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Human Motor Control: Learning to Control a
Time-Varying, Nonlinear, Many-to-One System

Amir Karniel and Gideon F. InbaiFellow, IEEE

Abstract—Human motor control has always presented a linear, MTO system. Nature has found wonderful solutions, and
great challenge to both scientists and engineers. It has presentedour goal is to try and learn them. A common procedure to help
most of the problems they have found difficult to handle and - ;5 \,ngerstand biological systems and mechanisms is to try and
manipulate, which is a consequence of it being a distributed, - . . .
nonlinear, time-varying system with multiple degrees of freedom formulate thelr behavior mathematlca_lly, fit the parameters of
that include redundancy on many levels. In recent years, the fast the mathematical model to the experimental results, and then
development of computers and the emergence of the new scientificstudy the generalization power of the model. This is obviously
field of neural computation have enabled consideration of com- an iterative procedure that, when successful, can elucidate silent
plex, adaptive, parallel architectures in the modeling of human features of the system, teach us more about that system, and sug-

motor-control performance. In this paper, some of the models . -
that have been used in the study of motor control are reviewed, gest ways for new experiments and experimental procedures. It

and some open questions are formalized and discussed. Thesometimes aSSiStS us in U|t|mate|y |m|tat|ng these ingenious SO-
main topics are adaptive and artificial neural-networks control, lutions of nature to the design of artificial systems, to build ar-

parameters estimation, nonlinear properties of the muscles, and tificial organs to replace natural ones, and design aids to assist
parallelism and redundancy. patients in need.

Index Terms—Adaptive control, inverse problems, muscles, neu-  This paper describes the use of mathematical and engineering
rocontrollers, parameter estimation, redundant systems. techniques as applied to the area of human movement control. It
is organized as follows: Section Il describes the main architec-
tures that describe the biological motor control. In Section I,
the problem of parameter estimation and system identification is
T HERE IS awide engineering and mathematical foundatiQfyscribed and demonstrated for a linear-muscle model. In Sec-

for modeling linear, time-invariant systems (see [1]-[3]kon IV, a nonlinear model of the muscle is proved to be not
Some man-made machines satisfy these conditions, but biolggyy piologically plausible but also a means to reduce the com-
ical systems do not. The biological system presents enormejisxity of movement control. Section V presents a few aspects
plasticity, which means that the system is a time-varying oRgthe parallelism and of the degrees of freedom problem, which
(e.g., in processes like regeneration and fatigue). It also g@fihow to invert an MTO system. Finally, Section VI concludes

erally demonstrates nonlinear behavior such as logarithmic tgis challenge of modeling the biological motor-control system.
lations, thresholds, hysteresis, saturation, and cutoff (i.e., min-

imum and maximum bounds). In some cases, a linear, time-in- Il. FROM FEEDBACK TO ADAPTATION

variant approximation can be made, but only for small signals , ) . . , -
and for short durations. A salient feature in any biological system is the ability to

One of the salient characteristics of the biological motor-cofdapt to the environment and to its own internal changes. The
trol system is its apparent redundancy [4], [5]. The human afffvolution in the beginning of modern cybernetics was the in-
consists of seven kinematic degrees of freedom, which is m&poration of feedback to artificial machines. In this section,
than is needed to obtain a particular position or configuratigfe Will describe the main architectures from simple feedback
of the hand in the workspace. Most of the joints are surroundiough adaptive control and to artificial neural-network con-

by more muscles than needed to produce any desired movemBAt:

The muscles themselves are composed of many motor units ] al-aedback Control

enable many possibilities of producing the same force at the

tendon. These apparent redundancies lead the controller (i.eF;éeédback control is based on using the outcome of the
the nervous system) to act on a many-to-one (MTO) system aH@Cess, or the controlled system, which is usually called the
to choose one of the many possible actions in order to obtain tiRé&Nt,” in order to control it. In other words, we use the error
same desired target. between the desired outpuyt and the actual output in order

Keeping all of the above issues in mind, our challenge is t§ reduce it. _
solve the problem of learning to control a time-varying, non- The analogy of the feedback scheme (Fig. 1) to motor con-
trol is the following. The plant corresponds to the muscles, the
bones, and the dynamics of the environment, the feedback cor-
Manuscript received May 27, 1998; revised January 5, 1999. responds to the output of the sensory systems, and the controller
The authors are with the Department of Electrical Engineering, Technioeorresponds to the nervous system. The control problem is how
Israel Institute of Technology, Haifa 32000, Israel (e-mail: karniel@tx.tecl%— desi I h its the desired f In th
nion.ac.il: inbar@ee.technion.ac.il). o design a controller that suits the desired performance. In the
Publisher Item Identifier S 1094-6977(00)00362-X. linear case, we can use the Laplace transform and describe each
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Fig. 1. Feedback control.
Fig. 2. Adaptive control.

block with a transfer function (1) whereis called the gainz;

are the zeros, angl are the poles order of one. Therefore, the above reason for reduced sensi-
tivity to changes in the parameters is not valid for the biolog-
H(s) = OUT(s) =Fk- M (1) ical system. The second problem is the delays in the biolog-
IN(s) (s — p;) ical system, which can cause instability and oscillation in such

