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5 Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA

E-mail: sandro@northwestern.edu

Received 10 February 2005
Accepted for publication 5 July 2005
Published 31 August 2005
Online at stacks.iop.org/JNE/2/S250

Abstract
When the brain interacts with the environment it constantly adapts by representing the
environment in a form that is called an internal model. The neurobiological basis for internal
models is provided by the connectivity and the dynamical properties of neurons. Thus, the
interactions between neural tissues and external devices provide a fundamental means for
investigating the connectivity and dynamical properties of neural populations. We developed
this idea, suggested in the 1980s by Valentino Braitenberg, for investigating and representing
the dynamical behavior of neuronal populations in the brainstem of the lamprey. The
brainstem was maintained in vitro and connected in a closed loop with two types of artificial
device: (a) a simulated dynamical system and (b) a small mobile robot. In both cases, the
device was controlled by recorded extracellular signals and its output was translated into
electrical stimuli delivered to the neural system. The goal of the first study was to estimate
the dynamical dimension of neural preparation in a single-input/single-output configuration.
The dynamical dimension is the number of state variables that together with the applied input
determine the output of a system. The results indicate that while this neural system has
significant dynamical properties, its effective complexity, as established by the dynamical
dimension, is rather moderate. In the second study, we considered a more specific situation, in
which the same portion of the nervous system controls a robotic device in a two-input/two-
output configuration. We fitted the input–output data from the neuro-robotic preparation to
neural network models having different internal dynamics and we observed the generalization
error of each model. Consistent with the first study, this second experiment showed that a
simple recurrent dynamical model was able to capture the behavior of the hybrid system. This
experimental and computational framework provides the means for investigating neural
plasticity and internal representations in the context of brain–machine interfaces.

1. Introduction

Understanding and controlling neural dynamics and neural
plasticity is a critical goal for developing effective interactions
between the brain and artificial devices. In the last decades,

several experiments have directly addressed the ability of the
nervous system to form internal models of the controlled
dynamics (Bhushan and Shadmehr 1999, Gottlieb 1994,
Inbar and Yafe 1976, Kawato 1999, Mussa-Ivaldi and Bizzi
2000, Wolpert et al 1995). A common element of these
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studies is the establishment of a direct bidirectional interaction
between the biological controller and an external system
with programmable dynamics. Learning the dynamics of
an external system is a fundamental challenge in the control
of prosthetic devices and in the clinical application of brain
machine interfaces (BMIs) which are an emergent technology
with significant clinical potential (Donoghue 2002, Carmena
et al 2003, Mussa-Ivaldi and Miller 2003, Musallam et al
2004). In recent studies, the information measured in the
motor cortex of primates was used to guide robotic arms
or to move computer cursors (Wessberg et al 2000, Serruya
et al 2002). However, training the nervous system to control
an artificial device is still a daunting task (Helms Tillery et al
2001, Taylor et al 2002).

In robotic systems, the adaptive representation of a
controlled payload is typically implemented by lines of code
in some programming language. The biological counterpart of
such representation is assembled in our brains by modifiable
(or ‘plastic’) patterns of neural connectivity and excitability.
These patterns can be considered as the components of a
biological programming language, whose rules are still largely
unknown. Here we present two studies that used the interaction
between a neural population and known external devices
as a tool for investigating the rules of this language. In
our studies, the neural component operates as a controller
of the external device and the experiments are designed to
identify specific properties of this biological controller. To
this end, we established a bidirectional interaction between a
neural population from the lamprey brainstem and an artificial
device.

The lamprey nervous system has been extensively studied,
particularly its ability to generate and modulate locomotor
behavior (Grillner et al 2000). We have selected a portion
of neural circuitry that integrates vestibular and other sensory
signals and issues motor commands to stabilize the orientation
of the body during swimming (Rovainen 1979, Deliagina
1997). This system has been shown to be adaptive: unilateral
lesions of the vestibular capsules are followed by a slow
reconfiguration of neuronal activities until the correct postural
control is recovered (Deliagina 1997). Such adaptation is
the first sign of an internal model, the second sign is the
after effects of learning, a phenomenon that is observed when
the perturbation is removed and an erroneous behavior is
observed although the null conditions are reinstated (Shadmehr
and Mussa-Ivaldi 1994). Unilateral lesion is an irreversible
operation and therefore observing after effects is impossible.
This is not the case for hybrid systems such as ours, where the
sensitivity of the light sensors can be tuned out and then after
adaptation tuned in again in order to observe the after effects
of the adaptation.

In this paper we report two experiments, carried out on two
different hybrid systems. In the first, we placed the lamprey
brainstem in closed-loop interaction with simulated dynamical
systems. The purpose of this experiment was to estimate, in
rather general terms, the dimension of the state space in which
one can describe the recorded activity of the neural preparation
as a function of (a) an applied stimulation and (b) the past
history of the same activity. We found that indeed the neural

tissue does not produce a mere algebraic map from input to
output, but the current recorded activities depend upon earlier
activities as well. However, the order of this dependency—i.e.
the number of independent state variables necessary to predict
the response to a given input—is rather limited. In practice,
this suggests that it is possible to capture with relatively simple
representations the dynamics of this neural element embedded
in a closed loop interaction with an artificial dynamical system.

In the second experiment, we considered a more practical
situation, in which the neural preparation interacted with
a small mobile robot. Two stimulating electrodes carried
information about light intensity detected by the robot sensors,
and two extracellular recording electrodes detected the neural
responses to these stimuli and provided the signal source that
controlled the robot’s wheels. The nervous system between the
four electrodes assumed the function of a controller—with two
inputs and two outputs—that determined the behavior of the
robot via a feedback loop. Unlike the first experiment, in the
second experiment we considered specific parametric forms
for the state/output equations characterizing the neural system.
Here, we describe how this parametric representation—in
the form of simple recurrent neural networks—allows us to
capture not only the behavior of the hybrid system, but also
some of the plastic changes induced by systematic alterations
of the connectivity between the robot and the neural system.

2. Experiment 1: a closed-loop BMI for estimating
neural dynamics

2.1. Basic paradigm and assumptions

The closed-loop interaction between a neural population and
external devices can be exploited to extract some general
dynamical properties of the neural population. Here, we
describe recent studies (Kositsky et al 2003a, 2003b) in
which we used the observed behaviors of this hybrid system
to assess the dynamical dimension of the neurons in the
lamprey’s reticular formation. The dynamical dimension
(Abarbanel 1996) specifies how many independent state
variables determine the output of a system at each instant.

