hand mass (mh) was increased from 1 to 4 kg. The
movement duration (T) increased between panels: in A, T � 1.2 s; in B, T � 1.3 s; in C, T � 1.4 s; and in D, T � 1.5 s. E and F: examples of the hand velocity
profiles predicted by the MACM model for transporting the mass-on-spring where the movement duration remained constant while the hand mass was increased
from 1 to 4 kg. The spring and mass values were changed between panels: in E, a 3-kg object and 90 N/m spring; in F, a 2-kg object and 60 N/m spring. For
the selected constants used in these examples, the phase analysis did not show any change in the number of phases, which remains 2.

Fig. 3. Diagram of the hand as a point mass, mh, while attached to 2 external
masses, m1 and m2, with 2 springs with constants k1 and k2. This setup
generates 2 masses-on-springs connected to the hand in a parallel way. The
hand position is denoted by xh, the first object position is denoted by x1, and
the second object position is denoted by x2. The center of mass, xcm, is derived
as a weighted sum of the hand position and the object position. This system
demonstrates a situation in which the movement of each object depends on the
movement of the hand and there is no direct link between the 2 objects.
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mines the movement of the other objects, which does not necessarily
satisfy the boundary conditions. Therefore, the MHJ model cannot be
extended to account for this task.

Minimum object crackle. If we use the MOC model to describe the
first mass, the model will satisfy the boundary conditions for the first
object and for the hand, leaving yet again the problem of the unsat-
isfied boundary conditions for the second object. Applying the crite-
rion to both masses can create conflict with the hand trajectory in
cases where the ratios between each external mass and its spring are
not equal, i.e., m1/k1 � m2/k2. Therefore, the MOC model cannot be
extended to account for this task.

Minimum acceleration of center of mass. As for simple object
manipulation, the MACM model is based on describing the trajectory
of the system’s CoM using the MACC model, i.e., the CoM trajectory
can be described as a straight line with a bell-shaped velocity profile.
We can calculate the link between the CoM and the first mass
position:

x1
(4) � �mh � m1

mhm1
�

k2

mh
�

k2

m2

ẍ1 � k2k1

(m1 � m2 � mh)

m2mhm1
x1

�
k1

mhm1
(m1 � m2 � mh)ẍcm � k2k1

(m1 � m2 � mh)

m2mhm1
xcm

(21)

Because the position, velocity, and acceleration of the first object and
hand are continuous and differentiable, the third and forth derivatives
of the first object position exist, i.e., x�1 and x1

(4). This can be proved by
calculating the limit of the difference quotient using Eq. 15 (Apostol
1967).

Solving the ordinary differential equation in Eq. 21 will generate a
solution that satisfies the boundary conditions of Eq. 19. Using this
solution, we can calculate the trajectory of the hand while satisfying
the boundary conditions at the beginning and end of the movement.
Once the hand, first mass, and CoM trajectory are set, there is no need
for special calculation of the second mass trajectory because it is
automatically given from the CoM definition:

xcm �
mhxh � m1x1 � m2x2

mh � m1 � m2
(22)

Similarly, the MACM can be further extended to multiple objects and
various external degrees of freedom.

Subjects, Apparatus, and Protocol

Twelve subjects (7 males, 5 females, ages 23–28 yr) participated in
three experiments (A, B, and C) after signing the informed consent
form as stipulated by the Institutional Helsinki Committee, Beer-
Sheva, Israel. Subjects were seated and used their dominant hand to
hold the handle of a PHANTOM 1.5 haptic device (SensAble Tech-
nologies), which was used to generate real-time forces. The subject
looked at a projection screen displaying the virtual environment from
a projector placed horizontally above it (Fig. 1A). Movements were
performed in one dimension by setting limitations on the subject hand,
using forces in the direction orthogonal to the movement line. The
orthogonal forces were generated according to Fz(t) � �200·zh(t)[N],
where zh represents the hand position in the lateral direction (Fig. 1B).
These forces created an infinitesimal channel for subjects to move,
ensuring a straight line movement. After a few trials, all subjects
generated straight line movements, so the forces generated orthogonal
to the moving direction were unnoticeable. The experiment started
with 50 reaching movements between the initial position and the
target, the “reaching stage,” to familiarize the subject with the system,
followed by 900 movements performed while attached to the mass-
on-spring, the “object manipulation stage.” The mass and spring
constants changed during the experiment every 300 trials: the subject
interacted with a 2-kg object and a spring with 60 N/m constant in
experiment A, with a 3-kg object and a spring with 90 N/m constant