Let us denote the transfer functions of the blocks in Fig. 1 Ssimple feedback control. So we can conclude that the simple

follows: P for the plant,C for the controller, and¥ for the eedback control, despite its advantages, is insufficient to de-
feedback (i.e., the sens;)ry system). In the L’aplace domain \?&éibe the biological motor control. Let us conti_nue with the
can write the output as a function of the inputin Fig. 1 in terms gte%/elrcr)lprrlﬁnt Odf mg\?ern E?rmerI to a more complicated control
the block’s transfer functions (the Laplace variable avoided scheme, e adaptive control.

for simplicity) B. Adaptive Control

Y _ P-c-Fr ) 2 Adaptive control can be regarded as an extension of feedback
Y P-C-F+1 control. In adaptive control, the controller can adapt itself to

One major advantage of the feedback control scheme is the?ggnlgee(jégctr?iigrl]ag; ?r:eeggg Igjéncé%tfglng;l]eamleg p:sg:]' iﬁ
duced sensitivity to changes in the parameters of the plant qP P P 9

o changes n e erironment. The sensitiyof sytéo (0% 1 1 €252 Whire e contoler = hinging, e e
changes in the parameteiis defined as follows: P P

linear. Generally, the mathematical questions in such a control
) oH k scheme are related to the ability of the plant to learn and to
k=22 2 (3) . . -
H = . the convergence properties of the adaptation algorithm. For a
ok H _ :
short summary of adaptive control, see [8], for analysis of the
When the value of the sensitivity function is zero, the systeaigorithms, see [9], and for the first attempt to model a biological
is insensitive to changes in the parameters. Let us look at #&stem with an adaptive-control scheme, see [10].
system without feedback, whefé is the transfer function and  The literature separates between direct and indirect adaptive
k is a gain parameter, as in (1). The system in an open loogcisntrol. In the first case, the adaptation algorithm operates on

H =k - P, and the sensitivity of the system would be the controller, and in the second case there are two phases. The
SH & i first is identification of the plant, and the second is adaptation
Sk=|—.2|=P. — =1 (4) of the controller. The second case raises the problem of iden-
ok H k-pP tification or learning of the plant, and if we have a parametric
The system with feedback, i.e., in a closed loopHis= (k - group O.f pos_,S|bIe E!arr:tg, |Lbr|ngb§ us tc; tshe prob:ﬁon;%gralm-
P)/(k- P - F + 1) and the sensitivity will be eter estimation, which is the subject of Section Il. ifficult
problem with adaptive controllers is the requirement for persis-
. |OH kK tent excitation of the plant, which is needed in order to continu-
H= 5 'H ously estimate its time-varying parameters. Without excitation,
P(k-P-F+1)—k-P*-F k-P-F+1 the estimated \{alue.of the parameters tgnds to drift. This can be
= 5 . P stopped in engineering systems by turning off the adaptation al-
. (k-P-F+1) gorithm when the system operates with fixed control signals.
=—<1 (5)
k-P-F+1 C. Feed-Forward Control and the Inverse-Controller Problem
So when the loop-gaik is high, the sensitivity to changes is The opposite of feedback or closed-loop control is the feed-
low. forward or open-loop control where the sensory information is

There is a vast literature on the stability of such systems andt used during the control and execution of the task. As we
on methods to choose a controller when the specifications of thentioned before, the delays in the biological system are rela-
desired performances are given [6], [7]. tively large, and in such cases, a feed-forward control must be

The first problem in using this simple feedback-to-model bigzonsidered. This control scheme was first suggested and ana-
logical systems occurs when one tries to measure the loop-g&zed by Inbar and Yafe [11], where the term “signal adaptation”
In the biological system, one finds a very low loop-gain in thevas used to describe the inverse controller’s act of learning in
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Fig. 3. Feed-forward control and the inverse-controller problem.
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Fig. 5.  ANN control with distal teacher.
Fig. 4. Direct learning of an inverse model with ANN.

order to generate the desired control signals. Fig. 3 describes the
controller and the plant in a feed-forward control. The control
problem is: “Given a desired go&l;, how does one generate
such that?'(z) will be close toYy?”

This is a simple inverse problem, but the solutions to inverse
problems are not simple in many cases. One of the problems is
redundancy (i.e., the plant having MTO function). In Section V,
this problem of redundancy is described with some suggested
solutions. Another problem is to learn the inverse of the systefig. 6. ANN feedback-learning control scheme.
Most biological systems are time-varying systems, and there-