In general mathematical terms (see figure 1), the artificial
system connected to the neural tissue is described by the state
and output equations:{

xt+1 = h(xt , ut )

yt+1 = p(xt+1),

where x is the state of the external device, u is a control signal,
y is the read-out signal, h and p are the functions, and the
subscripts refer to discrete sampling time.

One can describe in the same way the neural preparation as
a dynamical system. The main assumption of this study is that
there exists a state representation (s) of the neural preparation
such that the changes of state are completely determined by
the state itself and by the input to the neural preparation, i.e.:{

st+1 = f (st , it )

ot+1 = w(st+1).

Both s and x are vectors. In principle, there may be
infinitely many equally valid representations for the state s.
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INPUT INTERFACE

OUTPUT INTERFACE
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Figure 1. The brain–machine interface of experiment 1. The neural
system and the simulated artificial system communicate via input
and output interfaces. The input interface converts the output of the
artificial system, y, into an electrical stimulus, i, which is the input
of the neural system. The, output of the neural system, o, is the
recorded activity of a neuronal population. This activity is translated
by the output interface into the control signal, u, driving the
simulated artificial system. The artificial system has an (known)
state vector, x, and the neural system has an (unknown) state vector,
s. The combined hybrid system has a net state vector q = [x, s]T.

However, its dimension (the dynamical dimension), that is the
number of independent components in any complete numerical
representation, is a fixed and well-defined property of the
preparation, which we seek to determine.

The neural preparation and the external device are
interconnected in a closed loop through two instantaneous
mappings: {

it = α(yt ) (input interface)
ut = β(ot ) (output interface).

By combining these relations with the dynamics of both the
external system and the neural preparation (i.e. the three
equations above) one obtains a single differential equation:

qt+1 = m(qt ),

where q = [x, s]T is the state of the hybrid system and is a
composition of the states of the two subsystems, the external
device and the neural preparation, and

m =
[
h(·, β ◦ w)

f (·, α ◦ p)

]
.

Accordingly,

dim(q) = dim(x) + dim(s).

This equation does not hold true in the general case. A more
rigorous formulation leads to the inequality:

dim(q) − dim(x) � dim(s) � dim(q).

This can be seen by observing that the dimension of the hybrid
system cannot exceed the dimension of each component.
Therefore,

dim(q) � dim(x) + dim(s).

However, since we analyze obtained data using real neural
preparations, it is improbable that the neural component and
the external system would combine into a system of lower
dimension as in the inequality above. It is obvious that the
hybrid system dimension is likely to be an upper bound for the
neural component dimension:

dim(s) � dim(q).

This last inequality is readily proven for linear systems by
considering that the rank of the hybrid system’s state transition
matrix cannot be lower than the rank of either subsystem.

By construction, the behavior of the hybrid system does
not depend on any external input, but only on its current state:
this is the defining property of an ‘autonomous system’. In
any practical case, autonomy is only an approximation, as
uncontrolled external inputs cannot entirely be discounted.
However, we assumed that these external inputs may be
neglected. We assessed the dynamical dimension of the hybrid
system, dim(q), by collecting multiple trajectories of the
external device. Then, we computed the dynamical dimension
of the neural preparation by subtracting the known dimension
of the external system from the estimated dimension of the
combined system:

dim(s) = dim(q) − dim(x).

The main element of novelty with this approach stems
from the possibility of using external systems with different
dimensions. Then, one can use the known difference between
the dimensions of the external systems as a condition to
validate the stability of the neural dimension estimate.

We need to stress that particular caution is required
when dealing with nonlinear dynamics, as in such cases the
dimension estimated by local embedding methods may be
smaller than the actual dimension of the system over the entire
state space.

2.2. Neural preparation

The neural component of the hybrid system was a portion
of the brainstem of the sea lamprey (Petromyzon marinus)
in its larval state. After anesthetizing the larvae with
tricaine methanesulphonate, the whole brain was dissected
and maintained in continuously superfused, oxygenated and
refrigerated Ringer’s solution (details in Alford et al (1995)).

We chose to use the vestibular–reticulospinal synapse
because (a) it is relatively well understood in its anatomy
and physiology; (b) it allows accessing neuronal populations
under visual guidance; and (c) the whole brain can easily be
maintained in vitro by immersion in a refrigerated Ringer’s
solution.

We recorded extracellularly the activity of neurons in
a region of the reticular formation, a relay that connects
different sensory systems (visual, vestibular and tactile) and
central commands to the motor centers of the spinal cord.
We placed a recording electrode in the axons of the posterior
rhombencephalic reticular nucleus (PRRN). We also placed a
unipolar tungsten stimulation electrode among the axons of
the posterior octavomotor nucleus (nOMP). The stimulating
electrode was placed on the side of the midline opposite to the
recording electrode. nOMP receives inputs from the vestibular
capsule and its axons form synapses with the rhombencephalic
neurons on the opposite side of the midline (see figure 5, top
left).

We placed the stimulating electrode near the nOMP,
thus stimulating a large proportion of fibers that crossed the
midline. This induced predominantly excitatory responses in
the downstream neurons. The recorded signals were acquired
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Table 1. The spike detection procedure used in experiment 1.

loop along values of the acquired signal, r(t), where t is time
find the next local maximum, r(ti), such that r(ti) > r(ti−1),
r(ti) > r(ti+1)
find the next local minimum, r(tj), such that j > i, r(tj) < r(tj−1),
r(tj) < r(tj+1)
if r(ti) − r(tj) > min spike magnitude and tj − ti < max spike

duration assign spike at time ti

at 10 kHz by a data acquisition board (National Instruments
PCI-MIO-16E4).

The procedure used for online spike detection in this
experiment is described in table 1. The minimal spike
magnitude and the maximal spike duration parameters were
set to 1.1 mV and 1 ms respectively. To avoid confusion
between stimulation artifacts and spikes, the acquired raw
signal immediately following each stimulation pulse was
discarded. The duration of discarded signal (the artifact
cancellation period) was set to 3 ms. The spike detection
procedure in table 1 skips segments of the raw signal during
the artifact cancellation periods.

