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Abstract—Human motor control has always presented a
great challenge to both scientists and engineers. It has presented
most of the problems they have found difficult to handle and
manipulate, which is a consequence of it being a distributed,
nonlinear, time-varying system with multiple degrees of freedom
that include redundancy on many levels. In recent years, the fast
development of computers and the emergence of the new scientific
field of neural computation have enabled consideration of com-
plex, adaptive, parallel architectures in the modeling of human
motor-control performance. In this paper, some of the models
that have been used in the study of motor control are reviewed,
and some open questions are formalized and discussed. The
main topics are adaptive and artificial neural-networks control,
parameters estimation, nonlinear properties of the muscles, and
parallelism and redundancy.

Index Terms—Adaptive control, inverse problems, muscles, neu-
rocontrollers, parameter estimation, redundant systems.

I. INTRODUCTION

T HERE IS a wide engineering and mathematical foundation
for modeling linear, time-invariant systems (see [1]–[3]).

Some man-made machines satisfy these conditions, but biolog-
ical systems do not. The biological system presents enormous
plasticity, which means that the system is a time-varying one
(e.g., in processes like regeneration and fatigue). It also gen-
erally demonstrates nonlinear behavior such as logarithmic re-
lations, thresholds, hysteresis, saturation, and cutoff (i.e., min-
imum and maximum bounds). In some cases, a linear, time-in-
variant approximation can be made, but only for small signals
and for short durations.

One of the salient characteristics of the biological motor-con-
trol system is its apparent redundancy [4], [5]. The human arm
consists of seven kinematic degrees of freedom, which is more
than is needed to obtain a particular position or configuration
of the hand in the workspace. Most of the joints are surrounded
by more muscles than needed to produce any desired movement.
The muscles themselves are composed of many motor units that
enable many possibilities of producing the same force at the
tendon. These apparent redundancies lead the controller (i.e.,
the nervous system) to act on a many-to-one (MTO) system and
to choose one of the many possible actions in order to obtain the
same desired target.

Keeping all of the above issues in mind, our challenge is to
solve the problem of learning to control a time-varying, non-
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linear, MTO system. Nature has found wonderful solutions, and
our goal is to try and learn them. A common procedure to help
us understand biological systems and mechanisms is to try and
formulate their behavior mathematically, fit the parameters of
the mathematical model to the experimental results, and then
study the generalization power of the model. This is obviously
an iterative procedure that, when successful, can elucidate silent
features of the system, teach us more about that system, and sug-
gest ways for new experiments and experimental procedures. It
sometimes assists us in ultimately imitating these ingenious so-
lutions of nature to the design of artificial systems, to build ar-
tificial organs to replace natural ones, and design aids to assist
patients in need.

This paper describes the use of mathematical and engineering
techniques as applied to the area of human movement control. It
is organized as follows: Section II describes the main architec-
tures that describe the biological motor control. In Section III,
the problem of parameter estimation and system identification is
described and demonstrated for a linear-muscle model. In Sec-
tion IV, a nonlinear model of the muscle is proved to be not
only biologically plausible but also a means to reduce the com-
plexity of movement control. Section V presents a few aspects
of the parallelism and of the degrees of freedom problem, which
is how to invert an MTO system. Finally, Section VI concludes
this challenge of modeling the biological motor-control system.

II. FROM FEEDBACK TO ADAPTATION

A salient feature in any biological system is the ability to
adapt to the environment and to its own internal changes. The
revolution in the beginning of modern cybernetics was the in-
corporation of feedback to artificial machines. In this section,
we will describe the main architectures from simple feedback
through adaptive control and to artificial neural-network con-
trol.

A. Feedback Control

Feedback control is based on using the outcome of the
process, or the controlled system, which is usually called the
“plant,” in order to control it. In other words, we use the error
between the desired output and the actual output in order
to reduce it.

The analogy of the feedback scheme (Fig. 1) to motor con-
trol is the following. The plant corresponds to the muscles, the
bones, and the dynamics of the environment, the feedback cor-
responds to the output of the sensory systems, and the controller
corresponds to the nervous system. The control problem is how
to design a controller that suits the desired performance. In the
linear case, we can use the Laplace transform and describe each
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Fig. 1. Feedback control.

block with a transfer function (1) whereis called the gain,
are the zeros, and are the poles

(1)

Let us denote the transfer functions of the blocks in Fig. 1 as
follows: for the plant, for the controller, and for the
feedback (i.e., the sensory system). In the Laplace domain, we
can write the output as a function of the input in Fig. 1 in terms of
the block’s transfer functions (the Laplace variableis avoided
for simplicity)

(2)

One major advantage of the feedback control scheme is the re-
duced sensitivity to changes in the parameters of the plant and
to changes in the environment. The sensitivity of systemto
changes in the parameteris defined as follows:

(3)

When the value of the sensitivity function is zero, the system
is insensitive to changes in the parameters. Let us look at the
system without feedback, where is the transfer function and

is a gain parameter, as in (1). The system in an open loop is
, and the sensitivity of the system would be

(4)

The system with feedback, i.e., in a closed loop, is
and the sensitivity will be

(5)

So when the loop-gain is high, the sensitivity to changes is
low.

There is a vast literature on the stability of such systems and
on methods to choose a controller when the specifications of the
desired performances are given [6], [7].

The first problem in using this simple feedback-to-model bio-
logical systems occurs when one tries to measure the loop-gain.
In the biological system, one finds a very low loop-gain in the

Fig. 2. Adaptive control.

order of one. Therefore, the above reason for reduced sensi-
tivity to changes in the parameters is not valid for the biolog-
ical system. The second problem is the delays in the biolog-
ical system, which can cause instability and oscillation in such
a simple feedback control. So we can conclude that the simple
feedback control, despite its advantages, is insufficient to de-
scribe the biological motor control. Let us continue with the
development of modern control to a more complicated control
scheme, the adaptive control.