fore, th_e inverse of the system must be learned from examptlfrﬁj the other as a controller). There is no evidence in the bio-
and adjusted to changes in the system parameters as they 0Gglf.o| nervous system for such a dual system. However, lack of
The field of artificial neural networks has grown rapidly in theyyistance in the biological system is not the only drawback of
last decade, and it provides many solutions to this problem. the direct-learning scheme. Another problem appears in trying
- to learn the inverse of a redundant system (i.e., the problem of
D. Avrtificial Neural-Network (ANN) Control mapping an MTO system). Most of the learning algorithm will
The artificial neural network (ANN) is a field that draws itsconverge to the average of all the possible solutions, but the av-
ideas from the structure of the biological neural networks amdage of correct solutions is not always a correct solution (see
as such can be described separately as an example for u§d@j). A second problem in inverting an MTO system is how to
mathematical tools in biology. For a comprehensive review oépresent all the solutions and which solution to choose. This
ANN, see [12], and for a review of the use of ANN for conproblem is dealt with in Section V. One major problem in trying
trol, see [13] and [14] and a collection of articles in [15]. In outo train a controller that is attached to the controlled system
context, we look at an ANN as a black box that operates assahow to transform the error from the output coordinates of
function approximator with a learning algorithm that can chandbe system to the coordinates of the control signal. Following
the structure of the ANN in order to reduce some error betweare two solutions to the training problem that were proposed as
the network output and the desired one, given by training exiodels to the biological motor control. The first is the distal
amples. Three results in the study of ANN paved the way teacher (as in Fig. 5) that was proposed by Jordan and Rumel-
implement this architecture in the control area. First, the ilart [21], and the second is the feedback learning in Fig. 6 that
troduction of the backpropagation algorithm, which is a gravas proposed by Kawato and Gomi [22].
dient-based learning algorithm enabled the use of multilayeredn the distal teacher approach (Fig. 5), the problem of trans-
ANN [16]. Second, the representation theorem shows the abilftyrming the error from the output of the process to the output
of a one-hidden-layer ANN to approximate continuous funof the controller (i.e., the output of the ANN) is solved by an
tions as presented and proofed by numerous researchers (ARN-forward model of the plant and by using the learning al-
[17]). Third, the ability of a two-hidden-layer ANN to approxi-gorithm in order to propagate the error through the model to
mate an inverse of continuous functions [18]. the ANN controller. The forward model is trained by the pre-
Letus use the ANN as a controller in order to solve the contrdiction error, and the controller is trained by the performance
problem in Fig. 3. The simplest solution is to train an ANNerror that is propagated through the forward model. In the feed-
to become an inverse of the plant (see [19]). This solution limck learning scheme (see Fig. 6), the error is transformed by a
described in Fig. 4, where the training phase is described. simple feedback controller, and the ANN is trained by the motor
After the training is done, one can put the ANN before therror. In this way, the control is reasonable even in case of big
plant, and it will function as a controller. Such a control schenmeghanges in the plant, since in such a case, there is an error (and
has a few drawbacks. First, there is a need for two phases, #meh the feedback controller adds its contribution to the control
therefore, two copies of the ANN (one connected as a learrsggnal in the correct direction).
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Kawato et al. [23] showed that in some simple cases, [ll. PARAMETERS ESTIMATION

the distal-teacher approach converges as the steepest d?ﬁ many control schemes and biological modeling, there is
cent method, and the feedback-error method converges | i

et df del of the syst 24]-[27]). Af
Newton’s method. This analysis is correct only if the controllee( fong need for a model of the system (see [24}{27]). A few

has th ¢ i H P ? N ﬁamples for such a need were demonstrated in the previous sec-
as the correct parameters. However, for nonlinear systems, {8 i, 16 context of adaptive-control schemes [8], [10], [21],

ANN has more capability to approximate the systems gradi T2]. A parametric model is a model that belongs to a family of
than a conventional feedback controller has to approximate 8

¢ Jacobi Which hitect i bett d which dels with a finite number of parameters. The modeler’s task
systems Jacobian. Which architecture 1S better and WhiChidS; ot 1o choose a proper family of models and then to estimate
more biologically plausible are still open questions.

the values of the parameters. In this section, we describe the

estimation problem and then concentrate on a commonly used
E. Summary: The Hierarchy of Learning and Adaptation ~ family of models: the linear models. We give an example for
_ ) ~building a linear model of the muscle and estimating its param-

The importance of and the need for sensory information gers, and we discuss the problem of choosing the order of the

order to improve the controller performance cannot be over efpdel. In Section IV, we give an example for a nonlinear model
phasized. The previous sections demonstrate this in various gy its possible advantage.

chitectures and techniques. The terminology used in this field
seem to be mixed and unclear, so as a summary, let us sug@estEstimation Problem

a hierarchy in learning and adaptation. In this hierarchy, there. he general broblem of parameters estimation can be formal-
is a tradeoff between two factors. On the one hand is the speea_ 9 P P

of adaptation, and on the other is the extent of plasticity. Feel‘é:—e das follows. Le®(z, a) be afamily of parametric functions.

! . . at is, for each parameter vecto =0 is a static
back is the most rapid, but its changes do not last beyond the ", P %, u (z, ao)

timescale of the process, while evolution is the slowest, and IfS. utioutput function or a transfer function in the Laplace do-
P ! ' main, wherez is the input andy is the output. Suppose that
changes last for generations to come.