2.3. Artificial systems

We used two different artificial systems with dynamical
dimensions of two and four. These systems simulated in real
time were, respectively, a single point-mass and two masses
connected in series by a spring. The masses were free to
move along a line. For both systems, the control signal
u determined the external force acting on one mass, whose
position was the read-out signal y. A critical goal in this type
of study is to explore a sufficiently large variety of behaviors,
so that the observed states may cover a sufficiently large region.
To this end, nonlinearities and dissipation were added to the
external system: the point-masses were constrained to move
within a (nonlinear) potential field, and a damping element
was introduced between each point-mass and the ground.

2.4. Procedure

An experimental session consisted of a sequence of 20
episodes, each lasting 20 s. While the neural signal was
sampled at a rate of 10 kHz, the external system simulation
and the interfaces between the neural and external components
were run at a rate of 20 Hz. The two external systems
were used in alternating episodes. For each episode, the
initial configuration of the corresponding external system
(positions and velocities of the point-masses) was drawn at
random. As expected, the trajectories of the external device
had multiple self-intersections. Sample trajectories of the
external devices used for the further analysis are shown in
figure 2. The trajectories provide a visual cue of possible
chaotic dynamics. The observed trajectories, yt, were one-
dimensional projections from a higher dimensional state space,
where the state trajectories of an autonomous system do not
intersect themselves or each other (Arnold 1978).

Figure 2. Sample trajectories of the external dynamical systems.
The upper panel shows a trajectory obtained using the 2D system,
the lower panel shows a trajectory obtained using the 4D system.
These trajectories were obtained using preparation 1.

2.5. Dimension analysis

To reconstruct the proper dimension of the hybrid system’s
state space, we unfolded the observed trajectories into spaces
of increasing dimensions and estimated the presence of
intersections (Kaplan 1994). The lowest dimension where
the trajectories did not intersect was judged to be an adequate
estimate of the dynamical dimension of the hybrid system
(Abarbanel 1996, Kaplan 1993).

To unfold trajectories into a space of a given dimension
d, we used the delayed coordinate space embedding (Takens
1981, Mane 1981), consisting of d consecutive values of the
original trajectory:

vi = (yi, yi+τ , . . . , yi+(d−1)·τ ),

where i enumerates the state-points along the embedded state
trajectory and τ is an integer lag parameter. To select a
proper lag τ , we have employed an approach that uses the
first (corresponding to the smallest τ ) local minimum of
the mutual information between samples (Abarbanel 1996).
Estimating the presence of trajectory intersections is a difficult
and somewhat controversial task (Ruelle 1990). Trajectories
are sets of measure zero within the embedding space, and
one can never observe an actual intersection. In spaces of
dimension larger than two, it is only possible to determine
that two trajectory segments are close to each other. Most of
the existing methods for dimension reconstruction address this
difficulty (Kaplan and Glass 1992, Kennel et al 1992).

We used the ‘delta–epsilon method’ developed by Kaplan
(1994) (figure 3).

For each dimension d, the trajectories were unfolded in
d-dimensional space and pairs of consecutive points along the
unfolded trajectories were analyzed. For two pairs (vi, vi+1)

and (vj , vj+1), the distance between the first points of each pair
is denoted by δ: δ = |vi − vj |, and the distance between the
second points of each pair is denoted by ε: ε = |vi+1 − vj+1|.
Delta–epsilon combinations with small deltas (approaching
the limit δ → 0) and large epsilons are interpreted as
intersections of the trajectories due to projection from a higher
dimensional state space onto a space of insufficient dimension.
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Figure 3. Kaplan’s δ–ε analysis (Kaplan 1994). Consider pairs of
points, (vi, vj ), and their successors along corresponding
trajectories, (vi+1, vj+1). Let δ = |vi − vj |, ε = |vi+1 − vj+1|.
(a) When small δ bear large ε, it is interpreted as intersecting
trajectories. (b) If trajectories do not intersect, small δ always bear
small ε.

If small deltas always bear small epsilons, this is interpreted
as an indication that δ → 0 implies ε → 0 corresponding
to the elimination of all intersections of the trajectories. In
this case, the embedding dimension (d ) is deemed to be an
adequate estimate for the dimension of the state space. For
each dimension, we computed the delta–epsilon combinations
and considered n combinations with the smallest deltas. To
test for trajectory intersections in a given dimension d, we
compared the magnitudes

εd = max
(δ,ε)∈Zn

ε

for different d. Zn is the set of n delta–epsilon combinations
with smallest deltas. As the dimension d increases, εd

decrease almost monotonically until they reach a plateau. This
saturation points to the dynamical dimension of the hybrid
system d∗.

To address the problem of noise in the dimension analysis,
ten surrogate trajectories were generated for each original
trajectory using randomized phases. These trajectories do
not reflect any implicit dependencies and are used as examples
of ‘pure noise’. Any dimension estimate applied to these
trajectories should tend to infinity.

2.6. The dynamic dimension of the neural preparation

The results of the delta–epsilon analysis with the two external
devices are shown in figure 4 together with the results of
the analysis of the surrogate trajectories. The latter results
stand in agreement with the assumption that noise has infinite
dynamical dimension. They serve as a good reference baseline
for assessing decay and saturation in the original trajectories.
To address the arbitrariness in the parameter choice, which
might affect the results, we used, among other factors, the
consistency between the results for the 2D and the 4D external
systems: the difference between the corresponding dynamical
dimensions is equal to 2. For preparations 1 and 2 (figures 4(a)
and (b)), the estimated dynamical dimension of the hybrid
system, d∗, was 4, with the 2D external system, and 6, with the
4D external system. Thus, the estimated dynamical dimension
of the neural component for these preparations was equal to 2.
For preparation 3, (figure 4(c)), d∗ was equal to 5, with the 2D
external system, and to 7, with the 4D external system. Thus,

the estimated dynamical dimension of the neural component
for preparation 3 was equal to 3.

The obtained low dimension estimates indicate that
the neural dynamics can be captured by relatively simple
descriptive models, consistent with the parametric analysis
discussed below. Here, one must take into account that
the analysis refers to population signals detected by a
single extracellular electrode and should not be extrapolated
to represent the detailed dynamical behavior of individual
neurons. Nevertheless, the observation of low-order dynamics
in this constrained experimental context provides critical
support for the study of experiment 2, where the neural
population behavior is represented by a low-order parametric
model.

3. Experiment 2: recurrent dynamics in a
neuro-robotic system

The system used for this study included three elements: a
neural preparation, a robot and an interface (figure 5).

