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Abstract From tying your shoes and clipping your tie to
the claps at the end of a fine seminar, bimanual coor-
dination plays a major role in our daily activities. An
important phenomenon in bimanual coordination is the
predisposition toward mirror symmetry in the perfor-
mance of bimanual rhythmic movements. Although
learning and adaptation in bimanual coordination are
phenomena that have been observed, they have not been
studied in the context of adaptive control and internal
representations—approaches that were successfully
employed in the arena of reaching movements and
adaptation to force perturbations. In this paper we
examine the dynamics of the learning mechanisms in-
volved when subjects are trained to perform a bimanual
non-harmonic polyrhythm in a bimanual index finger
tapping task. Subjects are trained in this task implicitly,
using altered visual feedback, while their performance is
continuously monitored throughout the experiment.
Our experimental results indicate the existence of sig-
nificant (p<<0.01) learning curves (i.e., error plots
with significantly negative slopes) during training and
aftereffects with a washout period after the visual
feedback ceases to be altered. These results confirm the
formation of internal representations in bimanual
motor control. We present a simple, physiologically
plausible, neural model that combines feedback and
adaptation in the control process and which is able to
reproduce key phenomena of bimanual coordination
and adaptation.

Keywords Visual motor coordination Æ Adaptation Æ
Motor skills Æ Learning Æ Bimanual tapping Æ Human

Introduction

Human daily routine frequently involves coordinated
bimanual movements. In many cases both hands are
involved in the same task and demonstrate symmetry
(Cohen 1971; Schoner and Kelso 1988; Mechsner et al.
2001; Swinnen 2002). The tendency toward mirror
symmetry in movements has been studied under differ-
ent conditions with a variety of movement types, and
has been associated with homologous muscle activation
(Schoner and Kelso 1988), callosal neural crosstalk
(Marteniuk et al. 1984; Swinnen et al. 1991; Cardoso de
Oliveira 2002), and perceptual symmetry (Mechsner
et al. 2001). It is interesting to note that even amputees
with phantom limbs maintain the tendency toward
bimanual coupling (Franz and Ramachandran 1998).

One of the prominent paradigms for the study of
bimanual coordination consists of rhythmic finger
movements. This paradigm has been used to model one
of the most important phenomena in bimanual rhythmic
movements—the involuntary phase transitions that oc-
cur when the frequency of oscillations is increased. Ini-
tially these transitions were explained by a fixed dynamic
model (Haken et al. 1985) that may represent intercon-
nection between the muscles at the spinal level (homol-
ogous muscles). This model has been extended to
accommodate several other conditions, e.g., different
eigenfrequencies (Fuchs et al. 1996), hand dominance
(Treffner and Turvey 1995), and physiological func-
tionality (Beek et al. 2002; Peper et al. 2004). Subsequent
recent research has also demonstrated that these coor-
dination patterns are influenced by training and atten-
tion (Zanone and Kelso 1992; Klapp et al. 1998;
Temprado et al. 2002).

The fact that the coordination patterns are change-
able through training calls for the study of the mecha-
nisms and system dynamics active during learning,
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demanding the application of adaptive control theory
and the notion of ‘‘internal representations’’ to the study
of bimanual adaptation. These notions were successfully
employed in the study of reaching movements (Shad-
mehr and Mussa-Ivaldi 1994; Mussa-Ivaldi 1999;
Karniel and Mussa-Ivaldi 2003) and grip force modu-
lation (Witney 2004), but in the arena of bimanual
coordination even the term ‘‘bimanual adaptation’’ has
not yet been used.

In this study we refer to the terms ‘‘internal model’’
and ‘‘internal representation’’ in the widest possible
sense; we do, however, distinguish between pure feed-
back control and adaptive control, where the former
does not include internal models.

The term feedback is used to describe information
that is used for control and learning (see, e.g., Schmidt
and Lee 1999). In order to distinguish between learning
and real time control, we use the term ‘‘feedback con-
trol’’ in the engineering sense where it is used as a real
time control signal. In engineering terminology (see, e.g.,
Karniel and Inbar 2000) feedback control is defined as a
flow of information that changes the control signal
based on the measured output signal. In an adaptive
control system, the controller itself changes during task
performance, a change that is much slower than the time
constant of the slowest signal transduction pathway in
the control loop, resulting in observable learning curves,
aftereffects of learning, and washout. In pure feedback
control the controller is fixed and unchangeable—only
the control signals may change. (For further discussion
about feedback and adaptation in the motor control
system, see Bhushan and Shadmehr 1999; Kawato 1999;
Karniel and Inbar 2000.)