S . e have an unknown syste#i(z) that belongs to the above
1) Feedback:This is the process of change in the Contro\fi:/mctions family. That is#(z) € ©(z, ao) for a specific but

signals during the execution of the action, accomplished b known parameter vectap. As a result of an experiment on

means of a sensory-feedback signal from the plant output. THis K ired f f
change is valid only for the current execution, and its effects areIS unxknown SYStem' We acquired a group o measurements o
' Input/output pairs{x;, y;} that naturally satisfieg; = F(x;).

forgotten. rapidly. The feedback 'sc'heme' IS usgd for trackml the presence of measurement noise or uncertainty in the gen-
or regulation, and its advantage is in noise rejection and low

e . erating function (that s, if we are not positive about the assump-
sensitivity to changes in the systems parameters. 9 ( P b

; S . ion that the unknown m belon he family of para-
2) Adaptation: This is the process of change in the cont—0 t att € unxno system belo gs to the family of para

) ; metric functions), we can relax the requirements from the data to
troller parameters, accomplished by means of sensory informa-

. . : |y —F(x;)| < n, wheren represents the noise or the uncertainty
tion from the plant output, which is valid for the next executlo%g the fitness of the model to the system. The problem is to find

of similar actions. This change is valid for a longer peno_d, E{ﬁ?evector of parameteisthat will best fit the measurements
long as the plant parameters do not change. The adaptation fai

: . H?ws according to a given criterion. If one uses the least-squares
is normally much slower than the time constants of the planf, . . . L
criterion, the problem is to solve the following minimization:

but much faster than the rate of change in the plant parameters.

Therefpre, it may Fake a few repetitions of the gction in order 4 = arg min Z (y; — Oz, a))2. (6)

to achieve a significant adaptation and change in the controller a

parameters. The adaptive control scheme is used, in which the

controlled system is time variant, and the controller can adjusere are many methods to solve this problem and to formalize

to changes in the system. parametric groups of functions, (see [28]). In the next section,
3) Learning: This is the process of change in the control i€ Will concentrate on the linear group of functions and on an

order to produce new control signals for a new situation or féxample from the field of human motor control.

a new target. This change can involve a major change in the ar-

chitecture, and it may take many repetitions of the executionfh Linear Models

order to achieve the desired change. The results can stay perm®y linear models, we mean a system that can be described by

nently in the same human, animal, or machine. Learning takenear differential equation and therefore be transformed to the

place when a major change in the system occurs, or when a Heaplace domain as a transfer function in the form of (1). In the

task is given. In humans, there are types of learning that are stdigcrete case, the same can be done with a difference equation

to specific time windows in the development (e.g., in childrenaind theZ transform. Since this formalization is easy to analyze,
4) Evolution: This is the process of change in the architedhere are many names for all kinds of such systems. If there are

ture or basic property of the control by mutation and natural senly poles, the system is called autorecursive (AR), if there are

lection through a long period of trial and error and optimizatioronly zeros, the system is called moving average (MA), and the

This change occurs only when a new species or a new versiomgeheral case is called autorecursive moving average (ARMA)

the machine is evolved. This change is the result of many triagstem. For a comprehensive description of adaptive control,

of many actions and controllers (by survival of the fittest), anske [9]. For an example of parameter identification of discrete

it may last for generations. nonlinear muscle dynamics see [25].

%
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) . . Fig. 8. Length of the muscle as a linear function of the excitation and the
Fig. 7. Second-order mechanical model of the muscles and the joint. previous lengths.
C. Parameters Estimation of a Linear-Muscle Model From theZ transform we can move directly to discrete time
There is a great interest in modeling muscles and joints dy- T2 (B-T—2-M)
namics. Let us identify two main reasons. One is that the musX (n) = — i P(n—2) - M X (n-1)
cles are the main output of the nervous system, and therefore, (M _B-T+K- T2)
they are the window to investigate the operation of the nervous - X (n-2). 9)

system. The other reason lies in building prosthetic and artifi-

cial limbs and in the external excitation of muscles in paralyzed Equation (9) can be formalized as follows:
patients, which is called functional neuromuscular stimulation B
(FNS) (see [26]). All the fields above require the constructionX(”) -

of a model for the system. In this section, we will show a Simplﬁherew are the parameters. If the sampling intef¥as given

example to illustrate the main procedures and problems in pac equzivalent to knowuw; or M, B, K. The system in (10) }s

rametersl|deknt|f|chat|on. hanical d-ord delin Fi described graphically in Fig. 8.

Thl__et_ us ?0 atlt € mzc ar:;c? ’ S:’.C?]n. -order mode |n_F|g. " The description in Fig. 8 reminds us of a very large family of
Is 1s a linear-lumped model, which Is an approximation (Harametric models that can be presented by an artificial neural

the muscle behavior for a small signal [24]. In this model, o4y or (ANN). We use this description because these models

represents the internal force in the muscle that is the resultv%re inspired by the structure of the biological nervous system,

the neural excitationk” and B are the elastic and the ViSCOSey . because this description prepares the ground for handling

damping elements that represent the mechanical propertie§n ch more complex nonlinear models. Let us leave this gen-

_th_e muscle tissue, ani’ is the mass of the muscles and thFéraI case and continue with our special case, which is the linear
joint. , i i i model. We have presented our model as a weighted sum of the
The output to input transfer function of this model is inputs, and our problem is to find the optimal weights. We can

combine our input componenf§(n — 2), X(n—1), P(n—2)
X(s) -1 7 to form an input vectof/ and denote the output vector, which
P(s) M-s2+B-s+K' 7) in our case has just one eleméeXi{n) by the letterY". Now, if
we use the minimum mean-square error (MMSE) criterion, we
One can derive a similar relation for external force and its rgan use the optimal solution, which is
lation to the position, or any other desired relationship, for the

wy-Pln—2)+ws- X(n—1)+ws-X(n—-2) (10)

muscle model. Our goal is to estimate the value of the model Wopr =@~ - P
parametersiX/, B, andK in the above case). Since we usually P=E[Y -U]
use a computer and discrete measurements, our first step will be & = E[U/ - U7) (11)

discretization. There are different procedures for discretization,

just as there are many procedures for numerical integration. k@{ere £ stands for expectation (in practice, numerical average
us use here the simplest method, the Euler's forward metheger the measurements is used). For the origin and proof of (11),
which is to move to theZ transform by replacing eachby  see any textbook on linear-parameter estimation (e.g., [2]).