3.1. Neural preparation

The neural component of the hybrid system was the same
as in experiment 1. The vestibular–reticulospinal synapses
of lampreys have well-documented plastic properties. High-
frequency stimulation of the presynaptic zones leads to LTP
(Alford et al 1995) while low-frequency stimulation leads to
LTD. In addition Deliagina and colleagues have demonstrated
that lesions of the pathway in the otherwise intact lamprey lead
to long-term adaptive changes (Deliagina 1997).

In experiment 2, we used two pairs of stimulation
and recording electrodes, one on each side of the midline
(figure 5). The stimulating electrodes were placed at a
site where the axons from nOMI and nOMP cross each
other. Therefore, the stimulation on each side generated a
bilateral response in the PRRN. To verify the placement of
the stimulating electrodes we delivered brief single stimulus
pulses (200 µs) and observed the response in both the ipsi-
and contralateral PRRN neurons. Once we determined that
the stimulating electrodes were properly placed, we moved the
recording electrodes caudally, in order to pick up population
spikes. In some experiments, the stimulation had a biphasic
(negative current followed by a positive current) rather than
a monophasic (negative current only) waveform, to induce
less charge buildup and less redox reaction at the stimulating
electrode surface. This allowed us to extend the stability of
the preparation and to reduce the likelihood of tissue damage
during the barrage of stimuli caused by ‘sensing’ and moving
in the robot.

The spiking activities of the PRRN as recorded near the
axons were analyzed through a five step process (see also
figure 5). The signal picked up by the recording electrodes
contained a combination of spikes, stimulus artifacts, and other
components that we considered as noise. To suppress slow
components, the signal was first put through a high pass filter
(cutoff at 200 Hz). The output of this filter contained high-
frequency noise, stimulus artifacts, and the spikes generated
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dim dim
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Figure 4. εd as a function of d (see the methods in section 2.5). As the dimension d increases, the corresponding magnitudes εd decrease
almost monotonically until they reach a plateau, which points to the dynamical dimension of the hybrid system d∗. For each preparation, the
left panel shows the data collected using the 2D external dynamical system, the right panel shows the data collected using the 4D external
dynamical system. The Xs show εd computed for surrogate trajectories obtained by randomizing phases of the original trajectories. For
preparations 1 and 2, the dynamical dimension of the hybrid system, d∗, is equal to 4, when the 2D external system is used, and to 6, when
the 4D external system is used. The estimated dynamical dimension of the neural component for preparations 1 and 2 is equal to 2. For
preparation 3, d∗ is equal to 5, when the 2D external system is used, and to 7, when the 4D external system is used. The estimated dynamical
dimension of the neural component for preparation 3 is equal to 3.

by multiple neurons in the vicinity of the electrode. Stimulus
artifacts were canceled by zeroing the recorded signals over
temporal windows of 4 ms following the delivery of each
200 µs stimulation pulse. The remaining signal was rectified,
and a threshold was applied to separate the spikes from
the background noise—under the assumption that the spike
amplitude was much larger than the noise amplitude. The
resulting train of spikes was put through a low-pass filter
(5 Hz), which effectively generated a rate coded signal. The
mean of this signal over 300 ms provided a velocity control
signal for each of the robot’s wheels. As an additional test of
the ability to detect the presence of active neural processes, as
distinct from background noise and passive conduction of the
stimulus artifacts, we verified that the interface did not generate
any artifactual response when the recording electrodes were

placed in a passive medium such as Ringer’s solution and dead
tissue. The bottom plate in figure 5 demonstrates the recorded
signal and the spike detection.

3.2. The robot and its workspace

The robot system was the base Khepera module (K team). Its
workspace was a circular region with 2 ft diameter (figure 6).
Eight sensors along the circumference of the robot provided
proximity and light intensity information. The sensors were
located on opposite sides of the robot’s midline at 10◦, 45◦,
85◦ and 165◦ from the front position. Two wheels provided
a means of locomotion. The computer system communicated
with the robot through the serial port and a custom designed
LabVIEW© application. Eight computer-controlled lights
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Figure 5. The hybrid system of experiment 2. A sketch of the neural preparation and the electrodes placement (top left). The two-wheeled
robot (Khepera module, top right). The interface (top middle) between the robot (right) and the lamprey preparation (left) implemented in
LabVIEW©R. The two inputs and two outputs (right and left) are processed separately except for the artifact cancellation that influences both
output channels right after the generation of stimulus in one of the channels. The trace in the bottom of the figure demonstrates recorded
signal detected spikes (solid marks) and detected stimulus artifacts (dashed marks).

Figure 6. The robot in the workspace.

were mounted at the edge of the workspace at 45◦ intervals.
These lights generated the stimuli that elicited the phototaxic
responses.

3.3. The interface

As in experiment 1, the interface acted as an interpreter
between neural signals and the robot control system. It
was responsible for transforming the robot’s light sensor
information into electrical stimuli and for processing in real
time the neural activity of the reticulospinal nuclei and
translating it into motor commands for the robot.

The light intensity detected by the robot sensors
determined the frequencies at which the right and left
vestibular pathways were stimulated. We multiplied the sensor
outputs by weighting coefficients, which gave the greatest
strength to sources of light at 45◦ and suppressed the rear
sensors. The weighted sum of the sensors on each side was
multiplied by a gain factor, which determined the maximum
stimulation frequency. The final outcome of these operations
was the frequency at which we stimulated each side. We
used the digital counter on the acquisition board to generate a
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(a)

(b)

(c) (e)

(f)(d)

Figure 7. Models for lamprey brainstem neurons. (a) Static linear model. (b) Static polynomial model. (c) Dynamic linear model.
(d) Dynamic model with polynomial input function. (e) Dynamic linear model without ipsilateral dynamic connections. (f ) Dynamic linear
model without contralateral dynamic connections.

pulse train, which was delivered to the neural preparation after
passing through ISO-Flex stimulus isolators.

3.4. Interface calibration

The interface was calibrated so as to compensate for random
differences between the recorded responses from the left and
right side of the brainstem. Indeed, the net intensity of the
signal picked up by each electrode was affected by a number of
uncontrollable factors, such as the actual distance from signal
sources. To compensate for these random factors, we made
the working assumption that when both left and right sides
are stimulated at the same frequency, the same motor response
should be obtained on each side of the robot. This corresponds
to considering all initial asymmetries between right and left
sides as accidental features of no significance. Accordingly,
all initial differences between right and left responses to the
same right and left signals were balanced by regulating two
output gains.

