
*Corresponding author.
E-mail address: karniel@nwu.edu (A. Karniel).
�This study was done while Dr. Karniel was at the Department of Electrical Engineering, Technion -

Israel Institute of Technology, Haifa, Israel.

Neurocomputing 37 (2001) 31}49

Polyhedral mixture of linear experts for many-to-one
mapping inversion and multiple controllers

Amir Karniel��*��, Ron Meir�, Gideon F. Inbar�
�Department of Physiology, Northwestern University Medical School, 303 East Chicago Avenue,

Chicago, Illinois 60611, USA
�Department of electrical engineering, Technion Israel Institute of Technology, Haifa 32000, Israel

Received 12 June 1999; accepted 13 April 2000

Abstract

Feed-forward control schemes require an inverse mapping of the controlled system. In
adaptive systems this inverse mapping is learned from examples. The biological motor control
is very redundant, as are many robotic systems, therefore the mapping is many-to-one and the
inverse problem is ill posed. In this paper we present a novel architecture and algorithms for the
approximation and inversion of many-to-one functions. The proposed architecture retains all
the possible solutions available to the controller in real time. This is done by a modi"ed mixture
of experts architecture, where each expert is linear and more than a single expert may be
assigned to the same input region. The learning is implemented by the hinging hyperplanes
algorithm. The proposed architecture is described and its operation is illustrated for some
simple cases. Finally, the virtue of redundancy and its exploitation by multiple controllers are
discussed. � 2001 Elsevier Science B.V. All rights reserved.

Keywords: Redundancy; Motor control; Inverse problem; Mixture of experts; Hinging
hyperplanes

1. Introduction

One of the salient characteristics of the biological motor control system is its
apparent redundancy (see e.g. [1,18]). The human arm consists of seven degrees of

0925-2312/01/$ - see front matter � 2001 Elsevier Science B.V. All rights reserved.
PII: S 0 9 2 5 - 2 3 1 2 ( 0 0 ) 0 0 3 0 6 - 4



freedom, which is more than needed to obtain a particular position or con"guration of
the hand in the workspace. Most of the joints are surrounded by more muscles than
needed to produce any desired moment. The muscles themselves are composed of
many motor units that enable many possibilities of producing the same force at the
tendon. In the presence of redundancy the controller has to act on a many-to-one
(MTO) system and has to choose one of the many possible actions to obtain the same
desired target.

Due to the delays in the nervous system, simple feedback cannot o!er a proper
explanation for the control of fast movement. Thus, it was suggested that the nervous
system contains an inverse model of the musculo-skeletal system that is contextually
being updated [7]. For reviews of recent modeling with arti"cial neural networks, see
[10,14]. Two methods for learning this inverse model are distal supervised learning
[11] and feedback error learning [16]. These methods do not confront the MTO
problem. They choose an arbitrary solution that is the closest to the training set and
to the initial conditions of the network. In some cases these architectures may
incorporate a smoothness criterion to choose a biologically plausible solution, but
they still learn just one solution.

The same MTO problem occurs in the robot inverse kinematics problem for
manipulators with excess degrees-of-freedom. This problem can be separated into
global and local ill-posedness, and therefore a two-fold solution can be pursued: "rst
global regularization, that is identifying and labeling the solution branches and then
local regularization corresponding to parameterization of the solution manifolds.
DeMers [4] investigated this problem by describing the topological properties of the
systems. He suggested such a two-fold learning method. Lu and Ito [20] tried to solve
the inverse kinematics of a redundant arm with a modular neural network, where each
network learned part of the con"guration space; but as they admit, the regions can
overlap.

In this paper a simpler and more tractable and analyzable method is suggested. The
main idea is to construct a piecewise invertiable approximation that can be then
inverted to produce a multiple controller. We present a novel architecture that divides
the input space into polyhedral regions, which are convex regions that can cover the
whole space. We call this special architecture polyhedral mixture of linear experts
(PMLE) because it can be viewed as a special case of the mixture of experts
(ME) architecture proposed by Jacobs and Jordan [8]. The PMLE has the advantage
of being a piecewise invertiable function and therefore the multiple inverse PMLE
can serve as a multiple controller in order to exploit the virtue of redundancy. We
use the hinging hyperplanes (HH) method proposed by Breiman [3] in order to
learn the piecewise linear approximation. Then we present a new algorithm to
transform the parameters of the HH to the parameters of the PMLE. We further
prove the ability of the PMLE to estimate inverse functions. Part of this work was
presented as a short conference paper [12] and further details are available in
Chapters 5 and 6 of [15].