(z = 1)/T, wherez is the Z transform variable, and’ is the | et us illustrate this estimation scheme with a simulation ex-

sampling interval ample. A random sequence Bfwas chosen [normal distributed
noise with standard deviation (STD) ot equal one and zero mean],
X(2) andX was calculated according to (9) with the following nominal
P(2) value ofthe parameterd/ = 5, B = 3, K = 2,and7l’ = 0.1.
1 Thatis,W1 = —0.002, W2 = 1.94, andW3 = —0.944,

according to (10). Fig. 9 shows the results of the simulation. The
firstgraph is the random inpit, and the second is the calculated
_ —T17? X. An additional random noise was added to simulate measure-
 M-224+(B-T—-2-M)-z+M-B-T+K-T?  mentnoiseoruncertaintiesinthe model (normal distributed noise
(8) with STD = 0.01 and zero mean), and this sequence appears
in the third graph. Then, the optimal parameters (11) were calcu-
See [29] for more details about discretization methods. lated, and the result wag; = —0.0035, W, = 2.088, and

- M-s24+B-s+K sm(o—1)/T
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Fig. 10. Fitting a model to data. In this illustration, the three stars are the data
-0.2 taken from an underlying, unknown function. On the left, a linear function was
0.2 The output of the estimated model fitted to the data. In the middle, a quadratic function was fitted, and on the right, a

third-order polynomial function was fitted. After the fitting was completed, two

more examples were taken from the same underlying function (the two circles).
0 One can see that the left model is too simple (i.e., it under-fits the data), while
the right model is too complex (i.e., it over-fits the data). Unfortunately, it does

0.2 . not fit the underlying system.
0 50 100

models. The general structure of a linear model is the ARMA
Fig. 9. Example of parameter estimation of the linear (ARMA) muscle moddmnodel, which can be written in the discrete form as follows:

N M
W3 = —1.091, whichis, as expected, close to the nominal param- y(n) = Z ai - x(n —1) = Z bj - y(n = j). 12)
eters. Finally, the output of the estimated model was simulated, =0 =1
andinthe forth graph, itappears to be similar to the second grapls,an immediate example of an ARMA model, we can mention
which is the actual model output. The above example is synthetie last example (10).
andhas many drawbacksthatwillhelp usillustratethe problemsinin order to estimate the parameters, we first need to estab-
parameter-estimation procedures. This example regards the b the order of the model. In the ARMA case, this involves
crete data as a set of independent examples of a static model,@mbsing/V and M in (12) above. At a first look, one can sug-
the optimal model is checked for each couple of input/output igest that the more parameters the model has, the better it will
dependently. In practice, the error combines from one time stifthe actual system. However, in actuality this is not the case.
to the other, since the model may use its own output to estimdtso many parameters are not only a computational burden, but
the next time step and not the real-system outputs. This problémy may cause errors in the model (see [31] for extensive treat-
can be severe when the system has some unstable poles. Them#re of the model-order selection problem for the case of sur-
error might grow very fast. The estimated parameters shouldfaee electromyography). Let us describe the pitfalls in choosing
checked on a new data set and not only on the data that was ubedvrong number of parameters. One can be wrong by choosing
for the parameter estimation. This check is called a generalizther too many or too few parameters.
tion check and can assist in avoiding overfitting the data. We dis-1) Under-Fit: The situation where the model is less com-
cuss this method of validation in the following Section I1I-D. Onglex than the actual system. In this case, the model is unable to
should remember that the biological system is generally a tinfé-the data (see Fig. 10 on the left).
varying system. For example, since the muscles can change the?) Over-Fit: The situation where the model is more com-
properties due to fatigue, the duration of the experiment mustlex than the actual system. In this case, the model will fit the
shortinordertojustify the assumptionthatthe systemis atime-mbservations, but if there is a noise or insufficient observations
variant system. We must mention here that the simple optiméle., less independent observations then the number of parame-
parameter calculation (11) is not always stable numerically, atets), the model will not fit the actual system, and it may fail to
there are many improvements and practical methods that carpbedict the outcome of the system in the validation process. In
found in modern numerical software [30]. the validation process, we check the generalization (the ability
of the identified model to deal with cases that were not seen be-
fore; see Fig. 10 on the right).
D. Order of the Model Many approaches have been suggested for choosing the
proper order. For linear models, a commonly used approach
In the example above, the structure of the model was knowinthe Akaike information criterion (AIC), which is based on
and the only problem was to estimate the parameters, butdiliscrepancy measure. For the ARMA model, it will take the
most biological cases, the model is unknown. For the sakefgtlowing form:
S|mpI|C|ty, and since there are many algorlthms and softyvare . o 2 (nt+m+1)
tools for linear systems, we restrict our discussion here to linear N=-AIC(n, m) =65 + ———. (13
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Fig. 12. Comparison between the speed profile of the end point of a
two-degrees-of-freedom anthropomorphic arm with a linear muscle model
n (left) and with a nonlinear muscle model (right) in response to typical,

rectangular pulse activation of the muscles. Only the nonlinear muscle model
Fig.11. Mechanical model of the muscie.is the neural input. The first-order yields a bell-shaped speed profile with a smooth stop (for more details, see

filter represents the activation—contraction couplifigis the hypothetical force (34D
in the muscleB represents the relation between force and velocity from Hill's

model. The other elements represent the mechanical properties of the tenﬁgrhds on the internal force and on the contraction velocity, as
and other connective tissues around the joint. . !
seen in (15)