B. Adaptive Control

Adaptive control can be regarded as an extension of feedback
control. In adaptive control, the controller can adapt itself to
changes in the plant or even learn to control a new plant. A
simple description of the adaptive control scheme is given in
Fig. 2. In the case where the controller is changing, the linear
description is not valid even if the plant and the controller are
linear. Generally, the mathematical questions in such a control
scheme are related to the ability of the plant to learn and to
the convergence properties of the adaptation algorithm. For a
short summary of adaptive control, see [8], for analysis of the
algorithms, see [9], and for the first attempt to model a biological
system with an adaptive-control scheme, see [10].

The literature separates between direct and indirect adaptive
control. In the first case, the adaptation algorithm operates on
the controller, and in the second case there are two phases. The
first is identification of the plant, and the second is adaptation
of the controller. The second case raises the problem of iden-
tification or learning of the plant, and if we have a parametric
group of possible plants, it brings us to the problem of param-
eter estimation, which is the subject of Section III. A difficult
problem with adaptive controllers is the requirement for persis-
tent excitation of the plant, which is needed in order to continu-
ously estimate its time-varying parameters. Without excitation,
the estimated value of the parameters tends to drift. This can be
stopped in engineering systems by turning off the adaptation al-
gorithm when the system operates with fixed control signals.

C. Feed-Forward Control and the Inverse-Controller Problem

The opposite of feedback or closed-loop control is the feed-
forward or open-loop control where the sensory information is
not used during the control and execution of the task. As we
mentioned before, the delays in the biological system are rela-
tively large, and in such cases, a feed-forward control must be
considered. This control scheme was first suggested and ana-
lyzed by Inbar and Yafe [11], where the term “signal adaptation”
was used to describe the inverse controller’s act of learning in
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Fig. 3. Feed-forward control and the inverse-controller problem.

Fig. 4. Direct learning of an inverse model with ANN.

order to generate the desired control signals. Fig. 3 describes the
controller and the plant in a feed-forward control. The control
problem is: “Given a desired goal , how does one generate
such that will be close to ?”

This is a simple inverse problem, but the solutions to inverse
problems are not simple in many cases. One of the problems is
redundancy (i.e., the plant having MTO function). In Section V,
this problem of redundancy is described with some suggested
solutions. Another problem is to learn the inverse of the system.
Most biological systems are time-varying systems, and there-
fore, the inverse of the system must be learned from examples
and adjusted to changes in the system parameters as they occur.
The field of artificial neural networks has grown rapidly in the
last decade, and it provides many solutions to this problem.

D. Artificial Neural-Network (ANN) Control

The artificial neural network (ANN) is a field that draws its
ideas from the structure of the biological neural networks and
as such can be described separately as an example for using
mathematical tools in biology. For a comprehensive review of
ANN, see [12], and for a review of the use of ANN for con-
trol, see [13] and [14] and a collection of articles in [15]. In our
context, we look at an ANN as a black box that operates as a
function approximator with a learning algorithm that can change
the structure of the ANN in order to reduce some error between
the network output and the desired one, given by training ex-
amples. Three results in the study of ANN paved the way to
implement this architecture in the control area. First, the in-
troduction of the backpropagation algorithm, which is a gra-
dient-based learning algorithm enabled the use of multilayered
ANN [16]. Second, the representation theorem shows the ability
of a one-hidden-layer ANN to approximate continuous func-
tions as presented and proofed by numerous researchers (e.g.,
[17]). Third, the ability of a two-hidden-layer ANN to approxi-
mate an inverse of continuous functions [18].

Let us use the ANN as a controller in order to solve the control
problem in Fig. 3. The simplest solution is to train an ANN
to become an inverse of the plant (see [19]). This solution is
described in Fig. 4, where the training phase is described.

After the training is done, one can put the ANN before the
plant, and it will function as a controller. Such a control scheme
has a few drawbacks. First, there is a need for two phases, and
therefore, two copies of the ANN (one connected as a learner

Fig. 5. ANN control with distal teacher.

Fig. 6. ANN feedback-learning control scheme.

and the other as a controller). There is no evidence in the bio-
logical nervous system for such a dual system. However, lack of
existence in the biological system is not the only drawback of
the direct-learning scheme. Another problem appears in trying
to learn the inverse of a redundant system (i.e., the problem of
mapping an MTO system). Most of the learning algorithm will
converge to the average of all the possible solutions, but the av-
erage of correct solutions is not always a correct solution (see
[20]). A second problem in inverting an MTO system is how to
represent all the solutions and which solution to choose. This
problem is dealt with in Section V. One major problem in trying
to train a controller that is attached to the controlled system
is how to transform the error from the output coordinates of
the system to the coordinates of the control signal. Following
are two solutions to the training problem that were proposed as
models to the biological motor control. The first is the distal
teacher (as in Fig. 5) that was proposed by Jordan and Rumel-
hart [21], and the second is the feedback learning in Fig. 6 that
was proposed by Kawato and Gomi [22].

In the distal teacher approach (Fig. 5), the problem of trans-
forming the error from the output of the process to the output
of the controller (i.e., the output of the ANN) is solved by an
ANN-forward model of the plant and by using the learning al-
gorithm in order to propagate the error through the model to
the ANN controller. The forward model is trained by the pre-
diction error, and the controller is trained by the performance
error that is propagated through the forward model. In the feed-
back learning scheme (see Fig. 6), the error is transformed by a
simple feedback controller, and the ANN is trained by the motor
error. In this way, the control is reasonable even in case of big
changes in the plant, since in such a case, there is an error (and
then the feedback controller adds its contribution to the control
signal in the correct direction).
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Kawato et al. [23] showed that in some simple cases,
the distal-teacher approach converges as the steepest de-
cent method, and the feedback-error method converges like
Newton’s method. This analysis is correct only if the controller
has the correct parameters. However, for nonlinear systems, the
ANN has more capability to approximate the systems gradient
than a conventional feedback controller has to approximate the
systems Jacobian. Which architecture is better and which is
more biologically plausible are still open questions.

E. Summary: The Hierarchy of Learning and Adaptation

The importance of and the need for sensory information in
order to improve the controller performance cannot be over em-
phasized. The previous sections demonstrate this in various ar-
chitectures and techniques. The terminology used in this field
seem to be mixed and unclear, so as a summary, let us suggest
a hierarchy in learning and adaptation. In this hierarchy, there
is a tradeoff between two factors. On the one hand is the speed
of adaptation, and on the other is the extent of plasticity. Feed-
back is the most rapid, but its changes do not last beyond the
timescale of the process, while evolution is the slowest, and its
changes last for generations to come.