in experiment B, and with a 4-kg object and a spring with 120 N/m
constant in experiment C. The order of experiment appearance was
randomized between subjects (Table 1). In all three experiments the
desired movement duration (T) was 1.5 s while the desired movement
length (L) was set to 15 cm, i.e., the initial position and target position
were 15 cm apart. Subjects could not see their hand, but their hand
location was represented by a gray square. To start the movement,
subjects needed to set their hand at the initial point by moving the gray
square to a blue disk representing the initial position. Once at rest at
the initial point, a go signal was given and the subject moved his/her
hand to the target, represented by a green disk. During the reaching
stage, the visual display of the experiment consisted of these three
elements: the hand, the initial point, and the target point. During the
object manipulation stage, the subject received additional visual
feedback of the mass location from an additional red square, setting
the total number of elements to four: the hand (gray square), the object
(red square), the initial point (blue disk), and the target point (green
disk), as depicted in Fig. 1A. The position of the external mass was
calculated online by solving the object motion equation (Eq. 1). The
solution depends on the subject hand position and was calculated
using the fourth-order Runge-Kutta method. Hand position was sam-
pled at 1 kHz; therefore, the object position was calculated and forces
were rendered at the same rate.

During the object manipulation stage, a trial was considered to be
successful 1) once the subject hand and mass reached the target (L �
0.006 m); 2) when at the target point, the velocity of the hand and the
mass were very close to complete stop (speed �0.006 m/s); and 3) the
movement was performed within a time limit of 1.3–1.7 s. Subjects
were given visual feedback as to whether their movements were
appropriate, too slow if they did not reach the objective by the desired
time, or too fast if they reached the objective before the desired time.
Once subjects were given visual feedback about their movement
speed, both haptic feedback and visual feedback of the virtual object
position were turned off until a new trial was presented.

This procedure was reproduced on 2 consecutive days, setting the
total number of movements each subject performed to 1,900 trials:
100 reaching and 1,800 object manipulation (600 trials in each
experiment). Subjects were not aware of the changes in spring and
mass values, and none reported a feeling of such changes after the
experiment ended. Note that although the mass and spring values
changed between experiments, the ratio between them, i.e., mo/k, did
not change and was always equal to 1:30.

Data Analysis

Model comparison with the current experiments. To compare the
suggested models with experimental data, we took the last 10 suc-
cessful hand velocity profiles executed by each subject in each

Table 1. Order of presentation of each of the three experiments

Subject

Order of Presentation of Experiments

First Second Third

S1 A B C
S2 A B C
S3 A C B
S4 A C B
S5 B A C
S6 B A C
S7 B C A
S8 B C A
S9 C A B

S10 C A B
S11 C B A
S12 C B A

Experiments A, B, and C were presented to subjects in a randomized order.
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experiment, i.e., experiments A, B, and C during the second day, and
calculated the average velocity profile. To generate model predictions,
we used all the parameters set in each of the experiments, i.e., object
mass, spring constant, and movement length, identical to the process
described by Dingwell et al. (2004). Two of the suggested models, the
MHFC model and the MACM model, depend on the mass of the hand.
We used predictive regression equations based on anthropometric
measures, meaning segment lengths, circumferences, breadths and
skin folds (Arthurs and Andrews 2009), to estimate the mass of the
hand for each subject. The regression equations we used were tested
by Arthurs and Andrews (2009) against actual mass values obtained
using dual-energy X-ray absorptiometry scans and showed high suc-
cess in predicting the hand mass.

To fit the models to the averaged trajectory, we had to obtain the
movement duration and movement onset time. As mentioned in the
report by Dingwell et al. (2004), subjects may attempt to move with
an internal “desired” T that may be shorter than the required time and
therefore may obtain more time to dampen extraneous oscillations at
the end of the movement and thus still complete the task “success-
fully.” Therefore, it was necessary to vary movement time (T) in
fitting the models to the data.

There are many methods for movement onset detection (Botzer and
Karniel 2009; Georgopoulos et al. 1982). Here, instead of detecting
the onset of movement, for each model the best fit for each averaged
trajectory, in the sense of highest explained variance (R2), was
obtained by selecting the best temporal translation and best movement
duration. Therefore, all the predicted trajectories from each model
compared in this study are the result of fitting these two parameters.