If the controller undergoes changes that are based on
changes in the environment, it essentially represents the
environment. We believe that the term ‘‘internal model’’
is appropriate because it facilitates the next step of re-
search that will be aimed at unraveling the structures of
the internal representations, their learning and general-
ization capabilities.

So far, studies researching bimanual coordination
and the training of difficult coordination patterns have
concentrated on the achieved steady states, overlooking
the dynamics of the learning process itself. Models that
describe the observed phenomena of symmetry and
phase shifts have been typically based on nonlinear
coupled oscillator theory with representations of either
dynamics equations or physiologically plausible neural
networks (Schoner and Kelso 1988; Grossberg et al.
1997; Cattaert et al. 1999; Sternad et al. 1999; Swinnen
2002; Yu et al. 2003). The current models are based on a
fixed unchangeable architecture that may employ feed-
back signals that are capable of generating phase shifts
in the behavior but do not include gradual adaptive
changes in the parameters or other types of internal
representation.

Mechsner et al. (2001) found that bimanual symmetry
might have origins at the perceptual level. In their
experiments, subjects were able to perform difficult non-

harmonic polyrhythms as well as various phase relations
with both hands while presented with mirror symmet-
rical altered visual feedback. These observations point
toward the ability of the brain to perform complex
transformations between the desired perceptual goal and
the required motor activity, essentially implementing an
inverse model of the controlled system. In their experi-
ments, Mechsner et al. did not examine the learning
process and adaptation dynamics of the subjects to the
presented altered feedback, but rather focused on the
steady states which resulted from this training; therefore,
internal models were not required for explaining their
results. A subsequent study (Weigelt and Cardoso de
Oliveira 2003) examined interactions between hands in
bimanual reversal movements and distinguishes between
coupling on the visual level and on the executional level.
Using altered visual feedback, modifications in some of
these coupling effects were made. Coupling at the visual
level and executional level has also been addressed in
other studies (Swinnen et al. 2003).

Altered visual feedback (mainly in the form of Lis-
sajous figures) has been previously used in bimanual
coordination studies to facilitate learning of nontrivial
phase relations (mostly a 90� offset) in bimanual rhyth-
mic movements (Swinnen et al. 1993, 1997a, b; Lee et al.
1995; Debaere et al. 2003, 2004; Swinnen and Wende-
roth 2004). In these functional and modeling studies,
altered visual feedback was shown to facilitate produc-
tion of otherwise difficult bimanual coordination pat-
terns.

Hence, it is clear that coupling exists between hands,
perhaps even distributed over several functional layers,
but also that at least some of these couplings can be
modified by training and practice. Altered visual feed-
back has been established as a viable means of inter-
vening with bimanual coupling and facilitating the
acquisition of various coordination patterns.

In this study, we try to address changes in bimanual
coordination as a form of adaptation and learning of
internal representations and look for the signatures of
such processes as learning curves, aftereffects, and
washout phenomena. We consider a bimanual finger
tapping task and propose a simple model that repro-
duces the learning curves, the aftereffects, and the cou-
pling phenomena. Parts of this study were presented in
conferences (Karniel et al. 2003; Klaiman and Karniel
2004a, b).

Materials and methods

Participants

Ten male unpaid volunteers (ages: 22–29) participated in
the experiment. All had normal or corrected to normal
vision, were naive as to the purpose of the study, and
gave their written informed consent. The experiments
were approved by the local ethics committee and com-
plied with the Declaration of Helsinki.
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Task and apparatus

Subjects were seated in front of a computer monitor at a
distance of approximately 50 cm, and asked to place
their index finger on the CTRL keys of a standard
computer keyboard (Fig. 1). A PC-based platform spe-
cifically designed for this purpose was programmed in
Sun Java. The visual feedback consisted of four dotted
arcs rotating in concentric pairs. Each pair of dotted
arcs provided feedback for one of the hands. The outer
(red) semicircles acted as target markers, and rotated
with a constant speed in a path mirror-symmetrical to
each other. The inner (blue) semicircles acted as user
feedback markers, and rotated concentrically with the
corresponding target marker in a speed proportional to
the subject’s inter-tap-interval (ITI) of the associated
hand, i.e., the right circle would move faster if the sub-
ject tapped with his right finger at higher frequency.
Angular velocity of the feedback markers was calculated
with the formula

w ¼ p
14:4 ITI

½rad=s�; ð1Þ

where w is the angular velocity of the marker and ITI is
in seconds. The ratio between tapping frequency of each
hand and the rotation speed of the corresponding visual
feedback marker was chosen heuristically so that it was
slow enough to comfortably follow, but fast enough to
provide clear indication of tapping frequency. The goal
of this visual feedback display was to ‘‘convert’’ the
discrete tapping feedback into continuous visual feed-
back, which we could alter in order to facilitate learning.
For example, if the tapping frequency of one hand is
2 Hz, the ITI is 0.5 s and the corresponding marker
would complete a full circle in 14.4 s.