The connectivity between recording electrodes and robot
wheels was either ‘direct’ or ‘reverse’. In the direct mode,
the electrode on each side was connected via the interface to
the wheel of the same side (right to right and left to left). In the
reverse mode, the electrode on each side was connected to
the wheel on the opposite side. The mode was established at
the beginning of each experiment based on the initial response
of the robot to a light source. If the response was a positive
phototaxis (overall movement toward the light source) the
direct mode was chosen. Otherwise, the reverse mode was
chosen. This insured that positive phototaxis was always the
prevalent behavior. The purpose of this procedure was to avoid
negative phototaxis, because as the robot moved away from
the light source, the intensity detected by the sensors tended
to drop sharply. As a consequence, the trajectories were very
short. Switching to the reverse configuration was sufficient to
ensure an extended response in these cases. We have analyzed
the data of each group separately but did not observe any

significant difference and therefore we report the results of
both groups together.

3.5. Neuronal models and simulations

For each individual experiment, we obtained a model of
the empirical input/output transformation for the left and
right PRRN by fitting a bivariate function to the light
sensor data (stimulus/input) and wheel motor commands
(response/output). Next, we describe the various models
that were considered and the data for the fitting and testing
procedure.

Each model is a two-inputs/two-outputs system. Let uL

and uR indicate light intensity transformed into the frequencies
of the stimuli delivered by the left and right electrodes and let
yL and yR indicate the firing rates recorded in response to these
stimuli from the right and left PRRNs transformed into wheel
speeds directed to the robot’s wheels. Then, a simple linear-
static model for the lamprey’s brain is (see figure 7(a)):

yL(n) = wLLuL(n − 1) + wLRuR(n − 1)

yR(n) = wRLuL(n − 1) + wRRuR(n − 1).

The parameters, wij , were determined by least-squares
approximation of the input/output data and form collectively
a 2 × 2 matrix W . The elements of W can be considered
as connection weights between vestibular axons and reticular
neurons. Positive weights represent excitatory connections
and negative weights represent inhibitory connections. This
simple linear static model (figure 7(a)) generates various
behaviors, such as moving towards a light, away from the
light or circling a light source (see Braitenberg (1984)). We
used this model as a reference and compared the performances
of other more complex models with its performance. For each
lamprey and in each condition, the data of one set of trajectories
(test set) were not used for estimating the parameters. The
parameters that best approximated the rest of the data (fitting
set) were used to predict the network output over this test
set. This procedure was repeated for each set of trajectories
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in order to achieve a good estimate of both fitting and testing
(i.e., generalization) errors.

We also considered nonlinear functions of the inputs,

yL(n) = PL{uL(n − 1), uR(n − 1)}
yR(n) = PR{uL(n − 1), uR(n − 1)}

where PL,R are polynomial functions. For example a second-
order polynomial model took the following form:

yL(n) = aL1uL(n − 1) + aL2uR(n − 1) + aL3u
2
L(n − 1)

+ aL4u
2
R(n − 1) + aL5uL(n − 1)uR(n − 1)

yR(n) = aR1uL(n − 1) + aR2uR(n − 1) + aR3u
2
L(n − 1)

+ aR4u
2
R(n − 1) + aR5uL(n − 1)uR(n − 1).

In this study, we considered polynomials of up to the fourth
degree. The number of parameters increased with polynomial
degree as follows: second degree, 10 parameters; third degree,
18 parameters; fourth degree, 28 parameters.

We also explored the additional explanatory power of
linear dynamic models, i.e., models that take into account the
previous neuronal activity and therefore represent recurrent
loops and/or memory dependence in the time scale of
seconds. The first-order dynamic model was the following (see
figure 7(c))

yL(n) = wLLuL(n − 1) + wLRuR(n − 1)

+ vLLyL(n − 1) + vLRyR(n − 1)

yR(n) = wRLuL(n − 1) + wRRuR(n − 1)

+ vRLyL(n − 1) + vRRyR(n − 1).

We then considered polynomial input functions as
described above with the dynamic model, and finally, since the
first-order dynamic model was found to be most appropriate,
we also explored the role of ipsilateral and contralateral
connections by considering two models that included only
one type of these connections (see figures 7(e) and (f )).
Altogether we have considered four static models, and six
dynamic models. All the above models are in effect special
cases of the Volterra series, which is an infinite polynomial
moving average time series (see Barahona and Poon (1996)).

3.6. The data for fitting and testing

The basic set of data is a single trajectory of the robot that
starts to move from the center of the workspace in response
to a light that is turned on. We used the values of inputs and
outputs measured and generated at the time steps of the control
loop (twice in each second). Each of the five lights was turned
on—one after the other—with a short break for returning the
robot to the initial position. Each trajectory lasted about 5–
10 s and typically contained more than ten sampling points. In
each condition (before and after adaptation/control protocol),
a few sets of five trajectories were recorded (typically four
sets). We took one set out and fitted each of the models to
the rest of the data. The residual of this fitting yielded the
fitting mean-square error (MSE). The estimated parameters
were used to predict the output in the generalization set. This
prediction compared with the actual data yielded the testing
MSE. In order to better estimate the fitting and testing errors,
we have repeated the procedure where each time we took

θ

φl

Figure 8. Robot’s sensory motor system simulation. Left: motor
system, the change in the position is a function of the current
position and the velocity of the wheels. Right: sensory system, the
light intensity perceived at each side of the robot is a function of the
robot position and the light position.

out another set of data. We did this exhaustively, therefore
if there were n sets of trajectories, we have repeated it n
times each time fitting 5(n − 1) trajectories to each model
and then testing on the five trajectories that were not used for
the fitting. The means over the n sets of each error (fitting
and testing) were calculated and are referred to as learning
error and generalization error for that condition and for that
specific model. Then, the means over preparations and over
different conditions were also calculated. The bootstrapping
method of choosing every possible combination was used to
gain an accurate estimation of the actual MSE for the learning
and generalization in each condition. In order to calculate
confidence intervals we used standard methods that employ
the MSE for each condition only once, i.e., when performing
a statistical test to compare two or more models, the number
of data points was equal to the number of preparations where
the MSE for each data point was the mean of testing or fitting
errors as described above. For further details about cross
validation and the problem of over-fitting, see, e.g., Haykin
(1999), Karniel and Inbar (2000).

We report the results of fitting of ten models to
the data gathered from 31 preparations before and after
adaptation/control experiments. Therefore, 620 values of
learning errors and the same number of generalization errors
were the output of this data analysis.