1) Feedback:This is the process of change in the control
signals during the execution of the action, accomplished by
means of a sensory-feedback signal from the plant output. This
change is valid only for the current execution, and its effects are
“forgotten” rapidly. The feedback scheme is used for tracking
or regulation, and its advantage is in noise rejection and low
sensitivity to changes in the systems parameters.

2) Adaptation: This is the process of change in the con-
troller parameters, accomplished by means of sensory informa-
tion from the plant output, which is valid for the next execution
of similar actions. This change is valid for a longer period, as
long as the plant parameters do not change. The adaptation rate
is normally much slower than the time constants of the plant
but much faster than the rate of change in the plant parameters.
Therefore, it may take a few repetitions of the action in order
to achieve a significant adaptation and change in the controller
parameters. The adaptive control scheme is used, in which the
controlled system is time variant, and the controller can adjust
to changes in the system.

3) Learning: This is the process of change in the control in
order to produce new control signals for a new situation or for
a new target. This change can involve a major change in the ar-
chitecture, and it may take many repetitions of the execution in
order to achieve the desired change. The results can stay perma-
nently in the same human, animal, or machine. Learning takes
place when a major change in the system occurs, or when a new
task is given. In humans, there are types of learning that are strict
to specific time windows in the development (e.g., in children).

4) Evolution: This is the process of change in the architec-
ture or basic property of the control by mutation and natural se-
lection through a long period of trial and error and optimization.
This change occurs only when a new species or a new version of
the machine is evolved. This change is the result of many trials
of many actions and controllers (by survival of the fittest), and
it may last for generations.

III. PARAMETERS ESTIMATION

In many control schemes and biological modeling, there is
a strong need for a model of the system (see [24]–[27]). A few
examples for such a need were demonstrated in the previous sec-
tion in the context of adaptive-control schemes [8], [10], [21],
[22]. A parametric model is a model that belongs to a family of
models with a finite number of parameters. The modeler’s task
is first to choose a proper family of models and then to estimate
the values of the parameters. In this section, we describe the
estimation problem and then concentrate on a commonly used
family of models: the linear models. We give an example for
building a linear model of the muscle and estimating its param-
eters, and we discuss the problem of choosing the order of the
model. In Section IV, we give an example for a nonlinear model
and its possible advantage.

A. Estimation Problem

The general problem of parameters estimation can be formal-
ized as follows. Let be a family of parametric functions.
That is, for each parameter vector, is a static
input/output function or a transfer function in the Laplace do-
main, where is the input and is the output. Suppose that
we have an unknown system that belongs to the above
functions family. That is, for a specific but
unknown parameter vector . As a result of an experiment on
this unknown system, we acquired a group of measurements of
input/output pairs that naturally satisfies .
In the presence of measurement noise or uncertainty in the gen-
erating function (that is, if we are not positive about the assump-
tion that the unknown system belongs to the family of para-
metric functions), we can relax the requirements from the data to

, where represents the noise or the uncertainty
in the fitness of the model to the system. The problem is to find
the vector of parameters that will best fit the measurements
pairs according to a given criterion. If one uses the least-squares
criterion, the problem is to solve the following minimization:

(6)

There are many methods to solve this problem and to formalize
parametric groups of functions, (see [28]). In the next section,
we will concentrate on the linear group of functions and on an
example from the field of human motor control.

B. Linear Models

By linear models, we mean a system that can be described by
a linear differential equation and therefore be transformed to the
Laplace domain as a transfer function in the form of (1). In the
discrete case, the same can be done with a difference equation
and the transform. Since this formalization is easy to analyze,
there are many names for all kinds of such systems. If there are
only poles, the system is called autorecursive (AR), if there are
only zeros, the system is called moving average (MA), and the
general case is called autorecursive moving average (ARMA)
system. For a comprehensive description of adaptive control,
see [9]. For an example of parameter identification of discrete
nonlinear muscle dynamics see [25].
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Fig. 7. Second-order mechanical model of the muscles and the joint.

C. Parameters Estimation of a Linear-Muscle Model

There is a great interest in modeling muscles and joints dy-
namics. Let us identify two main reasons. One is that the mus-
cles are the main output of the nervous system, and therefore,
they are the window to investigate the operation of the nervous
system. The other reason lies in building prosthetic and artifi-
cial limbs and in the external excitation of muscles in paralyzed
patients, which is called functional neuromuscular stimulation
(FNS) (see [26]). All the fields above require the construction
of a model for the system. In this section, we will show a simple
example to illustrate the main procedures and problems in pa-
rameters identification.

Let us look at the mechanical, second-order model in Fig. 7.
This is a linear-lumped model, which is an approximation of
the muscle behavior for a small signal [24]. In this model,
represents the internal force in the muscle that is the result of
the neural excitation. and are the elastic and the viscose-
damping elements that represent the mechanical properties of
the muscle tissue, and is the mass of the muscles and the
joint.

The output to input transfer function of this model is

(7)

One can derive a similar relation for external force and its re-
lation to the position, or any other desired relationship, for the
muscle model. Our goal is to estimate the value of the model
parameters ( , and in the above case). Since we usually
use a computer and discrete measurements, our first step will be
discretization. There are different procedures for discretization,
just as there are many procedures for numerical integration. Let
us use here the simplest method, the Euler’s forward method,
which is to move to the transform by replacing each by

, where is the transform variable, and is the
sampling interval

(8)

See [29] for more details about discretization methods.

Fig. 8. Length of the muscle as a linear function of the excitation and the
previous lengths.

From the transform we can move directly to discrete time

(9)

Equation (9) can be formalized as follows:

(10)

where are the parameters. If the sampling intervalis given,
it is equivalent to know or . The system in (10) is
described graphically in Fig. 8.