Subjects were instructed to focus their attention on
the visual feedback displayed on the monitor and max-
imally match each hand’s target marker with the corre-

sponding user feedback marker, controlling the speed of
the markers via the tapping frequencies of their fingers.

Data acquisition was performed through the software
by recording the timestamps of all keyboard interrupts
and distinguishing between right and left CTRL keys by
the interrupt key-flag. The time resolution of the inter-
rupt timestamp is 1 ms.

The finger tap times were registered by the software
program and immediately updated the corresponding
marker speed. This process was performed in a software
loop and therefore the length of the delay was around
10 ms, which we assumed to be subliminal and negligi-
ble.

Experimental protocol

Prior to each trial the subjects performed a 1 min pre-
liminary stage, in which they were able to try out the
system with normal (i.e., unaltered) feedback and learn
how the markers react to their increase or decrease of
tapping frequency. The trial timeline (shown in Fig. 2)
consisted of five separate stages with duration of 180 s
each. Subjects were allowed a short break between the
different stages. The short break was under 60 s and
usually around 20 s. The break periods are not included
in the data analysis. The first 180 s stage consists of 90 s
with 1:1 target ratio followed by a step transition to 3:2
target ratio for an additional 90 s. The second, third,
and fourth stages are training stages in which the target
ratio is constant at 3:2. The fifth (last) stage consists of
90 s of 3:2 target ratio followed by a step transition to
the original 1:1 ratio for an additional 90 s.

Execution of all bimanual rhythms by the subjects
during the trial was implicit, i.e., they were not told what
the target frequency was (or that there even was one),

Fig. 1 Experiment setup—subject seated in front of a computer
keyboard and monitor displaying visual feedback. The outer arc
markers’ (red) speed represents the target tapping frequencies and
the inner arc markers’ (blue) speed represents subject tapping
frequency

Fig. 2 The experiment timeline—The target ratio starts at a
comfortable 1:1 ratio, it is then abruptly changes to 3:2 target
ratio and finally returns to 1:1 ratio for the after-effect phase.
Following each 180 s stage the subjects are allowed a short resting
period
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but rather instructed only to match the target markers
with the feedback markers by constantly tapping their
fingers. The non-harmonic polyrhythm target ratio was
selected to be 3:2 since it has been shown in previous
studies to be one of the easiest non-harmonic rhythms to
learn (Deutsch 1983; Treffner and Turvey 1993).

In order to change the target-tapping ratio, the
‘‘gear’’ between ITI and feedback marker speed of the
right hand was changed so that when the subject suc-
cessfully followed the target markers he was performing
the non-harmonic polyrhythm.

During the normal 1:1 target ratio stage, the target
marker rotated at a frequency of five rotations per
minute (i.e., 0.52 rad/s), and the feedback markers were
configured so that the user was required to tap at a
comfortable 2 Hz frequency in order to match the target
markers’ speed with the user feedback markers.

Data collection

The data collected from each trial consisted of two
vectors of integers representing the time of each key
press in milliseconds, counting from the beginning of the
trial. To calculate the ITI, these vectors were numeri-
cally differentiated. The two ITI vectors were resampled
on a uniform timeline with a 10 ms timescale and di-
vided by each other to obtain the ratio of tapping fre-
quencies. All data analysis was performed with the
MATLAB 6.5 software package.

The model

We hypothesize that the acquisition of non-harmonic
polyrhythms in bimanual coordination involves an
adaptation such that an internal representation of the

learned task is formed. Previous studies in this area
make it clear that visual feedback plays an essential role
in facilitating the internal representation of complex
coordination patterns. We also know from previous
studies that some sort of coupling exists between both
hands and that visual feedback can help in modifying
this coupling.

Our goal in the modeling study was to propose the
simplest model that can account for these three phe-
nomena. Coupling required at least two elements and
visual information has to be fed back to these elements;
therefore the two linearly coupled rate-based neurons in
Fig. 3 represent a lower bound to our solution. We
demonstrate below that this architecture is insufficient to
explain our results and then present an extended model
that was sufficient and successfully reproduced our ob-
served results.