(a-Tp)/(b+v), v>0

a - To, v < 0. (15)

Since the first term, the estimation of the erédris monotoni- B = {
cally decreasing with increasing model size, and the second term

is increasing. One can find an optimal model size by finding tHeor the sake of simplicity, the value 8fwas taken as a constant
minimal value of the AIC. Another way to choose the order df several models in order to get a linear model of the muscle
the model is through empirical validation. This method is contsee [36] and [37]). This linear model is underdamped and there-
monly used in pattern recognition and classification in whiciere overshot, and oscillations are most likely to appear in the
part of the data is kept from the learning phase (in our case, tAtrolled movement. This problem is avoided by the use of the
will be the fitting phase), and then the model is chosen for ig@nlinear model, and we demonstrate this for a very basic move-
generalization capabilities checked on the kept data. For mépent: the reaching movement.

information about parameters estimation and system identifica-The reaching movementis a fast movement of the arm toward
tion, see [2], [28], and [32]. a given target. This movement was studied experimentally and
its main characteristics are roughly a straight-line path and a
bell-shaped speed profile. This speed profile was found to be

. consistent with minimization of the jerk during the movement,
We have seen the advantage of linear models from the eng- minimization of the following cost function [38]:

neering and mathematical point of view in terms of simplicity . 5 2 5 N2
and tractability. It is simple to analyze linear systems, and there I Y d°x d°y
C dt. (16)
0

IV. NONLINEAR MUSCLE MODEL

exists a vast literature and many algorithms for estimating the 2 dr3 dt3

parameters of a linear model. However, biological systems ¥FRis minimization was assumed to be carried out by the ner-

seldom linear, and the linear analysis holds only for a small re- .
) : : ; . . vous system in several models [22], [36]. These two models
gion around the working point. In this section, we describe an

example that shows how nonlinearity miaht be exploited adv were described in the first section, and they are a complex con-
P ymig P ol scheme containing a forward and/or an inverse model of the
tageously by nature.

L et us 100k at the Hill-tvoe mechanical model of the muscle isystem. Both have to deal with the time throughout the trajec-
yp Pory. However, when the nonlinear model is incorporated, it can

Fig. 11. This model is taken from [33] with minor changes (see shown that the desired performance (a bell-shaped speed pro-

[3] for an introduction to the use of electrical and mechanic%‘ee with a smooth stop), can be achieved with a simple control

models and [34] for a detailed description of this model and thé?rategy and without the need for a complex-optimization pro-

example). cedure
ic;?ﬁ(;dogﬁwmg are the differential equations of this mechan- The performance of an anthropomorphic arm with a linear

and nonlinear muscle model in response to rectangular control

- 1 ulses is shown in Fig. 12. For the linear muscle model, the
Fy=—-(n; — Iv) P d

Tn ) value of the viscose-damping eleméstis constant instead of
To =Fo - Frnax the Hill-type relation in (15).
. (K, - (X — Xo) —Tp) It can be seen that the arm with the linear muscle model, in
Xo = B response to pulses at the input, does not stop when the target is
F,=Bp-X+K,- (X — Xo). (14) reached and has an overshoot and an oscillatory behavior at the

end of the movement. Under the same conditions, the nonlinear
This model was derived from the Hill model [35], and in thenuscle can evoke a fast movement with a smooth stop. This
Hill model, the value of the viscose-damping eleméhde- is only a demonstration, however. This example is representa-
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tive of the improved arm performance achieved with a nonlinear Yq U Y
muscle model under the assumed conditions. For a detailed de- > P >
scription of the model, see [34]. The reason for this phenom-
enon can be explained by observing the behavior of a simple Fi e
second-order system in its standard form. The transfer function
in the Laplace transform domain is Fo e
2
wn
. . 17
“ 242§ wy - s+ w? (17 E
All the characteristics are known for such a systéf, is the _
natural frequency is the damping coefficient, ands the gain. Fig- 13. Multiple-feedback loop.
Let us look at the overshoot and the time to reach the maximum
tmax similar fibers, there are many muscle spindles and Golgi tendons
— in each muscle that measure length, speed and force in the mus-
f— . p— 2 1
bmax =7 /(w” 1-¢ ) cles, and so forth. Redundancy relates to the function of the bio-
0.S.— EXP (_W ¢/ /11— 52) ) (18) logical system or to a specific task that can be executed in more