The description in Fig. 8 reminds us of a very large family of
parametric models that can be presented by an artificial neural
network (ANN). We use this description because these models
were inspired by the structure of the biological nervous system,
and because this description prepares the ground for handling
much more complex nonlinear models. Let us leave this gen-
eral case and continue with our special case, which is the linear
model. We have presented our model as a weighted sum of the
inputs, and our problem is to find the optimal weights. We can
combine our input components
to form an input vector and denote the output vector, which
in our case has just one element by the letter . Now, if
we use the minimum mean-square error (MMSE) criterion, we
can use the optimal solution, which is

(11)

where stands for expectation (in practice, numerical average
over the measurements is used). For the origin and proof of (11),
see any textbook on linear-parameter estimation (e.g., [2]).

Let us illustrate this estimation scheme with a simulation ex-
ample. A random sequence ofwas chosen [normal distributed
noisewithstandard deviation (STD)otequalone andzero mean],
and wascalculatedaccording to(9)with the followingnominal
value of the parameters: and .
That is, and ,
according to (10). Fig. 9 shows the results of the simulation. The
first graph is the random input, and the second is the calculated

. An additional random noise was added to simulate measure-
mentnoiseoruncertainties in themodel (normaldistributednoise
with STD and zero mean), and this sequence appears
in the third graph. Then, the optimal parameters (11) were calcu-
lated, and the result was and
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Fig. 9. Example of parameter estimation of the linear (ARMA) muscle model.

,which is,asexpected,closetothenominalparam-
eters. Finally, the output of the estimated model was simulated,
and in the forth graph, it appears to be similar to the second graph,
which is the actual model output. The above example is synthetic
andhasmanydrawbacksthatwillhelpusillustratetheproblemsin
parameter-estimation procedures. This example regards the dis-
crete data as a set of independent examples of a static model, and
the optimal model is checked for each couple of input/output in-
dependently. In practice, the error combines from one time step
to the other, since the model may use its own output to estimate
the next time step and not the real-system outputs. This problem
can besevere when the system hassomeunstable poles.Then, the
error might grow very fast. The estimated parameters should be
checked on a new data set and not only on the data that was used
for the parameter estimation. This check is called a generaliza-
tion check and can assist in avoiding overfitting the data. We dis-
cuss this methodof validation in the following Section III-D. One
should remember that the biological system is generally a time-
varying system. For example, since the muscles can change their
properties due to fatigue, the duration of the experiment must be
short inorder to justify theassumptionthat thesystemisatime-in-
variant system. We must mention here that the simple optimal-
parameter calculation (11) is not always stable numerically, and
there are many improvements and practical methods that can be
found in modern numerical software [30].

D. Order of the Model

In the example above, the structure of the model was known
and the only problem was to estimate the parameters, but in
most biological cases, the model is unknown. For the sake of
simplicity, and since there are many algorithms and software
tools for linear systems, we restrict our discussion here to linear

Fig. 10. Fitting a model to data. In this illustration, the three stars are the data
taken from an underlying, unknown function. On the left, a linear function was
fitted to the data. In the middle, a quadratic function was fitted, and on the right, a
third-order polynomial function was fitted. After the fitting was completed, two
more examples were taken from the same underlying function (the two circles).
One can see that the left model is too simple (i.e., it under-fits the data), while
the right model is too complex (i.e., it over-fits the data). Unfortunately, it does
not fit the underlying system.

models. The general structure of a linear model is the ARMA
model, which can be written in the discrete form as follows:

(12)

As an immediate example of an ARMA model, we can mention
the last example (10).

In order to estimate the parameters, we first need to estab-
lish the order of the model. In the ARMA case, this involves
choosing and in (12) above. At a first look, one can sug-
gest that the more parameters the model has, the better it will
fit the actual system. However, in actuality this is not the case.
Too many parameters are not only a computational burden, but
they may cause errors in the model (see [31] for extensive treat-
ment of the model-order selection problem for the case of sur-
face electromyography). Let us describe the pitfalls in choosing
the wrong number of parameters. One can be wrong by choosing
either too many or too few parameters.

1) Under-Fit: The situation where the model is less com-
plex than the actual system. In this case, the model is unable to
fit the data (see Fig. 10 on the left).

2) Over-Fit: The situation where the model is more com-
plex than the actual system. In this case, the model will fit the
observations, but if there is a noise or insufficient observations
(i.e., less independent observations then the number of parame-
ters), the model will not fit the actual system, and it may fail to
predict the outcome of the system in the validation process. In
the validation process, we check the generalization (the ability
of the identified model to deal with cases that were not seen be-
fore; see Fig. 10 on the right).

Many approaches have been suggested for choosing the
proper order. For linear models, a commonly used approach
is the Akaike information criterion (AIC), which is based on
a discrepancy measure. For the ARMA model, it will take the
following form:

AIC (13)
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Fig. 11. Mechanical model of the muscle.n is the neural input. The first-order
filter represents the activation–contraction coupling.T is the hypothetical force
in the muscle.B represents the relation between force and velocity from Hill’s
model. The other elements represent the mechanical properties of the tendon
and other connective tissues around the joint.

Since the first term, the estimation of the erroris monotoni-
cally decreasing with increasing model size, and the second term
is increasing. One can find an optimal model size by finding the
minimal value of the AIC. Another way to choose the order of
the model is through empirical validation. This method is com-
monly used in pattern recognition and classification in which
part of the data is kept from the learning phase (in our case, this
will be the fitting phase), and then the model is chosen for its
generalization capabilities checked on the kept data. For more
information about parameters estimation and system identifica-
tion, see [2], [28], and [32].

IV. NONLINEAR MUSCLE MODEL

We have seen the advantage of linear models from the engi-
neering and mathematical point of view in terms of simplicity
and tractability. It is simple to analyze linear systems, and there
exists a vast literature and many algorithms for estimating the
parameters of a linear model. However, biological systems are
seldom linear, and the linear analysis holds only for a small re-
gion around the working point. In this section, we describe an
example that shows how nonlinearity might be exploited advan-
tageously by nature.

Let us look at the Hill-type mechanical model of the muscle in
Fig. 11. This model is taken from [33] with minor changes (see
[3] for an introduction to the use of electrical and mechanical
models and [34] for a detailed description of this model and this
example).