The firing rate of a neuron in this model can be de-
scribed by any non-negative, monotonically increasing
and bounded function S(P), where P is the neural input.
The input P to each of the two neurons consists of the
external current, inter-neural connections, and from the
feedback signal. The resulting sum can be written as

Pi ¼ I0 þ KFB ðiÞðT � S1=S2Þ þ Wi � Sðiþ1Þmod 2; ð2Þ

where T represents the target spike rate ratio, W the
inter-neural connection strengths, KFB the feedback
gain, and I the neuron index (i=1, 2).

From Eq. 2 (using i=1 without loss of generality) we
can now extract KFB as

KFB ¼
P1 � I0 � S2ðP2ÞW1;2

T � S1ðP1Þ
S2ðP2Þ

: ð3Þ

Denoting the output ratio as r=S1(P1) /S2(P2), and
assuming a finite current with a maximum value of M,
input Pi<M , neural excitation Si(Pi)>0 (both hands
are tapping), and W constant (i.e., exclusive use of
feedback in the control scheme), one can see that in
order to achieve any target ratio while keeping the
synapse strengths constant, the system would need an
infinite loop gain,

lim
r!T

KFB ¼ 1: ð4Þ

This result is not physiological and furthermore, we
know that the 1:1 ratio is inherently stable and does not
require feedback to be performed.

Therefore we conclude that the architecture in Fig. 3
is too simple and needs to be expanded. A natural choice
for such an expansion would be to use pulse coupled
neurons, e.g., Leaky-Integrate-and-Fire (LIF) neurons.
Pulse coupled neurons are known to have synchroniza-
tion capabilities (Masuda and Aihara 2001) which
would allow the model to describe the predominant
phenomena of tendency toward the stable 1:1 ratio and
phase locking (Cohen 1971; Schoner and Kelso 1988;
Mechsner et al. 2001; Swinnen 2002), which would now
be inherently built in the system. In order to include anyFig. 3 Two coupled rate-based neurons with feedback signals
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type of adaptation or learning (that were clearly ob-
served in our experiments), the synapse weights must be
changeable. A final enhancement to accommodate
physiological constraints would be to add two inhibitory
neurons to the network so that every single synapse
would be either excitatory or inhibitory, but not both,
i.e., would follow Dale’s principle (Dale 1935).

It should be noted that adding each of the improve-
ments to the simple model uniquely improves the model
in one particular way, but still leaves other demands
such as physiological plausibility or description of major
system qualities unaddressed. Adding the changeable
synapses to the model in Fig. 3 facilitates the observed
learning process but still leaves the basic flaw of rate-
based models, which is the inability to accurately de-
scribe phase preference and synchrony.

The neuronal network in our model (Fig. 4) consists
of four interconnected units. Two of these are primary
input-output units, which are excitatory and cross-cou-
pled. They receive the external input currents and error
feedback currents while providing output to the external
world in the form of spike trains. The other two are
inhibitory units, which provide contralateral inhibition
to the primary input-output neurons.

This model represents neuron cells or cell populations
in the central nervous system (CNS), and its components
follow the dynamics of LIF-spiking neuron equations.
The network model proposed is consistent with a family
of network configurations known as recurrent on-center
off-surround networks. This type of network design is
common in the CNS (Kuffler 1953; Von Bekesy 1968;
Grossberg 1982; Kandel et al. 1991) and has been pre-
viously used to describe various aspects in neural control
of bimanual coordination (Pearson 1993) and specifi-
cally involuntary shifts between in-phase and anti-phase
movement patterns (Grossberg et al. 1997).

In consistency with the LIF model, the neuronal
membrane voltages in our model (Fig. 4) are charac-
terized by the following equation:

sm
dV ðtÞ
dt
¼ �V ðtÞ þ R IðtÞ; ð5Þ

where sm is the membrane time constant, V(t) the
membrane potential vector, I(t) the neuron input current
vector, and R the membrane resistance. When the
membrane potential of a certain neuron i, Vi(t), crosses
the threshold potential VT, a spike is generated and the
membrane potential is reset to the resting potential VR.

The input current for each neuron follows the
dynamics in the following equation:

IðtÞ ¼ IINðtÞ þ KFB � eðtÞ þ W ðtÞ SðtÞ þ DNðtÞ; ð6Þ

where IIN(t) is the external input current vector,
KFB=KFB0 [1 -1 0 0]T the feedback coefficient vector,
e(t) the feedback error, calculated as the difference be-
tween the target ratio and the network’s output inter-
spike-interval ratio,

SiðtÞ ¼ f1 ViðtÞ¼SPIKE
0 ELSE

(i.e., Si(t)=1 if a spike occurred in neuron j in the last
sample time), W(t) the synaptic connectivity matrix [i.e.,
Wi,j(t) is the synapse strength from neuron j to neuron I],
N(t) a normally distributed noise vector, and D the noise
amplitude.