3.7. Simulation of the whole hybrid system

In order to compare the capabilities of the neuronal models
we have conducted simulation of the whole system. These
simulations combined a discrete neural model (figure 7) with
a continuous model for the robot and the sensors (figure 8).

For the continuous model, the state variables were the
position and orientation of the robot. The following first-order
nonlinear system was deemed to be adequate to capture the
robot’s behavior, since the control signal dictates the velocity
of the wheels and the mass of the robot is negligible (see
figure 8, left).

ċx = −ρ

2
(ωR + ωL) sin(θ)

ċy = ρ

2
(ωR + ωL) cos(θ)

θ̇ = ρ

D
(ωR − ωL),
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Figure 9. The reduced fitting (learning, upper plot) and testing
(generalization, lower plot) errors with various neuronal models.
The reduction factor is expressed as a change (in percent value) with
respect to the errors of the linear static model (S1). The other bars
stand for polynomial models up to fourth order (S2–S4), dynamic
linear model (D1) and dynamic model with polynomial input
function up to fourth order (D2–D4). Di stands for dynamic linear
model without contralateral connections, and Dx stands for dynamic
linear model without ipsilateral connections (see figure 7).

where (cx, cy) are the coordinates of the Khepera’s center with
respect to a fixed laboratory frame, θ is the angle of the line
passing through the wheels (the axle) with respect to the x-axis
of the same frame, ρ is the wheel radius (0.3 cm) and D is the
axle length (5.3 cm). The state of this system is described by
the vector (cx, cy, θ). The input is the 2D vector, (ωL, ωR), of
angular velocities of the left and right wheels.

The light intensity observed by the sensors at the right and
left sides of the robot (iL, iR) is inversely proportional to the
square distance to the light source (see figure 8, right):

iR/L = I

r2
R/L

cos(φR/L).

The angle φ is the ‘preferred direction of the sensor’, that is
the direction of maximum response. The source is fixed in
the environment and has an emission intensity, I. Under these
assumptions, the intensity signals, (iL, iR), are both functions
of the robot’s state: iR/L = iR/L(cx, cy, θ).

The loop was closed by means of the neural preparation
that received stimulation proportional to the light intensity and
generated neural activity that dictated the wheels velocity.

In our simulations the first-order dynamic system
described above was controlled by the discrete neuronal
models.

3.8. Recurrent dynamics

Figure 9 shows a summary of the results with the different
models.

We found a greater error reduction with the dynamic
models than with the static models, even when the latter
include more parameters. The upper bar-plot in figure 9 shows
the reduction in learning errors as a percentage of the learning
error with the static linear (S1) model. It is obviously expected

that the error would be smaller with increasing complexity of
the model. The Akaike information criterion suggests favoring
the model that minimizes the following balance between the
number of parameters (d ) and the variance of the error (V )
taking into account the number of data points (N ): log(V ) +
2d/N. According to this tradeoff the best model is the dynamic
linear model with only recurrent ipsilateral connections
(figure 7(f )). This initial calculated guess is corroborated
by careful analysis of the generalization data as well as
physiological considerations as described below.

The lower bar-plot in figure 9 shows the reduction in
generalization error, which is the error over data that were
not used for the fitting. Note that the advantage of the
dynamic model appears both in the learning and in the testing
errors. A one-way analysis of variance (ANOVA) over the
generalization errors of the eight models (S1–S4, and D1–
D4) clearly rejects a null hypothesis that the models’ mean
errors are equal (p < 0.01). A Student’s t-test shows that the
mean error of the first-order dynamic model is significantly
lower than the errors of the first two static models (p < 0.01).
The first-order dynamic model reduced the error by 25%. In
contrast, adding further complexity to the model led only
to reducing the error by a few percentage points. The
dynamic models, D2 or D3, generate the greatest reduction
in generalization error. However, the difference between
all dynamic models is statistically insignificant (p > 0.01).
Non-parametric tests have provided similar results: a one-
way non parametric analysis of variance (KRUSKALWALLIS
ANOVA) over the generalization errors of the ten models
(figure 9) clearly rejects a null hypothesis that the models’
mean errors are equal (p < 0.01). Wilcoxon rank sum test
for equal medians shows that the mean error of the first order
dynamic model is significantly lower than the errors of all the
static models (p < 0.01). The differences between D2, D3 or
D4 and D1 are statistically insignificant (p > 0.6, Wilcoxon
rank sum test for equal medians).

Since in this cross validation analysis we did not take into
account the number of parameters, we used this consideration
for choosing among the equally good models. Therefore, the
first-order dynamic model (figure 7(c)) was selected for further
analysis as a better candidate than any static model. One
should keep in mind that this is an average over preparations
and over trajectories to different light sources. As this average
included many data points, it hides many details. Nevertheless,
the advantage of the dynamic model, which contains just eight
parameters, over any static model is apparent.

3.9. Neuroanatomical constraints and physiological
basis for recurrence

The known anatomy of the lamprey nervous system does not
support the presence of direct connections between reticular
neurons across the midline. Therefore we may predict that
a model with such contralateral connections would behave
poorly. Accordingly, we have considered separately a model
without recurrent contralateral connections (figure 7(f )), and
a model without recurrent ipsilateral connections (figure 7(e)).
The analysis clearly supports our expectations (see the two
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Figure 10. Reduced errors with various neuronal models in
preparations where the spinal cord was transected. Note the
similarity with figure 9, which reports preparations with intact
spinal cord. See the caption of figure 9 for details.

middle bars in figure 9). Guided by Occam’s razor principle
among the equally effective models, we favor that with
fewest parameters. This is the dynamic linear model with
only recurrent ipsilateral connections, figure 7(f ). Note that
according to the Wilcoxon rank sum test this linear model
with just six parameters outperformed all the static linear
and nonlinear models (p < 0.01) and is not significantly
different from all the nonlinear dynamic models (p > 0.6).
We measured the performance by comparing the mean square
error over the test data (the data that were not used for fitting).

The known anatomy suggests the presence of pathways
from the brainstem to the spinal cord and back (see e.g.,
Grillner et al (2000)). This is one possible explanation for
the improved fitting of models with recurrent connections. In
order to test this hypothesis we have transected the spinal cord
in four preparations and repeated the same protocol. These
preparations generated similar results as the intact spinal cord.
The learning and generalization were similar to figure 9, and
in particular, the reduced error with the dynamic model was
still about 25% (see figure 10). Therefore, we conclude that
the recurrence afforded by bi-directional spinal cord pathways
is not the likely reason for the dynamics expressed by the
recurrent connections in the model. In the discussion section
we suggest alternative accounts for the observed dynamic
properties.