The reminder of the paper is organized as follows: Section 2 describes the inverse
problem and its ill-posedness. In the next two sections the HH algorithm and the
PMLE architecture are described. The PMLE is shown to be capable of approxim-

32 A. Karniel et al. / Neurocomputing 37 (2001) 31}49



Fig. 1. The inverse problem: given a desired output y
�
, "nd x such that F(x)"y

�
.

ating any inverse function. In Section 5 the transformation and inversion algorithms
are outlined and in Section 6, a few examples of its performance are given. Finally, the
role of the PMLE in utilizing the virtue of redundancy in biological and arti"cial
systems is brie#y discussed and conclusions are drawn.

2. Learning to invert many-to-one mappings

The problem of "nding an inverse mapping is described in Fig. 1. Given a desired
output y

�
, "nd x such that F(x)"y

�
. For example, given the desired position

of the hand, what should be the neural excitations to the muscles in order to bring
the hand to the desired position. In a robotic system, the question is what should
be the currents in each motor, in order to bring the manipulator to the desired
position. When such a problem is given many questions can be formalized, for
example: (I) Is there a solution? (II) Is the solution unique? (III) Is there an algorithm
to "nd all the solutions? (IV) If there is more than one solution, which of them is
optimal?

In this work a system with many solutions is considered and a solution to the third
question is proposed. The problem gets more complicated when the system mapping
F(X) is unknown or uncertain. Then the inverse mapping should be learned from
examples of input and outputs pairs �x�, y��. This description is appropriate for
biological motor control learning, where the system and the environment changes and
therefore have to be learned from examples. It is also appropriate for robotics
applications where the manipulator is too complex to be modeled accurately, or when
its properties changes over time.

After this introduction we can write the formal description of the problem and the
proposed solution, which are given below and illustrated in Fig. 2. Let F(x) be a many
to one function describing an unknown system, and let �x�, y��be a series of input and
output vectors of this system. The problem is to construct a multiple inverse function
FK ��
�

(y
�
), where MI stands for multiple inverse and the parameter p determines which of

the many possible solutions is chosen. The formal requirement is that for any given
accuracy value �, one can construct FK ��

�
, so that for any value of y

�
, and for any value

of the parameter p, the following inequality will hold, �F(FK ��
�

(y
�
))!y

�
�(�, that is, the

output of the system will be close to the desired output.
In the following sections we will describe the hinging hyperplanes as the

learning algorithm and the PMLE architecture which can serve as a multiple inverse
controller.
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Fig. 2. The proposed scheme for learning the inverse control of a many-to-one system. The multiple inverse
controller receives the desired target y

�
. Its parameters w are learned from examples and it produces the

control command, x, according to a given criterion to choose one of the many possible solutions
parameterized by p.

Fig. 3. Hinge, hinging hyperplanes and hinge function (bold) in one dimension).

3. Hinging hyperplanes

The problem of "nding a model for an unknown system by observing a set of
input}output examples has many solutions in the adaptive control and neural
networks literature (see [23] for a uni"ed overview). In order to be able to invert the
approximate system, an estimation with a kernel of an invertible function is needed.
A linear function is an appropriate one and the hinging hyperplanes (HH) method
proposed by Breiman [3] is an elegant and e$cient way of identifying piecewise linear
models based on data collected from an unknown system. In this section the HH
method is described following the de"nitions of Breiman [3], and some further
investigations by Pucar and SjoK berg [22].