A simple algorithm is used to update the synapse
strengths in the learning process, using the feedback
control signal as the error to be minimized in a way
similar to feedback error learning architecture (Kawato
et al. 1987).

@Wi;jðtÞ
@t

¼ �lUFBðtÞ; ð7Þ

where l is a learning rate constant and UFB(t)=
KFB0·e(t), the feedback control signal.

Results

Due to the fact that subjects were unpaid and that it was
explained to them that under the Helsinki convention
rules they were eligible to withdraw from the experiment
at any time, two subjects decided to exercise that right,
stopped tapping during the experiment and were ex-
tracted. One of the subjects did not show improvement
in task performance (possibly due to lack of attention)
and was excluded from the data analysis. The rest of the
subjects (seven subjects) were able to learn the 3:2 tap-
ping ratio, demonstrating reduction in task performance
error during training and the resultant aftereffect.

Initially, the subjects performed the 1:1 tapping ratio
easily and rather accurately, tapping in both fingers at
the same rate and almost at the same time. During the
early learning phase, the subjects kept tapping 1:1 and in
order to track the target arc markers they occasionally
corrected by tapping faster in the right hand or slower in
the left hand to obtain a mean ratio of 3:2. After practice
the fluctuations around the target ratio became smaller

Fig. 4 The augmented neural network, consisting of four Leaky-
Integrate-and-Fire neurons with feedback signals and synapse
adaptation
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as subjects gradually acquired the target 3:2 tapping
ratio.

Due to the boring nature of the experiment, the
subjects were only presented with a relatively short
period (12 min) of training. Although they showed a
significant learning curve, i.e., improvement in task
performance, they reached only a preliminary stage of
task acquisition and probably did not achieve automa-
ticity during this short training phase.

In the last stage, when the target tapping ratio re-
turned to 1:1, a similar phenomenon was observed where
the subjects did not perform the 1:1 ratio easily and
immediately but rather fluctuated around the 1:1 ratio in
order to track the target arc markers. The tracking task
was performed with reasonable accuracy; however, the
variance in the tapping ratio was much larger than the
variance in the first block before the training phase. It is
important to note that the time scale of the reduction in
these fluctuations was measured in units of minutes
whereas the tapping occurred in time scale of seconds
excluding simple feedback control oscillations, indicat-
ing an adaptation process and an aftereffect of adapta-
tion.

An example for single subject measurements of tap-
ping ratio and tap times during the trial is presented in
Fig. 5.

Learning curves

In order to determine if a learning process took place
during the trial, while the subjects were attempting to
perform the target non-harmonic polyrhythm, we

examined the square error of subject tapping frequency
ratio, i.e., the difference between the target ratio and
ITI ratio, squared. For detection of learning we con-
sidered the entire duration in which the target ratio
was set to 3:2. This time period accumulates to a total
of 720 s. We postulated that if negative error curves
were observed in the experiment data, this would mean
that a constant decrease in error took place and that
this decrease could only be achieved via a learning
mechanism. From the regression analysis we calculated
the learning curve exponential time constant to be of
an order of several hundreds of minutes; the time scale
of this process is significantly longer than any physi-
ological feedback loop delay in the human control
system.

It is important to note that the term learning implies
different things for different researchers; specifically, we
wish to clarify that by using the term learning curves we
do not intend to imply that the augmented feedback was
removed. The learning curves in this section describe the
acquisition of a new visuomotor mapping. We use the
Engineering terminology where the terms adaptation
and learning are used in contrast to feedback as de-
scribed in the introduction.

Regression analysis results clearly indicated a nega-
tive curve on all of the subjects’ square error log values
during the training phase of the trial with p<0.05 for
each subject (both for the raw data and in normalized
data) and with p<<0.01 for cross-subject mean data
(Fig. 6). In order to perform inter-subject analysis, the
experimental data were standardized by subtracting the
mean and dividing by the standard deviation. The nor-

Fig. 5 The (top) ITI ratio of a single subject during the experi-
mental trial. (bottom) raster plots of left and right hand tapping
times in base stage, early learning stage, late learning stage and
aftereffect stage. As can be seen from the plot, the relatively short
training period does not enable the subject to perfectly learn the
target ratio. Still, even in this short period of training, we did
observe statistically significant learning curves and clear aftereffects
of learning

Fig. 6 Learning curve by linear regression of cross-subject mean
log of square ITI ratio error data in the duration of the training
phase of the experiment, when target ratio is 3:2. In order to
perform inter-subject analysis, experimental data were standard-
ized by subtracting the mean and dividing by standard deviation
(mean and standard deviation were calculated for each subject for
the whole duration, 12 min, of the training phase). A significant
(p<<0.01) negative curve can be observed, indicating that the
error is being decreased through training. This figure summarizes
the data analysis that was also performed separately per subject. A
significant (p<0.05) negative curve was observed for every subject
for the raw data and the normalized data
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malization was performed separately for the training
phase and for the aftereffects phase.