After the best fitted trajectory was obtained, values of the variance
accounted for (VAF) were calculated across subjects and experiments
and compared. The values of VAF are bounded in [0,100], regardless
of the specific experiment. Therefore, we used the nonparametric
Friedman’s test (Friedman 1937) to determine whether the difference
between the VAF values of the models is statistically significant. We
used the Wilcoxon signed-rank test for multiple comparisons to
perform the comparisons between the individual models.

Model comparison with previous results. In comparing the MACM
model predictions with previous results (Fig. 2 of Dingwell et al.
2004), we used the same parameters fitted originally for all the models
(movement onset and movement duration) and graphically superim-
posed these predictions on the original velocity profiles. Because there
was no documentation regarding the hand mass in the original article,
we choose the hand mass based on the mean value reported by Arthurs
and Andrews (2009).

RESULTS

A New Model for Trajectory Formation: MACM

We have derived a new model for trajectory formation (Eq.
13), analytically proved (see METHODS) to account for reaching
as well as object manipulation. This model describes the
optimal trajectory of the hand and is derived from the MACC
model for reaching movements without the need to minimize
additional criteria considering the new system, which consists
of the hand and mass-on-spring.

The model well accounts for previous experimental results.
Compared with previously reported experimental results, the
MACM model can account for reaching movements without an
external object. The MACM model converges to the MACC
model when the object mass and spring constant are set to zero,
and the ability of the MACC model to accurately predict the
characters of simple reaching movements was demonstrated by
others (Ben-Itzhak and Karniel 2008; Berret et al. 2011;
Yazdani et al. 2012). Therefore, the prediction by the MACM

is also consistent with the experimental data as reported in
these studies.

In addition to reaching movements, the MACM model can
account for previous simplified object manipulation tasks. We
examined the results of experiment B in Dingwell et al. (2004).
This movement was performed by subjects while transferring a
3-kg object with 120 N/m spring between points located 12.5
cm apart. As shown in Fig. 4A, the MACM model predicts the
typical subject velocity profile for the 1.7-s duration as re-
ported by (Dingwell et al. 2004). In addition, the model can
account for the one subject who was not “typical” and showed
an irregular velocity profile, as shown in Fig. 4B.

The model well accounts for new experimental results. All
three experiments tested the MACM model predictions of the
object manipulation task compared with previous suggested
models while keeping the ratio between the external mass and
spring constant. In experiment A, all 12 subjects exhibited a
biphasic hand velocity profile. The predictions of the MACM
model were not significantly different from those of the MOC
or MHFC models (Wilcoxon signed-rank test, P � 0.1) and
significantly better than those of the MHJ model (Wilcoxon
signed-rank test, P � 0.001). The VAF values for the fitting for
each model are presented in Fig. 5B, and an example of a
velocity profile and fitting is presented in Fig. 5A. In experi-
ments B and C, all 12 subjects again exhibited biphasic hand

Fig. 4. Models fit to previous results. A: typical velocity profile of subjects
performing the object manipulation task while transferring a 3-kg object with
120 N/m spring between points located 12.5cm apart (Dingwell et al. 2004).
Thin light gray lines represent individual trials, whereas the thick gray line
represents the average of these trials. Optimal trajectories predicted by the
models are denoted by a black line (minimum object crackle; MOC), pink line
(minimum hand jerk; MHJ), green line (minimum hand force change; MHFC),
and blue line (minimum acceleration of center of mass; MACM). B: velocity
profile of the exceptional subject reported by Dingwell et al. (2004). Lines are
as described in A. [Both A and B were modified from Dingwell et al. (2004).]
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velocity profiles. The predictions of the MACM model were
significantly better than those of the MOC, MHJ, and MHFC
models (Wilcoxon signed-rank test, P � 0.001). The VAF
values for the fitting for each model are presented in Fig. 5, D
and F, and examples of the respective velocity profiles and
fittings are presented in Fig. 5, C and E. The success rates of
each subject were also similar across experiments, ranging
between 34% and 72%. Fitted movement times (T) were
similar across experiments for each model (in s): MHJ, mean
1.424 (SD 0.184); MOC, mean 1.336 (SD 0.160); MHFC,
mean 1.417 (SD 0.182), and MACM, mean 1.531 (SD 0.197).
The differences between actual movement duration performed
by subjects and the fitted movement duration for each model
were as follows (in s): MHJ, mean 0.122 (SD 0.015); MOC,
mean 0.132 (SD 0.023); MHFC, mean 0.118 (SD 0.01); and
MACM, mean 0.089 (SD 0.026).