A hinge function y"h(x) consists of two hyperplanes continuously joined together
at a hinge. An example in one dimension is given in Fig. 3.
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In an M-dimensional space, taking x
�
"1, that is x"[1, x

�
, 2, x

�
]�, the two

hyperplanes are given by y"x��� and y"x���, and are joined together on
�x�x�(��!��)"0�. The vector, �,��!��, or any multiple of �, is de"ned as
the hinge of the two hyperplanes. The hinge can be described geometrically as the
(M!1)-dimensional hyperplane that satis"es x� ) �"0. The explicit form of the
hinge function is either max(x���, x���) or min(x���, x���). In this paper, we de"ne
�,��!��, when the function is max, and, �,��!��, when the function is min.
In this way the hinge function is always:

h(x)"�
x���, x� ) �50,

x���, x� ) �(0.

Given data from an unknown function, one can "t a hinge to the data by the following
algorithm, due to Breiman [3].

3.1. The hinge xnding algorithm (HFA)

Start with an arbitrary hinge �	�
. Using least squares, "t the data on the side
x� ) �	�
50 to a hyperplane y"x���, and the data on the other side x� ) �	�
(0 to
a hyperplane y"x���. Take the new estimate for the hinge as �	�
"��!��, and
repeat this procedure until the error is small enough. Breiman [3] proved that the
convergence of this algorithm is exponentially fast when the data is taken from
an unknown hinge function and when the initial hinge is close to the target hinge.
This simple algorithm was used successfully in the simulations of Section 6, how-
ever, there is place for further improvement of this algorithm. Pucar and SjoK berg
[22] illustrated situations where the algorithm does not converge and suggested
modi"ed algorithms.

3.2. Function approximation by hinging hyperplanes

Given data from an unknown function f (x) one can construct an approximation of
this function as a sum of hinge functions.

fK (x)"
�
�
���

h
�
(x), h

�
(x)"�

x���
�
, x� ) �

�
50,

x���
�
, x� ) �

�
(0.

(1)

Breiman [3] proved that for a continuous and su$ciently smooth function the
squared approximation error decreases as one over the number of hinge functions that
are used for the approximation. Several algorithms for "tting the hinge functions were
proposed by Breiman [3] and by Pucar and SjoK berg [20]. Following is the basic
re"tting method:

1. Find h
�
(x) estimation of f (x) by the HFA, set K"2.

2. Find h
�
(x) estimation of f (x)!����

���
h
�
(x) by the HFA.

A. Karniel et al. / Neurocomputing 37 (2001) 31}49 35



3. Re"t by the HFA:

h
�
(x)Nf (x)!��

���
h
�
(x)

�

h
�
(x)Nf (x)!��

�������
h
�
(x)

�

h
�
(x)Nf (x)!����

����
h
�
(x).

4. Set K"K#1, repeat 2}4 until convergence

(i.e. until residual sum of squares (RSS) ceases to decrease signi"cantly)
The stopping condition can be improved in order to prevent over"tting. One

possible way is based on cross-validation, which means keeping a portion of the data
out of the training set and using it in order to calculate the RSS. Another way can be
to add a stopping condition when the number of data points in each area is too small.
We de"nitely do not want the number of points in each area to be of the order of the
dimension of the input due to the problem of over-"tting.

4. Polyhedral mixture of linear experts

4.1. The architecture

In the mixture of experts (ME) architecture of Jacobs et al. [9] the input is fed to
a group of experts, and the output is a weighted sum of the experts' output. These
weights are also a function of the input through the gate (see Fig. 4 and Eq. (2)).

y"�
�

g
�
(x, �) ) f

�
(x, w), �

�

g
�
(x, �)"1, g

�
(x, �)50. (2)

The polyhedral mixture of linear experts (PMLE) is a special case of the ME
architecture where each expert is a linear function, that is a weighted sum of the
inputs, and the gate function is an indicator function that separates the input space
into a polyhedral partition and assigns to each polyhedron a unique linear expert, as
follows:

f
�
(x, w)"x�w, g

�
(x, �)3�

1 if x3 polyhedron i,

0 otherwise.
(3)

where x"[1, x
�
, 2, x

�
]�, w"[w

�
, w

�
, 2, w

�
]�

A polyhedron is a subspace of R� composed of the intersection of a "nite number of
half-spaces. The polyhedral experts can easily cover the whole input space and each
polyhedral region is convex. This architecture is actually an implementation of
a piecewise linear mapping, capable of approximating inverse functions, as will be
proved in the next subsection. Then an algorithm to transform the HH parameters
into this architecture will be given, so that the HH algorithm may be used to learn the
parameters of the PMLE from input/output examples.
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Fig. 4. The mixture of experts architecture: each expert (E) computes a function of the input. The gate (G)
chooses a weighted sum of the experts output to be the output of the system.