Observation of the subjects during the trial gave an
additional clue as to the nature of the learning process.
We observed that subjects would initially correct the
error by tapping either extremely fast or extremely slow
with one of the hands, thus generating either very high
or very low ITI ratios, and overshooting the target
markers. In later stages of the trial the subjects were less
extreme in their correction maneuvers and stayed closer
to the target markers.

Aftereffects

Our hypothesis suggests that in addition to the learning
curve, a secondary consequence of the learning process
exists. If an internal representation of the task, body, or
external world is acquired during performance and
practice under specific conditions, it should be expected
that when these conditions are changed this internal
representation would need to adapt to allow optimal
performance in the newly formed conditions. When the
new task at hand is difficult and unfamiliar to the sub-
ject, the phenomenon observed is the aforementioned
learning curve, which accounts for the gradual adapta-
tion to the new environment; but when the environ-
mental transition is made from a newly learned task to a
more predominant stable task, a quicker transition
would be visible. The first erroneous behavior after the
return to the normal, well-known, condition is called an
aftereffect of learning and the transition back to normal
behavior is called the washout of the aftereffect. The
learning curves, the aftereffects, and the washout curves
are evidence of the internal representation. Aftereffects
have been previously noticed in other motor tasks such
as adaptation to force perturbations during reaching
movements (Shadmehr and Mussa-Ivaldi 1994; Lackner
and DiZio 1994; Karniel and Mussa-Ivaldi 2003).

In our experimental trials, subjects transitioned be-
tween a symmetric 1:1 ITI ratio target and a 3:2 non-
harmonic ITI ratio target. We observed the learning and
hypothesized that the learning curves represent an
adaptation process and a plastic change within the
internal representation. Such a change is not expected to
have an immediate washout and therefore an aftereffect
is to be expected.

In order to test this prediction we compared subject
performance of the trivial 1:1 ratio before and after the
3:2 training stages of the trial (see Fig. 7). The com-
parison was done between square errors of tapping ratio
(i.e., the same parameter used for learning curve analy-
sis). The results indicated a significant (p<<0.01) dif-
ference between tapping ratio errors before and after the
training stages.

These results confirm our prediction that an internal
representation for the production of bimanual poly-
rhythms has been established or modified during the 3:2
tapping ratio training stage and thus deterioration in

performance of the natural 1:1 rhythm occurred when
the natural feedback conditions are reintroduced.

Regression analysis of the aftereffect stage tapping
ratio square error revealed a negative learning curve
with steeper descent than the one observed during the
learning of the 3:2 ratio (Training:�0.052 vs. Wash-
out:�0.13). These slopes correspond to time constant in
the order of hundreds of minutes for the learning phase
and tens of minutes for the washout phase. The reduced
time for the washout compared to the learning was ex-
pected, as in this stage the subject is trying to relearn the
predominant 1:1 tapping ratio (Fig. 8).

Model simulations

The values of model parameters used in the simulations
are: dt=0.01, IIN=[1.7; 1.7; 0; 0], KFB0=0.2, VR=0,
and VT=1. For convenience, we have normalized the
timescale so that R=1 and sm=1. Simulations have
shown that the network can be trained by simultaneous
change of multiple synapses but, on grounds of sim-
plicity, we focus here on the case where only one of the
synapses is changed during the learning process. Starting
synaptic values were set to zero, except for the following:
W1,2=W2,1=10; W3,1=45, and noise amplitude was set
to D=2. Both learning curves and aftereffects produced
by the model simulations (Figs. 9, 10) closely match the
ones observed in the experimental study (Figs. 6, 7). One
should note that the rather monotonic reduction of
mean square errors does not imply smooth transition
from one tapping ratio to the other (1:1–3:2 and back).
Our model contains nonlinear interactions that prefer
harmonic polyrhythm and also include the feedback
component that can generate the proper mean tracking
and the observed fluctuations in the tapping ratios.

Fig. 7 Cross-subject mean ITI ratio square errors in 1:1 target ratio
performance before and after training, averaged over 10 s intervals.
Also shown are the positive p=0.01 confidence intervals
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Discussion

A simple visuomotor transformation was used in this
study to facilitate the training of bimanual tapping non-
harmonic polyrhythms for the purpose of observing the
learning dynamics of these difficult bimanual coordina-
tion patterns.