Next, we tested whether the hand mass is related to kine-
matic features exhibited by the subjects. We tested the corre-
lation between the hand mass and local minimum and maxi-
mum values of the velocity profile. We found negative corre-
lation between hand mass and the mean local maximum value
of the velocity profile exhibited in the three experiments
(Pearson r � �0.743, P � 0.021) and positive correlation

between hand mass and the mean local minimum value of the
velocity profile exhibited in the three experiments (Pearson r �
0.717, P � 0.045). These results show that kinematic features
of the movement change with hand mass as predicted by the
MACM and MHFC models.

DISCUSSION

In this study we derived a computational model for object
manipulation based on the minimum acceleration with con-
straints criterion applied to the center of mass (MACM). We
used a known paradigm to simulate a mass-on-spring system
and showed that minimizing the hand-mass system CoM ac-
celeration can account for our observed experimental data. We
considered three additional models and found that the MACM
can explain the results better than these previous models.
Moreover, we showed that unaccountable previous results,
regarded as not typical, are well accounted for by our model.

The criterion of minimum acceleration was found successful
for reaching movement, and here we show a generalization of
this criterion for mass-on-spring manipulation. During our
experiments we changed the values of the external mass and
spring constant but kept the ratio between these two elements

Fig. 5. Models fit to new experimental results. A: individual variance accounted for (VAF) by each model in experiment A. ***P � 0.001 indicates significant
difference (see RESULTS). B: velocity profile for a single subject from experiment A. Thin light gray lines represent individual trials, whereas thick gray line
represents the average of these trials. Optimal trajectories predicted by the models are denoted by a black line (MOC), pink line (MHJ), green line (MHFC), and
blue line (MACM). C: individual VAF values in experiment B. D: velocity profile for a single subject from experiment B. E: individual VAF values in experiment
C. F: velocity profile for a single subject from experiment C.
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constant. This was done to check whether the hand kinematic
changes, as we did see, but limited our possibilities to learn
about the ability to generalize to different mass-on-spring
objects. The constant ratio sets the same dynamic equation for
the external object, making it possible for the subject to
generalize between the objects we presented but keeping the
question of generalizing to different object dynamics still open
(Dingwell et al. 2002). To further test our model, we can
examine the generalization of the present solution to different
mass-on-spring dynamics and different tasks (e.g., reaching
with a glass full of water, flexible or articulated rods, etc.).

As suggested by Svinin et al. (2006), the ability of a model
to be extended to more complex environments can show
advantages of one criterion over the other. We showed that the
solution for simple point-to-point reaching movement can be
used to generate the needed movement during transport of a
mass-on-spring object without the need for resolving the opti-
mization problem. With the use of this procedure, the model
can be extended even further to more complex environments
with more degrees of freedom, such as a chain of masses
connected by springs (Svinin et al. 2006) or multiple masses-
on-springs connected in a parallel way. The extension of other
models to the later mentioned environment is not as trivial, if
even possible, as we showed in METHODS.

Our model is based on three underlying principles: 1) min-
imum acceleration as the optimization criterion, 2) the CoM as
the relevant variable, and 3) maximum CoM jerk as a constraint.
Because the MACM model, as well as the other models, describes
the endpoint trajectory, it is independent of manipulation goal and
other task parameters such as the movement direction. The CoM
jerk constraint, u, found during the model derivation process in
Eq. 13, is used to satisfy a continuity condition, eliminating the
possibility of a discontinuous hand velocity profile. Setting the
CoM jerk to a different value would generate a discontinuous
point in the hand velocity profile, which implies an unbounded,
nonsmooth, and nonphysiological hand acceleration profile. It
is important to note that the question of the underlying princi-
ple on which movements are planned is still open. The previ-
ous criteria, such as MHJ and MHFC, need to be converted
from hand coordinates to object coordinates to be calculated.
The equivalency between these criteria (Eqs. 5 and 6 and Eqs.
7 and 8) make it harder to determine which formulation the
central nervous system is using. In our system, minimizing the
acceleration of the CoM is equivalent to minimizing the hand
driving force. Similarly, the minimum jerk of the CoM is
equivalent to the MHFC as mentioned in Eq. 7. This is easy to
prove by examining the definitions of the MACM and mini-
mum hand force cost functions, �0↕T[F]2dt, while keeping in
mind the definition for the CoM and the dynamic equations of
the system (see Eqs. 1, 2, and 9). The equality between the
MACM and minimum hand force makes it difficult to deter-
mine whether the hand trajectory is the outcome of minimizing
the CoM acceleration or the CoM trajectory is the outcome of
minimizing the driving forces of the hand during movement.
As further discussed below, planning and executing move-
ments in the task space of CoM coordinates may reflect a
general approach with metabolic benefits that can be extended
and tested in more sophisticated object manipulation tasks.