4.2. The ability to approximate inverse functions

The ability to approximate inverse functions was studied by Sontag [24]. He
showed that neural networks with a single hidden layer are insu$cient, but that two
hidden layer networks are able to approximate any inverse map. In this section, it will
be shown that the PMLE is also able to approximate any inverse map, and actually
able to approximate any function that can be approximated by a two hidden layer
neural network with sharp threshold activation functions (H activation function). An
activation function of type H is the hardlimiter, Heaviside or threshold function, i.e.
H(x)"0 if x(0 and H(x)"1 if x50. First, let us recall the de"nition of the ability
to approximate inverse functions from Sontag [24]. The following is a property of the
class of functions F�

	
, from R	 to R�.

(INV) For any m and p, any continuous function f : R�PR	, any compact subset
C-R	 included in the image of f, and any �'0, there exist some �3 F�

	
so

that � f (�(x))!x�(� for all x3C.

Theorem. The class of functions that are computable by the PMLE satisxes (INV), i.e.,
any inverse function can be approximate by the PMLE.

Proof. First let us recall the following proposition and lemma from [24]:

Proposition 2.4 (Sontag [24]). F�
	
, the set of maps computable by two-hidden-layer nets

with processors of type H, satisxes (INV).
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Lemma 3.6 (Sontag [24]). A function f is piecewise constant if and only if it is
computable by a two-hidden-layer net with processors of type H.

Now all we have to add is the trivial observation that a piecewise constant function is
a special case of a piecewise linear function, so that PMLE can implement any
piecewise constant function. Based on Lemma 3.6 (from [24]) one can conclude that
the PMLE can compute any function that is computable by a two-hidden-layer net
with processors of type H.

From this conclusion and Proposition 2.4, the theorem is proven. �

5. From HH to PMLE and then to multiple inverse controller

5.1. Parametrization via hinging hyperplanes

In this section the relationship between the parameters of the PMLE (Eqs. (2)
and (3)) and the HH function approximation (1) are derived, that is, given the number
of hinge functions K, the hinges �

�
, and the hyperplanes ��

�
, ��

�
, the parameters of

the PMLE, � and w, and the structure of the gate functions g
�
are derived.

In order to make the description compact and readily programmable with
MATLAB, the parameters are written in vector and matrix notation as follows:

X"�
1

x(1)

�

x(M)�, D"�
�
�
(1) �

�
(1) 2 �

�
(1)

�
�
(2)

� � �

�
�
(M#1) � �

�
(M#1)�,

B�
�

"�
��
�
(1) 2 ��

�
(1)

� �

��
�
(M#1) 2 ��

�
(M#1)�, B�"�

��
�
(1) 2 ��

�
(1)

� �

��
�
(M#1) 2 ��

�
(M#1)�

.

The gating function of the PMLE contains a vector �
�
for each expert that describes

its side for each hinge function, and each expert possesses a weight vector =
�
as

follows:

�
�
"[�

��
2 �

��
],

�
��

"#1 if expert i belongs to x� ) �
�
50,

�
��

"!1 if expert i belongs to x� ) �
�
(0,

=
�
"�

w
�
(1)

�

w
�
(M#1)�.

For a given input x, the gate can decide which expert describes the function at that
point.

g
�
(x)"	

�
(�

�
sign(D�X)) where 	

�
(u)"�

1, u"K,

0, otherwise.
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The weights of each expert will be

=
�
"B�H(D�X)#B�H(!D�X)"B�H(��

�
)#B�H(!��

�
).