The following are the differential equations of this mechan-
ical model:

(14)

This model was derived from the Hill model [35], and in the
Hill model, the value of the viscose-damping elementde-

Fig. 12. Comparison between the speed profile of the end point of a
two-degrees-of-freedom anthropomorphic arm with a linear muscle model
(left) and with a nonlinear muscle model (right) in response to typical,
rectangular pulse activation of the muscles. Only the nonlinear muscle model
yields a bell-shaped speed profile with a smooth stop (for more details, see
[34]).

pends on the internal force and on the contraction velocity, as
seen in (15)

.
(15)

For the sake of simplicity, the value ofwas taken as a constant
in several models in order to get a linear model of the muscle
(see [36] and [37]). This linear model is underdamped and there-
fore overshot, and oscillations are most likely to appear in the
controlled movement. This problem is avoided by the use of the
nonlinear model, and we demonstrate this for a very basic move-
ment: the reaching movement.

The reaching movement is a fast movement of the arm toward
a given target. This movement was studied experimentally and
its main characteristics are roughly a straight-line path and a
bell-shaped speed profile. This speed profile was found to be
consistent with minimization of the jerk during the movement,
i.e., minimization of the following cost function [38]:

(16)

This minimization was assumed to be carried out by the ner-
vous system in several models [22], [36]. These two models
were described in the first section, and they are a complex con-
trol scheme containing a forward and/or an inverse model of the
system. Both have to deal with the time throughout the trajec-
tory. However, when the nonlinear model is incorporated, it can
be shown that the desired performance (a bell-shaped speed pro-
file with a smooth stop), can be achieved with a simple control
strategy and without the need for a complex-optimization pro-
cedure.

The performance of an anthropomorphic arm with a linear
and nonlinear muscle model in response to rectangular control
pulses is shown in Fig. 12. For the linear muscle model, the
value of the viscose-damping elementis constant instead of
the Hill-type relation in (15).

It can be seen that the arm with the linear muscle model, in
response to pulses at the input, does not stop when the target is
reached and has an overshoot and an oscillatory behavior at the
end of the movement. Under the same conditions, the nonlinear
muscle can evoke a fast movement with a smooth stop. This
is only a demonstration, however. This example is representa-
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tive of the improved arm performance achieved with a nonlinear
muscle model under the assumed conditions. For a detailed de-
scription of the model, see [34]. The reason for this phenom-
enon can be explained by observing the behavior of a simple
second-order system in its standard form. The transfer function
in the Laplace transform domain is

(17)

All the characteristics are known for such a system. is the
natural frequency, is the damping coefficient, andis the gain.
Let us look at the overshoot and the time to reach the maximum

O.S. EXP (18)

For the human arm, the system is underdamped (i.e., ;
see [39]). It can be seen from (18) that asgets smaller, the
movement becomes faster, but the overshoot is bigger. In a linear
system, a tradeoff exists between small overshoot and fast move-
ment. In a nonlinear system, the parameter can change during
the movement to achieve a fast movement without any over-
shoot, and we suggest that this is what happens in the muscles.
If we try to examine a simple model such as the second-order
model in Fig. 7 and its transfer function (7), the parameters of
the transfer function in the standard form (17) are

(19)

In trying to find the parameters of such a model, it was shown
that changes during the movement, and it has a positive re-
lation to the activation of the muscle [39], [40]. Changes in

have the same qualitative effect as the changes inin the
Hill-type model above [34]. Another nonlinearity that can pro-
duce a stop without oscillation is the one-fifth power law in the
viscosity, which was found in studies of human wrist move-
ment [41]. The inverse relation between the damping force and
the contraction velocity in the model of Hill, and the increasing
stiffness at the end of the movement is also in line with arm
movements measurements by Gomi and Kawato (see [42] and
[43]). These measurements were recently described by another
nonlinear, six-muscles model, in which rather simple control
signals were needed (see Gribbleet al. [44]). The main con-
clusion from these examples is that the nonlinear properties of
the muscle may have a functional role in simplifying the con-
trol strategy. The nonlinearities make system analysis difficult.
However, they can be used by the brain to its advantage, espe-
cially since both the muscles and the nervous system developed
together.

V. PARALLELISM AND REDUNDANCY

This section is about two salient biological characteristics that
sometimes combine to make our understanding of these systems
difficult. Parallelism relates to the architecture of the biological
system, which frequently includes many pathways that execute
similar tasks. For example, nerve fibers contain many axons that
transport similar information, a muscle contains many parallel,

Fig. 13. Multiple-feedback loop.

similar fibers, there are many muscle spindles and Golgi tendons
in each muscle that measure length, speed and force in the mus-
cles, and so forth. Redundancy relates to the function of the bio-
logical system or to a specific task that can be executed in more
than one possible way (see [5] and [45]). In many cases, the par-
allel architecture implies redundancy, but redundancy can exist
without parallelism, as in the inverse kinematics problem. Paral-
lelism also can exist without redundancy, as in some distributed
systems (see multiple model control [27], [46]). In the following
sections, we describe three aspects of these phenomena The first
is the issue of multiple feedback loops, which is most common
in biological systems and which can jeopardize classical at-
tempts to measure the loop-gain. Second, we discuss one pos-
sible function of the parallelism in nerve fibers: the spatial fil-
tering. Third, we describe a new approach to invert a redundant
system in order to control an MTO system.

A. Multiple Feedback Loops

In Section II, where feedback control was discussed (see
Fig. 1), the importance of the loop-gain in reducing the sensi-
tivity to parameter change was mentioned. The loop-gain also
can be a major factor in establishing the stability of the system.
In order to measure the loop-gain, one should brake the loop,
introduce an input in one place, and measure the output. But
in the biological system, there are typically multiple feedback
loops in parallel (see Fig. 13) since there are many sensory
systems that work together for the same purpose. For example,
in the temperature-regulation system, there are sensors in the
skin, in the core of the body, and in the hypothalamus, and they
all influence the temperature-regulation mechanisms (see [47]).
In movement control, there are feedback loops from sensors
in the muscles, joints, and skin (i.e., muscle spindles, Golgi
tendon organs, joint-pressure transducers, etc.), and there are
many of each type of sensor all operating in parallel. The first
advantage of such a multiple loop and of any redundancy is in
robustness (i.e., if one subsystem fails there are other options to
activate the system). More interesting advantages are in spatial
filtering and in the flexibility given to the system in the ability
to choose different solutions in different situations, as will be
described in the following sections.