The experimental results provide new evidence for the
existence of internal representations of bimanual, coor-
dinative motor tasks. The first piece of evidence consists
of a gradual decrease in task performance error, visible
in the training stage of the trails. These findings suggest
that a learning process occurs in the human motor
control system during the training period of the experi-
ment. The second piece of evidence includes the ob-
served aftereffects and washout at the time when the
visuomotor transformation is removed and the tapping
target is reverted to one that subjects could easily per-
form before the training stage (1:1 tapping ratio). These
aftereffects are apparent both by comparison between
task performance of the easy rhythm before and after
polyrhythm training, and by negative curves in task
performance errors in the aftereffect phase. Combined
with the learning curves in the training stage, these
aftereffects are unequivocal evidence for the existence of
an adaptive process that could be referred to as an
internal representation of a learned task in the nervous
system.

The aftereffects were observed when the task target
was abruptly changed back to the 1:1 ratio, similar to
the removal of perturbation in a catch trial. The time
scale of learning and the presence of aftereffects distin-
guish between temporary boosts in performance that
disappear when feedback is removed and adaptive
change of internal representation. Only the latter will
show aftereffects that last long after the change in the
feedback regime.

In Zanone and Kelso (1992), and related studies (e.g.,
Lee et al. 1995; Swinnen et al. 1997), the disruption of
dominant phase relations after learning of a novel phase
relation is addressed. Our paradigm, although somewhat
related to these studies, is considerably different in that it
does not address relative phase relations between the
hands explicitly but rather addresses frequency ratios, in
which the relative phase is a constantly changing vari-
able.

One should note that in this study we addressed only
the distinction between feedback and adaptation and did
not continue to explore long-term practice that may
invoke skill learning (see Karniel and Inbar 2000 for
discussion about the hierarchy of learning and adapta-
tion). It might be possible that the observed aftereffects
are present due to the short nature of the experiment
(Lee et al. 1995), in which only the preliminary phase of
learning has been done, and automaticity has not yet
been achieved. It is obvious that humans can learn
various tasks without one canceling another (e.g., we can
learn to tap-dance and still be able to ride a bicycle a

Fig. 10 Model simulation results of ITI ratio square errors in 1:1
target ratio performance before and after training

Fig. 9 Learning curve by linear regression of model simulation
results. Data is the log of square ITI ratio error data in the duration
of the training phase of the simulation, when target ratio is 3:2. A
significant (p<<0.01) negative curve can be observed, indicating
that the error is being decreased

Fig. 8 Learning curve by linear regression of cross-subject mean
log of square ITI ratio error data in the duration of the aftereffect
phase of the experiment, when the target ratio is 1:1. A significant
(p<0.01) negative curve can be observed, indicating that the error is
being decreased
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minute later); multiple model architectures were pro-
posed to address this capability (Wolpert and Kawato
1988; Karniel et al. 2001). However, in the first stage of
learning, in some cases, a single model is adjusted
(Karniel and Mussa-Ivaldi 2002) and the new task dis-
rupts the previously known patterns as manifested in the
aftereffect we observed. According to this theory, one
may expect that in a long exposure to a single condition,
e.g., the 2:3 ratio, the aftereffect in returning to the 1:1
ratio would be more significant; however, after practice
in switching between 1:1 and 2:3, the aftereffect might be
reduced. One can also expect the internal representation
of 1:1 ratio to be more stable and therefore more difficult
to modify and easier to return to after shifting to an-
other representation, and indeed, we see this gap in the
time scales in our results. In any case, this aftereffect, be
it temporal or of a more permanent nature, consolidates
the theory that the coordination control mechanism in
the CNS undergoes some sort of task-related restruc-
turing which we call the acquisition of an internal rep-
resentation.

It is an experimentally validated fact that symmetric
1:1 tapping is a very stable tapping pattern, specifically
with zero-phase or anti-phase relations between the hands
(e.g., Cohen 1971; Kelso et al. 1979; Haken et al. 1985;
Zanone and Kelso 1992). A more recent study measured
human activities in a normal daily routine and discovered
that most of our day-to-day actions are bimanually mir-
ror-symmetric (Howard et al. 2004). This would suggest
that the internal representation of symmetric bimanual
coordination has practically years of training (in daily
performance) and should therefore be very stable. In
contrast, bimanual non-harmonic polyrhythms, and the
3:2 ratio in particular, are very rare in everyday actions,
so it would be safe to say that this task is practically
unlearned in the human control system. Therefore it is
not surprising that the slope of the washout curve is much
steeper than that of the learning curve.