3.10. Dynamic properties and behavior

The taxonomy of behaviors for the static model was well
studied (Braitenberg 1984, Fleming et al 2000). The
possible behaviors include moving toward the light (positive
phototaxis), away from the light (negative phototaxis) or
circling the light (positive/negative menotaxis). In this study,
the dynamic model added the possibility for instability and
oscillations. Furthermore, the neural system is discrete. This
generates a hybrid continuous–discrete system, which is not
easily amenable to analytic insight.

In order to demonstrate the implications of the dynamic
neural model on the possible behavior of the robot, we have

Static Dynamic

Figure 11. Simulation of robot behavior. Four examples with a
static linear model (left) and four with a dynamic first-order model
with only ipsilateral connections (right).

simulated the robot movements under the control of the static
and the dynamic neural models (figure 11).

In this example, the static model was of the first order
(figure 7(a)). The dynamic model was also of the first order
and with only ipsilateral connections (figure 7(f )).

While all the tested models are capable of generating
a broad repertoire of behaviors, there are two potentially
important differences in the robot trajectories produced by
static and dynamic models. (1) Models with recurrent
dynamics tend to display more undulations in the trajectories
than strictly static models. (2) Models with recurrent dynamics
display crossover of trajectories. These two phenomena reflect
the presence of second-order dynamics in the neuro-robotic
system which introduces another state variable.

4. Experiment 2: induction and analysis of
plastic changes

Following studies that demonstrated compensation in
behaving lampreys after unilateral lesion of the vestibular
capsules (Deliagina 1997), we tested the hypothesis that a
plastic change in neural connections could be induced by
the following protocol. First, we electronically ‘blinded’
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the left side of the robot by substantially reducing the gain
of the light sensors on the left side of the robot from 1.0
to 0.1. This reduction was sufficient to suppress almost
completely all stimulations to the left PRRN, thus simulating
a unilateral labyrinthectomy. Next, the robot moved about the
workspace for 20 min, either following a flashlight held by the
experimenter or moving toward the workspace perimeter lights
after starting from the center of the workspace. The purpose
of this protocol was to establish an imbalance between the
two input channels as the system was engaged in phototaxic
behavior and test whether this imbalance is sufficient to induce
a long-lasting change in the input/output response of the neural
population connected to the device. In carrying out the manual
stimulation, care was taken to illuminate in similar amounts
both the right and the left sensors. While the more automatic
procedure offered a more controlled condition, the manual
procedure had less pauses and allowed for more extensive
stimulation in the same period of time. Nevertheless, both
procedures resulted in the same macroscopic effect. Trajectory
sets were measured (with the gain of the left light sensors
at 1.0) for an hour before the plasticity protocol and for an
hour afterward allowing a resting period of 5–10 min between
trajectory sets. A critical feature of this procedure is that the
measurements were carried out with the neuro-robotic system
in the same normal condition. The artificial lesion was only
applied during the training period. For a control experiment,
we followed the same procedure except that the gain of the
light sensors on the left side of the robot remained at 1.0
during the 20 min of random stimulation.

Figure 12 demonstrates the whole procedure from light
intensity to stimulation and from recording to wheels velocity
and trajectory of the movement for one preparation before and
after the plasticity protocol.

The plasticity protocol succeeded in inducing an
observable and statistically significant change in the robot’s
behavior. This was typically a change in the movement
direction toward the right side of the workspace.

4.1. Tendency toward the right after the plasticity protocol

Figure 13 shows typical results of the plasticity protocol. This
sample of four preparations demonstrates the wide variability
as well as a tendency of the robot to turn to the right after a
period of training with the left sensor occluded. Both sets of
trajectories were obtained in identical conditions, with inputs
from both right and left sensors.

The group analysis (figure 14) that compares the direction
change after the plasticity protocol to the lack of change
in a control group confirms these observations. However,
one should note that the results are quite variable. As each
preparation behaved differently the result reported here only
reflects the net tendency to turn to the right.

4.2. Weights’ change during adaptation

The change in direction after exposure to the artificial lesion
can be accounted for by either a reduction in the spinning of the
right wheel or by an increase in the spinning of the left wheel.
Therefore, either a potentiation of the synapses on the left or

a depression of the synapses on the right (or a combination of
both) could lead to the observed behavior.

To establish which neural change was actually responsible
for the change in the robot’s motion, we selected the
preparations that resulted in a significant adaptive rotation to
the right (n = 9) and fitted the first order dynamic model with
recurrent ipsilateral connections (figure 7(f ), six parameters).
The values of these parameters before and after the plasticity
protocol were compared and the difference is presented in
figure 15. The reduction in the recurrent ipsilateral connection
of the right side (V RR) is consistent with the turn to the right.
It is interesting that the most significant change occurred in the
recurrent dynamic parameter. We interpret this as a general
reduction in the responsiveness of the reticular neurons on
the right side, induced by a period of reduced contralateral
input from the left vestibular afferents. To confront this
interpretation with direct observation of activity, we have
calculated the autocorrelation of each output before and after
the plasticity protocol (figure 16). This analysis shows a
reduction in the autocorrelation of the right side, which is
consistent with the change in the right dynamic weight in our
simple model.

The physiological interpretation of this result must take
into account that the connection between recording electrodes
and robot wheel could either be direct (right–right/left–left)
or reverse (right–left/left–right). In both cases, the finding
implies a reduced excitability of the neurons that received
excitatory inputs from the ‘lesioned’ site. In the direct mode,
the predominant behavior was a positive phototaxis, consistent
with a predominance of crossed excitatory connections. In
this case, a tendency of the robot to veer to the right was
associated with a decreased activity of neurons on the same
side, which received excitatory inputs from the left (blinded)
electrode. In the reverse mode, the same tendency of the
robot was associated with a reduced activity of neurons on the
left side. However, the reverse mode was chosen because of
a predominant ipsilateral pattern of excitation, which would
have caused positive phototaxis in the direct mode. Thus,
again, the neurons with dominant excitatory connections to
the blinded side showed decreased excitability after the lesion
was removed.

5. Concluding remarks

Brain–machine interfaces are often investigated with an
emphasis on the machine, as tools for helping the disabled.
To develop these tools, we need to gain a deeper operational
understanding of neural behavior. The term ‘operational’
is used here to distinguish the goal of understanding signal
behavior from the goal of understanding the underlying
cellular and molecular mechanisms.