The hinging-hyperplanes (HH) parameters are found according to the algorithms in
Section 3. The following algorithm transforms the parameters of the HH function
approximation to the parameters of the PMLE. This algorithm is an iterative
algorithm. There are K hinges and the algorithm inspects them one after the other.
For the "rst hinge two experts are constructed, one for each side of the hinge. The next
hinge can be parallel to the "rst hinge, in which case only one expert will have to split,
or the next hinge can intersect with the "rst hinge and then both experts will have to
split. In general for each new hinge, the algorithm checks the position of each expert
according to the hinge, and then decides whether it should be split and how to change
its parameters. The algorithm uses linear programming (LP) to "nd the position of
each hinge in relation to each expert. The term x� ) �

�
where �

�
is the kth column of

the matrix �, is positive on one side of the hinge and negative on the other side (see
Fig. 3 and Eq. (1)). The maximum and the minimum of this value for the expert are
calculated. If both the maximum and the minimum of this term are positive, then the
hinge is on one side of the expert, if they are both negative then it is on the other side.
LP is chosen for its e$cient algorithmic implementation.

Let us phrase the LP problem: In order to "nd the minimum or maximum of the
term x� ) �, since the "rst element in x is 1, which is a constant, we de"ne x
 as the
vector x without the "rst element, and �I as the matrix � without the "rst raw. Our
target function is now x
 � ) �I

�
and we wish to constrain x to being within the domain of

the expert i. That is: for each hinge that has �
��

"#1, x
 will be such that x� ) �
�
50,

and for each hinge that has �
��

"!1, x
 will be such that x� ) �
�
(0. We can combine

the above to one inequality by multiplying the elements of � by the elements of �. We
also have to remember that we should write the constraints on x
 , and "nally, we can
write the two LP problems

x

���

"arg min(x
 � ) �I
�
) x


���
"arg max(x
 � ) �I

�
)

x
 and x


s.t. Ax
 4B s.t. Ax
 4B

where x"[1, x
 �]�, �"[�
�
(1), �I �

�
]�

A"!�
�
�
(2)�

��
�

�
(3)�

��
2 �

�
(M#1)�

��

�
�
(2)�

��

� � �

�
�
(2)�

��
2 �

�
(M#1)�

��
�, B"�

�
�
(1)�

��

�
�
(1)�

��

�

�
�
(1)�

��
�.

Since our interest is in the value of the expression (x� ) �
�
) we must calculate

Mn"[1, x
 �
���

] ) �
�
, Mx"[1, x
 �

���
] ) �

�
.
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In LP the solution might be at R and this can in#ict numerical problems. In practice,
since we are only interested in the sign of the solution, we add the following constraint
for lower and upper bound, VLB(x(VUB.

Now, we can write the entire algorithm.

Initialization:
For the "rst hinge, D"�, B�"��, B�"��.
Construct two experts as follows:

�
�
"[#1], �

�
"[!1];=

�
"[��],=

�
"[��]

For each new hinge, k:
For each expert, i:

Find Mn and Mx by solving the LP problem described above
If Mn'0 and Mx'0 the hinge is in one side,

=
�
"=

�
#��, �

���
"#1,

Else If Mn(0 and Mx(0 the hinge is in the other side,

=
�
"=

�
#��, �

���
"!1

Else: the hinge goes through this expert, split to get two experts:

=

��

"=
�
#��, �


����
"#1,

=
�
"=

�
#��, �

���
"!1

End (for expert i)
Add the columns �

�
, �� and �� to the matrixes D, B�, B� respectively.

End (for hinge k)

5.2. Constructing the complete inverse approximation

Now, Once we have the PMLE parameters, corresponding to a piecewise linear
approximation of the system, we can use it in order to construct the complete inverse
approximation. For the one-dimensional problem, one can invert each expert and get
a candidate-solution, which should be validated for being in the expert's range of
operation. This idea is illustrated in Fig. 5.

The "rst two stages in Fig. 5 construct the inverse PMLE (MI-PMLE). The
regularization problem is now reduced to a problem of choosing one of the possible
solutions. We can give each solution an identi"cation number, call it p, and add this
parameter as a regulating input, as described by the block diagram in Fig. 2.