The distinction between feedback and adaptation in
control theory is made in two categories. The first con-
cerns the changes occurring in the control system. While
in adaptive control schemes actual system elements
(parameters) are changed, in feedback control only the
signals in the system change. The second differentiation
method between adaptation and feedback, especially in
physiological neural systems, is via the timescale of the
process. In contrast to feedback loops in neural systems,
which take up to a few seconds, adaptation of neural
systems is a more lengthy process, requiring minutes to
hours or even longer periods of time. The lengths of time
in which the learning and washout occur in the experi-
ments (tens of seconds to minutes) are far longer in
duration then the visuomotor feedback loop latency
(well known to be under 1 s). This significant difference
in timescales of physiological feedback latency and
learning processes effectively rules out the possibility of
exclusive use of feedback in control of bimanual rhyth-
mic movement and in learning of new bimanual coor-
dination patterns.

Although feedback does not seem to be the exclusive
mechanism behind acquisition of new bimanual coor-
dination patterns, countless studies have shown that it
plays a major role in the learning process. We have
shown that feed forward control and adaptation are also
present in the human control system, which governs
bimanual movements. The roles and interactions be-
tween feedback and adaptation in the CNS are still
mostly unknown and more experimental and analytic
work is needed to determine the exact relations between
these two mechanisms, although one can definitely
conclude that they are complexly entwined.

A simple physiologically plausible neuronal model
was developed after analytic exclusion of the possibility
for a simpler neural model. The results obtained from
the simulations closely match the data from the experi-
mental trials. The model incorporates several key as-
pects of the bimanual coordination system. Primarily,
1:1 ratio synchronization and transitions from anti-
phase to in-phase bimanual patterns, which are promi-
nent phenomena in bimanual coordinated movements,
are inherent to pulse coupled neuronal networks. Sec-
ondly, a feedback signal was used in the model to reflect
the important role of visual and other types of feedback
in the acquisition of new coordination patterns
(Mechsner et al. 2001; Weigelt and Cardoso de Oliveira
2003). Finally, a simple learning algorithm applied to the
neural network by changing synaptic connection
strengths implicitly implemented an internal model of
the target task in a way which may resemble processes
related to learning of new coordination patterns in the
CNS.

Our model captures the tendency for symmetry and
synchrony between the limbs and at the same time the
capability to adapt to altered feedback. It successfully
combines dynamic learning with phase synchronization
and ratio preference in a simple physiologically feasible
framework, which we believe can be extrapolated for
understanding and modeling of bimanual adaptation in
particular and perhaps other multi-actuator human
performance.

In executing the experimental protocol described
herein, we have asked ten subjects to participate and
removed three subjects from the data analysis, two of
who asked to be withdrawn from the experiment and
one who did not manage to learn the task. It is
important to note that we do not think the subjects
removed from the data analysis represent the percent-
age of the population not able to learn bimanual
polyrhythms, but rather portray lack of motivation,
perhaps caused by the voluntary nature of the experi-
ment. We believe that, with sufficient motivation and
time, the vast majority of the population would be able
to learn this task through the interface described in this
paper. Note that with this interface, a task that is ex-
tremely difficult (but possible) for untrained individuals
(Deutsch 1983; Summers et al. 1993; Treffner and
Turvey 1993) becomes relatively easy to learn for most
subjects. With further investigation of the internal
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representation, such interfaces and carefully designed
altered feedback might be employed to develop new
techniques for motor training in order to simplify the
learning of complex tasks. It might also be possible
employ these findings in order to devise diagnostic tools
for revealing motor dysfunctions and other types of
brain pathologies (Swinnen and Wenderoth 2004). Fu-
ture work on this subject should include examination of
the learning process during longer periods of training,
acquisition of automaticity in task performance, and
examination of the aftereffect phenomenon after long
training and in the absence of feedback.

To conclude, by examining subject behavior during
the process of learning novel bimanual coordination
patterns, our study extends previous bimanual coordi-
nation studies, focused mainly on steady-state perfor-
mance of bimanual tasks. Observation of these learning
stages and the aftereffects of learning constitutes strong
evidence that internal representations are used in the
learning and performance of bimanual rhythmic move-
ments. Furthermore, we suggest a simple model, which
inherently contains fundamental aspects of bimanual
coordination such as phase locking (Masuda and Aihara
2001) and transitions (Grossberg et al. 1997). Our model
accounts for the adaptation as well as the coupling
phenomena. Altogether, this study extends the notion of
internal models beyond the well-studied area of reaching
movements and may provide a new framework for fu-
ture research of internal models in bimanual adaptation
and other natural motor behaviors.
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