than one possible way (see [5] and [45]). In many cases, the par-
For the human arm, the system is underdamped €.e<, 1;  allel architecture implies redundancy, but redundancy can exist
see [39]). It can be seen from (18) thaté@agets smaller, the without parallelism, as in the inverse kinematics problem. Paral-
movement becomes faster, but the overshoot is bigger. In alinggism also can exist without redundancy, as in some distributed
system, a tradeoff exists between small overshoot and fast moygstems (see multiple model control [27], [46]). In the following
ment. In a nonlinear system, the parameter can change duréegtions, we describe three aspects of these phenomena The first
the movement to achieve a fast movement without any oves-the issue of multiple feedback loops, which is most common
shoot, and we suggest that this is what happens in the muscieshiological systems and which can jeopardize classical at-
If we try to examine a simple model such as the second-ordempts to measure the loop-gain. Second, we discuss one pos-
model in Fig. 7 and its transfer function (7), the parameters gible function of the parallelism in nerve fibers: the spatial fil-

the transfer function in the standard form (17) are tering. Third, we describe a new approach to invert a redundant
1 K B system in order to control an MTO system.
a= -2  wp=4) == (19
K M ¢ 1-M - K (19)

. _ . A. Multiple Feedback Loops
In trying to find the parameters of such a mpdel, twas _s_hown In Section II, where feedback control was discussed (see
ltgs(gf tghﬁ]r;gzsctﬂ/l;rt'ir;% tgfe t?gvrﬁumsir;; Fg;; |t[£151]s ‘éﬁ;ﬁ'tgs ir ig. 1), the importance of the loop-gain in reducing the sensi-

o ’ - ~hang Hvity to parameter change was mentioned. The loop-gain also
K have the same qualitative effect as the changeB in the

Hill-type model above [34]. Another nonlinearity that can prot_:an be a major factor in establlshlng the stability of the system.
duce a stop without oscillation is the one-fifth power law in th!an order to measure the loop-gain, one should brake the loop,

. ' Stop W . . P . troduce an input in one place, and measure the output. But
viscosity, which was found in studies of human wrist MOVEL the biological system, there are typically multiple feedback
ment [41]. The inverse relation between the damping force apd 9 y ! ypicaly P

. L . . . in parallel Fig. 1 in here are man nsor
the contraction velocity in the model of Hill, and the increasin 00ps in parallel (see Fig. 13) since there are many sensory

. . L ) gystems that work together for the same purpose. For example,
stiffness at the end of the movement is also in line with ar . .
. in the temperature-regulation system, there are sensors in the
movements measurements by Gomi and Kawato (see [42] ap

) Kih, in the core of the body, and in the hypothalamus, and they
[43]). These measurements were recently described by anot Fihfluence the temperature-regulation mechanisms (see [47]).

gior:g}g?Ar/’eféx'nrggzggs(srggdglr’iSQEV;T'TQ 45?thTe;]res:Tr]r1ar;:]eC%?]rjtr?n movement control, there are feedback loops from sensors
9 : ' in the muscles, joints, and skin (i.e., muscle spindles, Golgi

clusion from these examples is that the nonlinear properties, of o
; S tendon organs, joint-pressure transducers, etc.), and there are
the muscle may have a functional role in simplifying the con-

. o AN, any of each type of sensor all operating in parallel. The first
trol strategy. The nonlinearities make system analysis dlmcug]dvantage of such a multiple loop and of any redundancy is in

However, they can be used by the brain to its advantage, espe N ) ‘
. . ohustness (i.e., if one subsystem fails there are other options to

cially since both the muscles and the nervous system develope? ; ; . .

together activate the system). More interesting advantages are in spatial

9 ' filtering and in the flexibility given to the system in the ability
to choose different solutions in different situations, as will be
described in the following sections.

This section is about two salient biological characteristics thatThere is a great danger in trying to estimate the loop-gain in
sometimes combine to make our understanding of these systensh a system, because there may be loops that we cannot open,
difficult. Parallelism relates to the architecture of the biologicalr of whose existence we may be unaware. In such a case, we
system, which frequently includes many pathways that execubay underestimate the loop-gain. For example, if we open the
similar tasks. For example, nerve fibers contain many axons tfiagt two loops in Fig. 13 and leav&; connected, the transfer

transport similar information, a muscle contains many paralléinction fromY; to Y will be P - C/(P - C - F5 + 1) instead

V. PARALLELISM AND REDUNDANCY
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of P - C when there is no additional loop. Because of this, one
should be aware of these multiple loops. Target and constrains

B. Spatial Filtering

Another interesting property of parallelism in the biological

. R, ; o Redundancy Va Learning
system is the spatial filtering in a multipath-transmission mech-

anism. Milgram and Inbar [48] demonstrate that the fidelity of L L 2
transmission of certain types of information through single neu- A—A—"—‘—/w

rons acting alone is comparatively poor within typical physio- F,,M’(yd)

logical ranges of operation, and that the quality of reception of

these messages increases in proportion to the number of neural I

channels involved in transmitting them simultaneously or in par-

allel. The main idea behind these observations is that there is F(x)

a distortion in the neuronal code, which adds high frequencies

to the transmitted information. The parallel transmission pro-
duces low-pass filtering (which in this case is spatial filtering) vy
and therefore improves the transmission fidelity by eliminatin
the distortion components. In order to explain this spatial fi
tering, let us examine a multichannel transmission line in which

each channel has different delay. The input to all the channel£3§9€t- Most of the solutions to this problem use a single cri-
(t) and the output will be terion, such as smoothness of the movement or minimum en-

