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Abstract. Reaching movement is a fast movement to-
wards a given target. The main characteristics of such
a movement are straight path and a bell-shaped speed
profile. In this work a mathematical model for the con-
trol of the human arm during ballistic reaching move-
ments is presented. The model of the arm contains a 2 de-
grees of freedom planar manipulator, and a Hill-type,
non-linear mechanical model of six muscles. The arm
model is taken from the literature with minor changes.
The nervous system is modeled as an adjustable pattern
generator that creates the control signals to the muscles.
The control signals in this model are rectangular pulses
activated at various amplitudes and timings, that are
determined according to the given target. These ampli-
tudes and timings are the parameters that should be
related to each target and initial conditions in the work-
space. The model of the nervous system consists of an
artificial neural net that maps any given target to the
parameter space of the pattern generator. In order to
train this net, the nervous system model includes a sensi-
tivity model that transforms the error from the arm
end-point coordinates to the parameter coordinates. The
error is assessed only at the termination of the movement
from knowledge of the results.

The role of the non-linearity in the muscle model and
the performance of the learning scheme are analysed,
illustrated in simulations and discussed. The results of
the present study demonstrate the central nervous
system’s (CNS) ability to generate typical reaching move-
ments with a simple feedforward controller that controls
only the timing and amplitude of rectangular excitation
pulses to the muscles and adjusts these parameters based
on knowledge of the results. In this scheme, which is
based on the adjustment of only a few parameters instead
of the whole trajectory, the dimension of the control
problem is reduced significantly. It is shown that the
non-linear properties of the muscles are essential to
achieve this simple control. This conclusion agrees with
the general concept that motor control is the result
of an interaction between the nervous system and the
musculoskeletal dynamics.
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1 Introduction

Reaching movement is a basic motor action. It is a simple
action, yet it involves almost all aspects of motor control,
from vision and proprioceptors, through many parts of
the nervous system, to the muscles and the joints. Reach-
ing movement is relatively easy to monitor by measuring
speed, force and electromyography (EMG), yet it does
not have an accepted comprehensive model. These fea-
tures make reaching movement an attractive action to
study. (See, for example, Jeannerod and Prablanc 1983;
Gottlieb et al. 1989, 1995; Ghez et al. 1990; Kalaska and
Crammond 1992; Jordan et al. 1994; Dominey et al 1995;
Kalaska 1995; Berthier 1996; and many other studies in
the references within these works.)

In this work the control of fast and short duration
movements is modeled. The term ‘reaching movement’ is
used here for a fast, ballistic, voluntary movement of the
arm from a starting point to a given target. Fast move-
ment implies a duration of a few hundred milliseconds.
When such duration is considered, visual feedback can-
not be operational during the movement, since visual
interpretation lasts at least a hundred milliseconds. Even
proprioception feedback cannot be effective in a simple
proportional integral derivative (PID) control fashion,
because the delays are on the order of 50 ms and because
feedback gains are low in biological motor control sys-
tems (Inbar 1972; Hollerbach 1982). The proper control
scheme for such a movement is therefore a feed-forward
control. This is the reason such a movement is called
a ballistic movement (see Desmedt 1983 for examples and
definition of ballistic movements in various muscles).

Two salient features of reaching movements are that
the hand paths are roughly straight, and the hand speed
profiles are bell-shaped (Abend et al. 1982). Flash and
Hogan (1985) proposed the minimum jerk model that
explains these features as a result of optimization criteria
to minimize acceleration change. This work supports the
suggestion that these features are the result of the arm
dynamics, and not of neural optimization (Massone and
Myers 1996 and references therein).

The kinematics and dynamics of the anthropomor-
phic arm are hard to model and control because they are
non-linear and time variant. Non-linearity already exists
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in the kinematics and dynamics of the 2 degrees of free-
dom (2DOF) manipulator and also in the muscle dynam-
ics. In addition, the system exhibits time variance in the
muscle parameters, especially due to fatigue. For fast
movements it is reasonable to ignore fatigue during the
movement, and assume a time-invariant model. But the
non-linear properties of the muscles should not be ignor-
ed as they may be responsible for some of the observed
features of movements and for a simple control scheme as
demonstrated and analysed in the present work.

Many schemes of motor control include a model of
the arm. Inverse model control can provide a good con-
trol scheme as has been suggested and analysed a long
time ago (Inbar and Yafe 1976). However, since there is
no unique solution for reaching a given target (i.e. the
arm function is not invertible) it is difficult to directly
train an inverse model (see Jordan 1996 for an example of
this problem). Several other schemes have been pro-
posed. One is to create a controller and a forward model
and to propagate the error through the forward model in
order to train the controller (Jordan and Rumelhart
1992). This scheme was implemented for an anthropo-
morphic arm model by Jordan et al. (1994). Their learn-
ing and control scheme achieved typical movements. But
this control scheme is complicated as it needs to generate
a complete model of the plant and to propagate the error
for each movement through the forward model and
throughout movement time. Another scheme is feedback
error learning (Kawato and Gomi 1992; Kawato et al.
1992). It suggests using a combination of feedback con-
trol and inverse model. The feedback motor command is
used as an error in order to update the inverse model.
This solution was implemented for reaching movements
(Hirayama et al. 1993) using a cascade neural network
that learns the neural input throughout the trajectory
duration. This work also achieved typical reaching move-
ments, but again with large computational and hardware
costs. These works used a linear model of the muscles
(Jordan et al. 1994) or just the dynamics of a two-joint
manipulator with constant viscosity coefficient
(Hirayama et al. 1993). It will be shown here that for
a more biologically oriented, non-linear model of the
muscle, the same typical movement can be learned by
a much simpler control and learning scheme, without the
need to propagate the error through time and to train
a net to produce the entire trajectory.