There is a great danger in trying to estimate the loop-gain in
such a system, because there may be loops that we cannot open,
or of whose existence we may be unaware. In such a case, we
may underestimate the loop-gain. For example, if we open the
first two loops in Fig. 13 and leave connected, the transfer
function from to will be instead
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of when there is no additional loop. Because of this, one
should be aware of these multiple loops.

B. Spatial Filtering

Another interesting property of parallelism in the biological
system is the spatial filtering in a multipath-transmission mech-
anism. Milgram and Inbar [48] demonstrate that the fidelity of
transmission of certain types of information through single neu-
rons acting alone is comparatively poor within typical physio-
logical ranges of operation, and that the quality of reception of
these messages increases in proportion to the number of neural
channels involved in transmitting them simultaneously or in par-
allel. The main idea behind these observations is that there is
a distortion in the neuronal code, which adds high frequencies
to the transmitted information. The parallel transmission pro-
duces low-pass filtering (which in this case is spatial filtering)
and therefore improves the transmission fidelity by eliminating
the distortion components. In order to explain this spatial fil-
tering, let us examine a multichannel transmission line in which
each channel has different delay. The input to all the channels is

and the output will be

(20)

If one assumes a large number of channels, and if the distribu-
tion of the delays is given as a density function , the
output can be estimated as the following integral:

(21)

Let us use the Laplace transform on both sides and then re-
member that the input is times , which is in
the Laplace domain

(22)

Now one can see that the transfer function between the input and
the output is the Laplace transform of the delays distribution

(23)

This result means that as the range of delays is larger, the filter is
narrower. In the extreme case, when all the channels are equal,
there is no filtering and there is no advantage over a single trans-
mission line.

There are other possible ways to achieve similar spatial fil-
tering, such as distributed thresholds instead of delays. The latter
option is more physiologically plausible, but it is less analyz-
able, and therefore, it is demonstrated in simulations (see [48]).

C. Learning to Invert MTO Mappings

In motor control, as mentioned in the first two sections, one
is looking for an inverse of the controlled system. In the pres-
ence of redundancy, the inverse problem is an ill-posed one.
The controller has to act on an MTO system and has to choose
one of the many possible actions to obtain the same desired

Fig. 14. Proposed scheme for learning the inverse control of an MTO system.

target. Most of the solutions to this problem use a single cri-
terion, such as smoothness of the movement or minimum en-
ergy, and find a single optimal solution (see [49]). However,
the biological system exhibits the ability to use different solu-
tions at different occasions. The nervous system is known to
be modular, and there is enough room to have many solutions
ready and choose the desired solution in real time. The solution
is chosen according to an appropriate criterion that can change
under different circumstances. As mentioned before, the biolog-
ical system is an adaptive one, and therefore, it must learn and
track the environmental parameters and its own internal parame-
ters from examples. This problem was investigated for a robot’s
redundancy by DeMers [50] and is under current investigation
by Karniel et al. [51], [52]. The inverse-control problem was
shown graphically in Fig. 3, and the proposed solution for the
problem, which deals with both redundancy and learning, is de-
scribed in Fig. 14.

Suppose that we have an unknown system that is not
necessarily an injective, and a serious of input and output vec-
tors that are input/output pairs of the unknown system.
The problem is to construct a multiple inverse function
where MI stands for multiple inverse and the parameterde-
termines which of the many possible solutions is chosen. The
formal requirement is that for any given accuracy value, one
can construct such that for any value of and for any
value of the parameter, the following inequality will hold:

(24)

The questions that may be addressed as a consequence of such
a problem are as follows.

1) What architecture can be appropriate for representing the
inverse of the system? See the box in the center of Fig. 14.

2) How does one train the architecture, and what learning
algorithm should be used? See the box in the right-hand
side of Fig. 14.

3) How does one choose the parameterfor a specific ac-
tion, and what criterion is to be used to regulate the mul-
tiple-inverse problem? See the box in the left-hand side
of Fig. 14.
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These questions are under current research and preliminary
results for the first two questions are given in [51], where a new
architecture, the polyhedral mixture of linear experts (PMLE) is
proposed. This architecture is based on the mixture-of-experts
architecture [53] and the hinging-hyperplanes algorithm [54]. It
produces a piecewise linear approximation of the system. Each
area is governed by a linear function, called an expert, and one
can invert each expert and get the multiple inverse.

The PMLE architecture is one possible solution to the second
question, which was about how to learn and implement the mul-
tiple inverse function in Fig. 14. The third question
of choosing the proper criterion to reduce the redundancy is an
open one with many possible solutions that most probably are
task dependent (see [49] and [55]).

VI. CONCLUSION

Biological motor control is a great challenge for scientists,
engineers, and physicians. Simple tasks such as walking or
playing with a ball are much more complex for artificial
machines (and therefore much less understood) than many
“complex” and “intelligent” tasks, such as numerical calcu-
lations and playing the game of Chess. In this paper, some
problems of motor control were introduced. The issue of
learning and adapting in the motor-control framework was
described and related to problems of parameter estimation.
An example of the possible role of the mechanical nonlinear
properties of the muscles was demonstrated, and a few aspects
of redundancy and parallelism were described. The classical
engineering and mathematical tools are appropriate for linear,
time-invariant, injective systems. The biological system does
not comply with these qualifiers, and therefore, there is a place
and a need for new mathematical tools and models in order to
describe and analyze the biological system. A few examples for
the required tools were described in this paper and others have
yet to be developed. With the aid of such mathematical tools,
the scientific community can continue to strive for a better
understanding of not only biological motor control, but of the
mysteries of the human mind and how it operates.

REFERENCES

[1] H. Kwakernaak and R. Sivan, Modern Signals and
Systems. Englewood Cliffs, NJ: Prentice-Hall, 1991.