" ergy,.and .find a single optilmal solut_ign (see [49]). However,
Po(t) = Z F(t— az) 20) t_he blolog_|cal system e>.<h|b|ts the ability to use dn‘fgrent solu-
° k/- tions at different occasions. The nervous system is known to
k=0 _ ~_be modular, and there is enough room to have many solutions
If one assumes a large number of channels, and if the distribdagy and choose the desired solution in real time. The solution
tion of the delaysy, is given as a density functiogp(a), the s chosen according to an appropriate criterion that can change

-Ig. 14.  Proposed scheme for learning the inverse control of an MTO system.

output can be estimated as the following integral: under different circumstances. As mentioned before, the biolog-
P~ M o0 d 21 ical system is an adaptive one, and therefore, it must learn and
o(t) = M - o f(t—a)-g(a)-da. (21) track the environmental parameters and its own internal parame-

?%r_s from examples. This problem was investigated for a robot’s
redundancy by DeMers [50] and is under current investigation
by Karniel et al. [51], [52]. The inverse-control problem was
- shown graphically in Fig. 3, and the proposed solution for the
Py(s) =M - / F(s)-e=% - g(a) - da pro.blem., Which deals with both redundancy and learning, is de-
0 scribed in Fig. 14.
_P(s)- / = . g(a) - da. 22) Suppoge tha’_[ we r_lave an unknpwn sy;TE(n) that is not
o necessarily an injective, and a serious of input and output vec-

Iy : :
Now one can see that the transfer function between the input 48 1% %'} that are input/output pairs of the unknown system.

. . . AT
the output is the Laplace transform of the delays distribution | "€ Problemis to constructa multiple inverse functigi’(ya)
Po(s) where MI stands for multiple inverse and the paramgtde-

o\S

o /Oo e gla) - da = G(s). (23) termines which of the many possible solutions is chosen. The
Fi(s) 0 formal requirement is that for any given accuracy vatuene
This result means that as the range of delays is larger, the filteg@&n construct¥'" such that for any value of, and for any
narrower. In the extreme case, when all the channels are equalye of the parameter, the following inequality will hold:
tmh_ere_ is no filtering and there is no advantage over a single trans- ‘F (F}\%H(yd)) _ yd‘ <e (24)

ission line.

There are other possible ways to achieve similar spatial fihe questions that may be addressed as a consequence of such
tering, such as distributed thresholds instead of delays. The latigsroblem are as follows.
option is more physiologically plausible, but it is less analyz- 1) \what architecture can be appropriate for representing the
able, and therefore, it is demonstrated in simulations (see [48]).  inverse of the system? See the box in the center of Fig. 14.
2) How does one train the architecture, and what learning

algorithm should be used? See the box in the right-hand

In motor control, as mentioned in the first two sections, one  side of Fig. 14.
is looking for an inverse of the controlled system. In the pres- 3) How does one choose the parametdor a specific ac-
ence of redundancy, the inverse problem is an ill-posed one. tion, and what criterion is to be used to regulate the mul-
The controller has to act on an MTO system and has to choose tiple-inverse problem? See the box in the left-hand side
one of the many possible actions to obtain the same desired of Fig. 14.

Let us use the Laplace transform on both sides and then
member that the input i3/ times f(¢), which isM - F(s) in
the Laplace domain

C. Learning to Invert MTO Mappings
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These questions are under current research and preliminargg]
results for the first two questions are given in [51], where a new
architecture, the polyhedral mixture of linear experts (PMLE) is[lo]
proposed. This architecture is based on the mixture-of-expertsi]
architecture [53] and the hinging-hyperplanes algorithm [54]. It
produces a piecewise linear approximation of the system. Each
area is governed by a linear function, called an expert, and one2]
can invert each expert and get the multiple inverse.

The PMLE architecture is one possible solution to the seconHﬂ
guestion, which was about how to learn and implement the mul-
tiple inverse functionf M(y,) in Fig. 14. The third question [14]
of choosing the proper criterion to reduce the redundancy is an
open one with many possible solutions that most probably args)

task dependent (see [49] and [55]). (6]

[17]
. . . co o [18]
Biological motor control is a great challenge for scientists,
engineers, and physicians. Simple tasks such as walking ]

playing with a ball are much more complex for artificial
machines (and therefore much less understood) than mapy)
“complex” and “intelligent” tasks, such as numerical calcu-
lations and playing the game of Chess. In this paper, som
problems of motor control were introduced. The issue o
learning and adapting in the motor-control framework wadg22]
described and related to problems of parameter estimation.
An example of the possible role of the mechanical nonlineap,s;
properties of the muscles was demonstrated, and a few aspects
of redundancy and parallelism were described. The classic
engineering and mathematical tools are appropriate for linear,
time-invariant, injective systems. The biological system does
not comply with these qualifiers, and therefore, there is a placle2
and a need for new mathematical tools and models in order t@g]
describe and analyze the biological system. A few examples for
the required tools were described in this paper and others haY%]
yet to be developed. With the aid of such mathematical tools,
the scientific community can continue to strive for a better
understanding of not only biological motor control, but of the (28]
mysteries of the human mind and how it operates.

VI. CONCLUSION
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