One should notice that even a linear expert could contain a many-to-one mapping
in the case of a constant mapping or in the case where there are more inputs than
outputs. However there is a simple method using basic linear algebra tools to
represent the hyperplane of all the solutions with some real valued parameters (see
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Fig. 5. The process of producing the inverse solutions from the PLME. First each expert produces its
own inverse-candidate, then each candidate is checked by its expert gate. The validated inverses are the
outputs of the MI-PMLE. Finally, real-time regularization should be executed to choose one of the possible
solutions.

Key Theorem 8.26 in [21]). In such cases the regulation vector p will have to be
composed of natural numbers in order to choose one of the experts and real
number(s) in order to choose a single solution in each linear expert. With this
addition, the MI-PMLE can serve as multiple inverse controller to any system
that can be approximated by a piecewise linear function with polyhedral
boundaries. Further details about the PMLE and the MI-PMLE are available
in [15].

Further investigation is needed in order to describe the values of the parameter
p (especially in higher-dimensional problems) and in choosing the appropriate solu-
tion, but this stage depends on the speci"c control problem, its constraints and goals.
For example, in the case of many motor units around a single joint and in a single
muscle, the solution can be chosen as a function of time, i.e. cyclic switching between
solutions in order to minimize the fatigue. Another example can be the inverse
kinematics of a robotic manipulator, where the solution can be chosen as a function of
obstacles in the environment of the manipulator.

6. Simulations

In this section we will illustrate the algorithm by simulation for two examples. The
"rst example is of a smooth function that is not injective, to demonstrate the
construction of the MI-PMLE. The second example is of a smooth function in two
dimensions.

6.1. Example 1: Smooth function approximation

This example demonstrates the construction of the complete inverse of a smooth
function, which is not an injective. We have drawn 400 examples from the function
y"sin(x�) where x

�
was uniformly distributed in the range [!2, 2]. The results of the

HH algorithm are given in Figs. 6 and 7.
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Fig. 6. Simulation of the HFA, "tting three hinges to examples from the function y"sin(x�). The dots are
the data and the lines are the hinge functions. The circles represent the initial position of the hinge and the
stars, the "nal position of the hinge. The upper plate is the "rst hinge "tted to the given examples, and then
each additional hinge is "tted to the residual error between the samples and the sum of the previous hinges.
The lower plate describes the given data and the sum of the three hinges "tted above.

Let us demonstrate the results of the inverse PMLE function, which implements the
architecture in Fig. 5. The complete inverse of the target value 0.5 is the following
matrix containing four possible solutions:

<[X]"ipmle(D,=, teta, 0.5)NX"[!1.61 !0.73 1.62 0.75]

and the complete inverse of the target value !0.5 is the following two possible
solutions:

<[X]"ipmle(D,=, teta, !0.5)NX"[!1.94 1.95].

Finally, let us use this example further in order to comment on the e!ect of noise. The
HH algorithm is based on a least-squares regression, the basic operation is to "t
a hyperplane to the data, therefore as long as the noise has zero mean and there is
enough data, the same hyperplane will be "tted (see Fig. 8). The main problem that
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Fig. 7. Simulation of the HFA. Re-"tting the three hinges from Fig. 6 to the examples from the function
y"sin(x�). This result is after two passes over the re"t algorithm. In upper three plates, each hinge is "tted
to the residual error between the examples and the sum of the other hinges. The lower plate describes the
sum of the three hinge functions over the given data.

can be induced by noise is too many hinges and too many experts. If one select a target
error, which is smaller than the noise, then over"tting will occur and new hinges will
be generated in order to "t the noise. The solution to this problem is cross validation
that is saving some data and stop re"tting and adding hinges when the generalization
error (the error on the saved data) cease to decrease.

6.2. Example 2: A two-dimensional function approximation

In this example, we examine a two dimensional (2-D) function. We have chosen to
check the algorithm on the following function, which can be presented as a typical
control problem. We have drawn 4000 examples from the following function:
y"4x

�
/(1#x�

�
)#x�

�
!2, where x

�
and x

�
were uniformly distributed in the range

[!2, 2]. The results of the HH algorithm are presented in Figs. 9}11 .
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Fig. 8. Simulation of the HFA with added white Gaussian noise. Fitting three hinges to examples from the
function y"sin(x�)#N(0, 0.1). This result is after two passes over the re"t algorithm.