We propose a model for the arm trajectory after extended
training. One should note that in the practice session, subjects
have to learn the task using dynamic and kinematic information

(Krakauer et al. 1999). Visual and proprioceptive information
about the hand and object states as well as the forces acting
during movement are required to form an internal representa-
tion of the external system (Izawa et al. 2008). Because the
dynamics of the hand are changed with the additional external
mass and the kinematic planning is changed by the multiple
objectives, subjects need to learn the new environment. The
learning process is evident from the increased success rate of
keeping within the demands of the mass-on-spring transporting
task (Svinin et al. 2006) or by the shortening of the movement
duration (Dingwell et al. 2002). In this sense our model
suggests that subjects need to both estimate the dynamics
changes, i.e., the altered CoM, and use different kinematic
planning, i.e., implicitly compute the required hand movement
that will create CoM trajectory with similar characteristics of
the unconstrained reaching movement.

Previous studies supported the ability of subjects to estimate
the CoM by using vision (Hirsch and Mjolsness 1992; Salimi
et al. 2003) and the size of objects (Friedenberg and Liby
2002). Proprioceptive information may provide a sense of
forces acting on the hand during movement; however, because
trajectory planning is predictive, the nervous system can use
sensory information from the previous trial to predict other
variables such as the CoM. Because both hand and mass were
presented as squares with the same size, it is not inevitable that
there was integration of proprioceptive and visual feedback to
estimate the CoM.

The CoM variable appears to be relevant to the motor system
for a range of activities. Most relevant to this work is the
possibility of the CoM to have fundamental rule in planning
reaching movements (Suzuki et al. 1997). Other examples can
be found in studies of limb orientation perception (van de
Langenberg et al. 2007), body orientation perception (Fourre et
al. 2009), sit-to-stand tasks (Scholz and Schöner 1999), or
object grasping tasks (Lukos et al. 2007). Furthermore, con-
trolling the CoM variable may affect metabolic cost, for
example, during walking (Gordon et al. 2009). We provide
another role for the CoM as the controlled variable during
transport of flexible objects; our setup focused on one-dimen-
sional (1-D) movement, where there is only one geometrical
solution corresponding to the CoM position while the number
of fingers holding the robotic handle or the way it is grasped is
made irrelevant to the task goal. Future studies could further
test our model in 2-D and 3-D movement and extend it to
various hand-grip configurations.

An important prediction of the MACM model is an inter-
mittence control, because the solution is divided into three
parts. Intermittence is particularly useful for hierarchical sys-
tems with delay (Gawthrop et al. 2011). This view of the neural
control of movement suggests that the central nervous system
sends sparse command to the spinal cord to switch motor
command at certain points of time, such as the three points in
our solution.

As previously suggested, the internal representation of ob-
jects can be related to the cerebellum (Nowak et al. 2007). In
the structure of internal models (Kawato 1999), the cerebellum
is linked with the role of a forward model (Pasalar et al. 2006)
because it may have the ability to predict movement outcome.
In the context of object manipulation, the cerebellum may have
to acquire the intrinsic dynamics of the object to predict how
hand movements and generated forces will affect the object
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movement, as seen, for example, when learning to use a new
tool (Imamizu et al. 2000). This new model has interesting
implications about the possible neural representation of the
CoM, together with the intermittent nature of the control and
its relation to neural bursts such as the bistability observed in
Purkinje cells (Loewenstein et al. 2005).

In this study we derived a model for both reaching and
simplified object manipulation tasks. This new model extends
the minimum acceleration with constraints model, suggesting
that during simple reaching movements and object manipula-
tion, the state variable being controlled is the center of mass.
Because the controlled variable and the optimization criteria do
not change between tasks, the suggested solution creates the
desirable simple strategy for the brain to implement during
daily interaction with the environment.
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