We have discussed two sets of experiments in which
the brainstem of a lamprey was placed in communication
with artificial devices, both simulated and physical. The
use of simulated devices in the first experiment allowed
us to estimate the complexity of the neural dynamics,
in terms of its state-space dimensionality. A useful
characteristic of simulated devices, such as those used here, is
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Figure 12. Hybrid system operation before (left) and after (right) the plasticity protocol. The workspace and the robot trajectories are
illustrated in the bottom plate where the square at the periphery represents the location of the light that was turned on and stimulated the
movement of the robot. The light intensity translated to spike rate (Hz) and to actual spikes to the same side of the preparation stimulated
the neural tissue that generated the measured spikes translated to wheel velocity.

the possibility of establishing well-structured and arbitrary
dynamical properties. This allowed us on one hand to
design the simulated system so as to excite sufficiently broad
dynamical ranges and on the other, to test the stability of
the estimated neural dynamics by combining the neural tissue
with artificial systems of different dimensions. The outcome
of this first study is that the dynamical behavior is significant
even in such a simple neural system, consisting of a single
layer of neurons between stimulation and recording electrodes.
However, the dimensionality that characterizes a single-input–
single-output behavior is rather limited, the estimated range
being between 2 and 4. We have used a well-established
method for estimating the dimension of the neural system,

however one should note that there are other approaches to the
same problem and, in particular, to the detection of chaotic
dynamics amid noise (see, e.g., Barahona and Poon (1996)
and Poon and Barahona (2001)). In particular, Poon and
Barahona (2001) have developed a method for separating
chaotic dynamics from noise, based on the gradual injection
of (artificial) noise in increasing amounts on the data to be
analyzed. We wish to stress that identification of a neural
system’s dynamics based on the two-way interaction with
an external device can be carried out in combination with a
variety of methods for the investigation of nonlinear dynamics,
including but certainly not limited to the approach described
here.
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Before After

Figure 13. Typical trajectories of the robot before (left column) and
after (two right columns) the plasticity protocol in four preparations.
All sets of trajectories were obtained in identical conditions, with
inputs from both right and left sensors. The middle column
describes the first set of trajectories after the plasticity protocol and
one can observe the tendency to move to the right. The right column
is one of the last recorded trajectories (after about 10 min) where the
effect of the adaptation is still apparent.

In the second experiment, we used a hybrid neuro-robotic
system to study the properties of a neural population as it drives
a two-wheeled robot. We have observed a tendency to change
the behavior by moving to the right after a period of operation
in which the left sensory input was selectively reduced. On the
basis of combined observations of robot motions and of neural
responses, we conclude that the best model of the operation
performed by the neural element is a dynamic linear network
with recurrent ipsilateral connections. We see two possible
accounts for this result.

One account attributes the recurrent dynamics to an actual
neural pathway. We considered the possibility for contralateral
pathways and for pathways to the spinal cord and back.
However, we found that a surgical transection of the spinal cord
did not affect significantly the observed dynamical behavior.

A more likely interpretation suggests the presence of
a local memory mechanism expressed by intrinsic neural
properties (see e.g., Alford et al (1995), Schwartz and Alford
(2000), Di Prisco et al (2000) and Kandel et al (2000)). This
could be any mechanism, such as the threshold for plateau
potentials, capable of establishing a relation between the
tendency of a neuron to fire at one instant of time and the
state of the neuron up to a few hundred milliseconds before.
What is essential is that the neural activity does not depend
exclusively upon the instantaneous synaptic input.

The neural pathways that we stimulated contained
predominantly vestibular afferents, although cutaneous and
visual pathways are also present. From an information

Figure 14. Average angle, after practice with the reversible lesion
(upper plot), decreased by 10.38◦ (p < 0.05, n = 31). In the control
case (lower plot), the average angle was not significantly different
before and after the plasticity protocol (p > 0.5, n = 13). The
average angle is calculated from the averaged velocity vectors in a
single trajectory set (average of velocity vectors to all five lights).
The velocity vectors were observed along the path described by the
robot’s movement to each single light (points closer than 0.5 cm are
ignored because the robot could be relatively stationary at the
beginning of a movement, creating a small, rotating vector).

Figure 15. Change in the weights of the dynamic linear model
without crossing connections (see figure 7(f )) before and after the
plasticity protocol.

processing standpoint, there is a substantial degree of
equivalence between the optical stimulation generated by the
robot’s sensors and the vestibular input. Both are right/left
systems and a positive phototaxis corresponds to the tracking
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Figure 16. Autocorrelation of the neural activity before (dashed
line) and after (solid line) the plasticity protocol. For one
preparation (upper plate) and averaged over all preparations that
demonstrated turn to the right (bottom). A decrease in the
autocorrelation of the right side is observed after the plasticity
protocol.

of a vertical direction. The semantics of the stimulus (gravity
versus light) is not likely to play any substantial role here.

Hybrid neuro-robotic systems provide an artificial
environment that is amenable to applying controllable and
reversible perturbations for studying the operation of the
nervous system. In the second experiment, we have introduced
a ‘reversible artificial lesion’ by changing the output gain
of light sensors. We saw this procedure as an alternative
to irreversible surgical manipulations, such as the removal
of a vestibular organ (unilateral labyrinthectomy). A clear
advantage of the artificial lesion over the actual lesion is its
complete reversibility. Another case for such neuro-robotic
interfaces was presented by Zelenin et al (2000). In their
study an electrical motor was used to rotate the lamprey and
therefore provide feedback through the natural sensory system
of the lamprey rather than through direct excitation, as in our
study.

A significant feature of neuro-robotic interfaces is the
control that they offer to the experimenter over the exact
feedback that is provided through the artificial system and
its sensors. By manipulating this feedback it is possible to
study neural mechanisms, such as the dependence of plastic
changes upon the correlation between presynaptic input and
postsynaptic activity.

Investigation of the rules that govern synaptic plasticity
in a hybrid system may lead to finding effective methods for
‘programming’ neural tissue so that it can execute a desired
task. This goal is of central importance for the development
of effective neural prostheses. Once a signal interaction is
established between brain tissue and an external device, one
can expect that the properties of the neurons interacting with
the device will evolve on the basis of the history of signal
exchange. Neural plasticity is perhaps the most important
resource for establishing a working interaction between brain
and external devices. Neuro-robotic interfaces provide a new

instrument for the direct investigation of how plasticity can be
harnessed for generating desired behaviors.
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