This function was taken from Lee and Lee [19] who considered it as describing
a nonlinear system. They tried to identify the dynamics of the di!erence equation,
y(k#1)"4y(k)/(1#y�(k))#u (k)!2, with their multi-resolution radial basis com-
petitive and cooperative networks. Their method is based on separating the data into
hyper-ellipsoidal clusters. The advantage of the PMLE approach presented here is in
its ability to identify sharp boundaries between regions of the function and the
straightforward parallel implementation as a mixture of experts which enables very
fast real-time calculation.

7. Discussion = The virtue of redundancy

The problem of redundancy in the biological system has been known for many
years and a large volume of literature has been dedicated to "nding the optimization
criterion to choose the best single solution (e.g. [5]). In many other problems, the
formulation of the question is half the way to the answer. We believe that redundancy
should be regarded as a virtue rather than a problem and therefore the biological
system has to "nd an optimal way to exploit this virtue rather than to `solve this
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Fig. 9. The examples from the 2-D function and the "rst hinge's initial position (circles and line) and "nal
position (stars and line).

Fig. 10. The hinge function over the examples of the 2-D function.

problema. Therefore, instead of looking for a single optimization criterion that yields
a single solution, we suggest a multiple-solutions}multiple-criterion system that can
choose di!erent solution in di!erent circumstances. There are two competing views in
the literature of motor control: one is the `dynamicala view that assert that the
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Fig. 11. The "nal hinge function after re"t.

dynamics of the systems `"ndsa the solution and therefore reduces the redundancy
and simpli"es the control scheme, see for example the equilibrium point hypothesis
(EPH) [2]. The other view is sometimes called `hierarchicala, which suggests that the
CNS is aware of the details of the controlled system and calculates proper control
signals, for example with an inverse model of the controlled system (see [7]). We do
not wish to choose one of these views because we think that they both exists at
di!erent levels of the control (as suggested by Latash and Anson [17] in their response
to commentary). The ultimate solution will probably contain a natural reduction of
redundancy due to the dynamical properties of the system (see [13] for an example of
the role of the muscles' nonlinear dynamics) and a selection from many possible
solutions in real time at a higher level as suggested in this paper.

The multiple inverse PMLE architecture suggests a simple systematic method for the
registration of all the solutions. First a piecewise linear estimation is executed, then it is
transformed to the PMLE architecture parameters and then each expert is inverted.

In this paper the "rst stage of "nding a piecewise linear estimator is learned by the
hinging hyperplanes algorithm of Breiman [3]. Nevertheless, other methods have
been suggested recently for the same purpose (see [6,22]). These methods can easily
replace the hinging hyperplanes algorithm with minor changes to the transformation
algorithm of Section 5 (or no change at all for the algorithms in [22]). The "nal result
of a multiple inverse controller will be exactly the same, and whatever the learning
algorithm is, the multiple controller can be straightforwardly implemented in a paral-
lel architecture. A parallel implementation will allow real time calculation of the
control signal, and even a real-time switching between criteria for choosing the
preferred solution.
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With the current decline in the price of hardware, and the availability of parallel
computing systems, one should consider multiple controllers that can choose di!erent
solutions in di!erent circumstances rather than a single optimization criterion and
a single solution. Once we have such multiple controllers, it may also be advantageous
to arti"cially add redundancy to the controlled system in order to enhance its
#exibility and reliability as is witnessed in many biological systems. We believe that
the Multiple Inverse PMLE controller is a "rst step in this direction.

8. Conclusions

A new architecture for learning the inverse of a redundant system was proposed.
This architecture is the polyhedral mixture of linear experts (PMLE), which can learn
from examples a piecewise linear approximation of the system and then be easily
inverted. The structure of the architecture was presented, its ability to approximate
any inverse function was proven, and an algorithm to learn its parameters from
examples was described. Finally, the PMLE learning algorithm was demonstrated
and the virtue of redundancy was discussed.
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