[2] B. Porat, Digital Processing of Random Signals: Theory and
Methods. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[3] A. Karniel and G. F. Inbar, “Linear systems description,” inModern
Techniques in Neuroscience Research, U. Windhorst and H. Johansson,
Eds, New York: Springer-Verlag, 1999.

[4] N. Bernstein, The Coordination and Regulation of Move-
ments. Oxford, U.K.: Pergamon, 1967.

[5] M. L. Latash and M. T. Turvey, Eds.,Dexterity and Its Develop-
ment. Hillsdale, NJ: Lawrence Erlbaum, 1996.

[6] H. Kwakernaak and R. Sivan,Linear Optimal Control Systems, New
York: Wiley, 1972.

[7] W. S. Levine, Ed.,The Control Handbook. Boca Raton, FL: CRC
Press, 1996.

[8] K. J. Astrom, “Adaptive control: General methodology,” inThe
Handbook of Brain Theory and Neural Networks, M. A. Arbib,
Ed. Cambridge, MA: MIT Press, 1995, pp. 66–69.

[9] G. C. Goodwin and K. S. Sin,Adaptive Filtering Prediction and Con-
trol. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[10] G. F. Inbar, “Muscle spindles in muscle control—III: Analysis of adap-
tive system model,”Kybernetik, vol. 11, pp. 130–141, Oct. 1972.

[11] G. F. Inbar and A. Yafe, “Parameter and signal adaptation in the
stretch reflex loop,” inProgress in Brain Research, S. Homma,
Ed. Amsterdam, The Netherlands: Elsevier, 1976, vol. 44, pp.
317–337.

[12] S. S. Haykin,Neural Networks: A Comprehensive Foundation, 2nd
ed. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[13] K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, “Neural
networks for control systems—A survey,”Automatica, vol. 28, pp.
1083–1112, Nov. 1992.

[14] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,”IEEE Trans. Neural Networks,
vol. 1, pp. 4–27, Mar. 1990.

[15] W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds.,Neural Networks for
Control. Cambridge, MA: MIT Press, 1990.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” inParallel Distributed Pro-
cessing. Cambridge, MA: MIT Press, 1986, vol. 1, pp. 318–363.

[17] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Math. Control, Signals, Syst., vol. 2, no. 4, pp. 303–314, 1989.

[18] E. D. Sontag, “Feedback stabilization using two-hidden-layer nets,”
IEEE Trans. Neural Networks, vol. 3, pp. 981–990, Nov. 1992.

[19] E. Levin, R. Gewirtzman, and G. F. Inbar, “Neural network architecture
for adaptive system modeling and control,”Neural Networks, vol. 4, no.
2, pp. 185–191, 1991.

[20] M. I. Jordan, “Computational aspects of motor control and motor
learning,” inHandbook of Perception and Action. ser. Motor Skills, H.
Heuer and S. W. Keele, Eds, New York: Academic, 1996, vol. 2.

[21] M. I. Jordan and D. E. Rumelhart, “Forward models: Supervised learning
with distal teacher,”Cognitive Sci., vol. 16, no. 3, pp. 307–354, 1992.

[22] M. Kawato and H. Gomi, “A computational model of four regions of
the cerebellum based on feedback-error learning,”Biol. Cybern., vol.
68, no. 2, pp. 95–103, 1992.

[23] M. Kawato, H. Gomi, M. Katayama, and Y. Koike, “Supervised learning
for coordinative motor control,” inProc. 3rd NEC Res. Symp., 1992, pp.
126–161.

[24] D. T. McRuer, R. E. Magdaleno, and G. P. Moore, “A neuromuscular
actuation system model,”IEEE Trans. Man–Machine Syst., vol. 9, pp.
61–71, Sept. 1968.

[25] G. F. Inbar, T. C. Hasia, and R. J. Baskin, “Parameter identification anal-
ysis of muscle dynamics,”Math. Biosci., vol. 7, no. 1, pp. 61–79, 1970.

[26] J. Allin and G. F. Inbar, “FNS parameter selection and upper limb char-
acterization,”IEEE Trans. Biomed. Eng., vol. 33, pp. 809–817, Sept.
1986.

[27] D. M. Wolpert and M. Kawato, “Multiple paired forward and inverse
models for motor control,”Neural Networks, vol. 11, pp. 1317–1329,
Oct. 1998.

[28] J. Sjoberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Y. Glo-
rennec, H. Hjalmarsson, and A. Juditsky, “A nonlinear black-box mod-
eling in system identification: A unified overview,”Automatica, vol. 31,
no. 12, pp. 1691–1724, 1995.

[29] The Control Handbook, W. S. Levine, Ed., CRC, Boca Raton, FL, 1996,
pp. 265–279.

[30] L. Ljung, System Identification Toolbox: The Manual, 4th ed. Natick,
MA: Mathworks, 1994.

[31] O. Paiss and G. F. Inbar, “Autoregressive modeling of surface EMG and
its spectrum with application to fatigue,”IEEE Trans. Biomed. Eng., vol.
34, pp. 761–770, Oct. 1987.

[32] The Control Handbook, W. S. Levine, Ed., CRC, Boca Raton, FL, 1996,
pp. 1033–1054.

[33] W. H. Zangemeister, S. Lehman, and L. Stark, “Simulation of head
movement trajectories: Model and fit to main sequence,”Biol. Cybern.,
vol. 41, no. 1, pp. 19–32, 1981.

[34] A. Karniel and G. F. Inbar, “A model for learning human reaching-move-
ments,”Biol. Cybern., vol. 77, pp. 173–183, Sept. 1997.

[35] A. V. Hill, “The heat of shortening and dynamic constants of muscle,”
Proc. Royal Soc. London, vol. B126, pp. 136–195, 1938.

[36] M. I. Jordan, T. Flash, and Y. Arnon, “A model of the learning of arm
trajectories from spatial targets,”J. Cognitive Neurosci., vol. 6, no. 4,
pp. 359–376, 1994.

[37] L. L. E. Massone and J. D. Myers, “The role of plant properties in arm
trajectory formation: A neural network study,”IEEE Trans. Syst., Man.,
Cybern. B, vol. 26, pp. 719–732, Oct. 1996.



KARNIEL AND INBAR: LEARNING TO CONTROL A TIME-VARYING, NONLINEAR, MANY-TO-ONE SYSTEM 11

[38] T. Flash and N. Hogan, “The coordination of arm movements: An ex-
perimentally confirmed mathematical model,”J. Neurosci., vol. 5, pp.
1688–1703, July 1985.

[39] G. F. Inbar, “Estimation of human elbow joint mechanical transfer func-
tion during steady state and during cyclical movements,” inAdvances in
Processing and Pattern Analysis of Biological Signals, I. Gath and G. F.
Inbar, Eds, New York: Plenum, 1996.

[40] I. W. Hunter and R. E. Kearney, “Dynamics of human ankle stiffness:
Variation with mean ankle torque,”J. Biomech., vol. 15, no. 10, pp.
747–752, 1982.

[41] C. H. Wu, J. C. Houk, K. Y. Young, and L. E. Miller, “Nonlinear damping
of limb motion,” in Multiple Muscles Syst., J. Winters and S. Woo, Eds,
New York: Springer-Verlag, 1990.

[42] H. Gomi and M. Kawato, “Human arm stiffness and equilibrium-point
trajectory during multi-joint movement,”Biol. Cybern., vol. 76, no. 3,
pp. 163–171, 1997.

[43] , “Equilibrium-point control hypothesis examined by measured arm
stiffness during multijoint movement,”Science, vol. 272, pp. 117–120,
Apr. 1996.

[44] P. L. Gribble, D. J. Ostry, V. Sanguineti, and R. Laboissiere, “Are com-
plex signals required for human arm movement?,”J. Neurophysiol., vol.
79, no. 3, pp. 1409–1424, 1998.

[45] V. M. Zatsiorsky, Z.-M. Li, and M. L. Latash, “Coordinated force
production in multi-finger tasks: Finger interaction and neural network
modeling,”Biol. Cybern., vol. 79, pp. 139–150, Aug. 1998.

[46] K. S. Narendra and J. Balakrishnan, “Adaptive control using multiple
models,”IEEE Trans. Automat. Contr., vol. 42, pp. 171–187, Feb. 1997.

[47] A. C. Brown and G. L. Brengelmann, “The interaction of peripheral
and central inputs in the temperature regulation system,” inPhysiolog-
ical and Behavioral Temperature Regulation, J. D. Hardy, A. P. Gagge,
and J. A. J. Stolwijk, Eds. Springfield, IL: Thomas, 1970, ch. 47, pp.
684–702.

[48] P. Milgram and G. F. Inbar, “Distortion suppression in neuromuscular in-
formation transmission due to interchannel dispersion in muscle spindle
firing thresholds,”IEEE Trans. Biomed. Eng., vol. 23, pp. 1–15, Jan.
1976.

[49] M. I. Jordan, “Motor learning and the degrees of freedom problem,” in
Attention and Performance XIII, M. I. Jeannerod, Ed. Hillsdale, NJ:
Lawrence Erlbaum, 1990, pp. 796–836.

[50] D. E. DeMers, “Learning to invert many-to-one mappings,” Ph.D. dis-
sertation, Univ. California, San Diego, CA, 1993.

[51] A. Karniel, R. Meir, and G. F. Inbar, “Polyhedral mixture of linear ex-
perts for many-to-one mapping inversion,” inProc. ESANN’98, Brus-
sels, Belgium, 1998, pp. 155–160.

[52] “Technion-IIT,”, Haifa, Israel, Tech. Rep. EEPUB1126, Nov. 1997.
[53] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive

mixture of local experts,”Neural Computation, vol. 3, no. 1, pp. 79–87,
1991.

[54] L. Breiman, “Hinging hyperplanes for regression, classification, and
function approximation,”IEEE Trans. Inform. Theory, vol. 39, pp.
999–1013, May 1993.

[55] M. L. Latash and J. G. Anson, “What are ‘normal movements’ in atypical
populations?,”Behavioral Brain Sci., vol. 19, pp. 55–106, Jan. 1996.

Amir Karniel was born in 1967 in Jerusalem, Israel.
He received the B.Sc. degree (cum laude) in 1993
and the M.Sc. degree in 1996, both in electrical
engineering, from the Technion-Israel Institute of
Technology, Haifa, Israel. He is currently pursuing
the D.Sc. degree with same department.

He served four years with the Israeli Navy as an
Electronics Technician, and during his undergraduate
years, he worked at Intel Corporation, Haifa, Israel.
Since 1993, he has been a Teaching Assistant at the
Technion, and he is now lecturing with the faculty

of Electrical Engineering. His current research interests include brain theory,
neural networks, human motor control, and motor learning.

Mr. Karniel has received prizes for Excellent Tutor, the Wolf Scholarship
Award, and the E. I. Jury Award for excellent students in the area of systems
theory.

Gideon F. Inbar (S’63–M’64–SM’87–F’90)
received the B.Sc. degree from the Technion-Israel
Institute of Technology, Haifa, Israel, in 1959, the
M.Sc. degree from Yale University, New Haven, CT,
in 1963, and the Ph.D. degree from the University
of California, Davis, in 1969, all in electrical
engineering.

In 1970, he joined the faculty of the Department
of Electrical Engineering at the Technion, where he
is now a Professor and holds the Otto Barth Chair in
Biomedical Sciences. In January 1986, he served as

Dean of the Department of Electrical Engineering for four years. He spent an
extended sabbatical at the Harvard Division of Applied Science and School of
Public Health from 1977 to 1978 and shorter periods at Göttingen University,
West Germany, the Centro de Investigacion Del IPN, Mexico, the University
der BW in Munich, and the Beckman Institute, University of Illinois, Urbana,
from 1991 to 1992. His major interests are in the areas of biocybernetics and
biomedical signal analysis with an emphasis on the neuromuscular system.

Dr. Inbar is a member of the Israel Association for Automatic Control, the
Israeli Society for Physiology and Pharmacology, and the Israeli Society of
Biomedical and Medical Engineering.