A six-muscle model was used recently to create
a model of the 2DOF arm (Jordan et al. 1994; Massone
and Myers 1996). The muscle model is a simplification of
the mechanical model in Zangemeister et al. (1981). The
non-linear properties of the muscle were ignored for
simplicity. In the present work, however, the muscle
model includes the non-linearity based on Hill’s model of
the muscle (Hill 1938). For more information about
muscle models, mechanical models and dynamic limb
movements, see also Hannaford and Winters (1990) and
Seif-Naraghi and Winters (1990).

The neuronal excitation to the muscle can be de-
scribed as rectangular pulses to the agonist and antagon-
ist (Gottlieb et al. 1989; Gottlieb 1993). This is a useful
simplification used by Gottlieb to describe motor pro-

grammes and motor strategies of controlling a single
joint movement where the relations between the widths,
heights and time delay of these pulses and the movement
are outlined. This simplification is adopted here, and
therefore rectangular pulses are used as excitations to the
muscles.

In the model presented here, an algorithm to learn the
proper parameters of activation for each movement is
proposed. This algorithm is analysed analytically for
a linear plant control and is further being simulated for
single- and for two-joint movements. Since the reaching
movement is a ballistic movement, only the final state of
the arm is used for training and adaptation. This idea, to
mask the sensory information during the movement and
use it only at the end of the movement, has a physiolo-
gical basis in the cerebellorubrospinal system, as de-
scribed in a review by Keifer and Houk: ‘There is evid-
ence for an inhibitory gating phenomenon that serves to
suppress sensory input at several stages in the circuit
during the performance of a limb movement. Thus it is
reasonable to conclude that the motor commands are not
generated by continuous sensory feedback from the pe-
riphery. More likely, the cerebellorubral system operates
generally in an open-loop feed-forward manner’ (Keifer
and Houk 1994).

In this work the Hill-type non-linear muscle model,
rectangular excitation pulses, feedforward control and
learning from knowledge of results with an artificial
neural network are incorporated to produce a simple
model for learning human reaching movements. It is
important to clarify that when the global term central
nervous system (CNS) is used in this work, it refers to the
cerebellorubrospinal system. The physiological counter-
part of each component of the model is referred to in
general terms only. Lack of certainty of the basic func-
tional principles of nervous system operation prohibits at
present any accurate comparison between the model and
the CNS.

The rest of this paper is organized as follows. In
section 2, the model of the arm, the muscles and the CNS
are described. In section 3, two parts of the model are
analysed: the muscle non-linearity and the learning
scheme. In section 4, simulations of reaching movement
are presented. And finally, in section 5 the results are
discussed and conclusions are drawn.

2 The Model

In this section the model of the joints, the muscles and the
CNS is described. The model of the arm is a 2DOF
manipulator with six muscles. This part of the model is
taken from the literature with minor changes (Zan-
gemeister et al. 1981; Asada and Slotin 1986; Winters and
Stark 1987; Arnon 1990; Massone and Myers 1996). The
CNS model contains a pattern generator (PG) that cre-
ates rectangular excitations to the muscles, an artificial
neural network (ANN) that produces the proper para-
meters of excitation pulses to the PG given the target,
and a learning algorithm which includes a sensitivity
model. All the parts of this model are described in detail
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Fig. 1. A 2 degrees of freedom
L1 (2DOF) human arm model: g1 and
q2 are the joint angles; L1, L2 are
qi the lengths of the upper arm and

the forearm; X, Y are the end-point
coordinates and their base is the
first joint , i.e. the shoulder

in order to make this model easy to understand and
reconstruct for further research.

2.1 A two DOF manipulator

The arm is modeled as a 2DOF mechanical manipulator
as shown in Fig. 1.

To calculate the position and velocity of the end point
in (x,y) given the joint angles and angular velocities
(q1, g2) the direct kinematics equations are needed: (1) for
position and (2) for velocity.

x = Ly -cos(qy) + L, cos(q; + ¢>) (1)

_Lz.slz]_[cgl] o
L, Cq, q>

Ciy =cos(qy +q2) Si2 =sin(gy + q»)

y = Ly -sin(q,) + L;sin(q; + q»)
V=Jg

|:ij| |:—L1'Sl—L2'S12
Vy B Ll'C1+L2'C12
C; =cos(q;) S; = sin(q;)

Since the muscles generate forces in the joints, one needs
to calculate the position and velocities of the joints given
the moments in the joints. This problem is known as the
direct dynamics problem. It is solved numerically using
the inverse dynamic equation:

F=H-(q)4+Clqq) q+G ©)

For the 2DOF planar manipulator there are no forces
due to gravity. Therefore G = 0, and the matrices in (3)
are:

[11 + L, + M i+ My, (L3413 +2Liry-C)
I+ My (r3+ Ly ryCy)

C—|: —M;-Lir,78574>
M, -Liry-S,4y 0

Assuming cylindric units, one can use the following iner-
tia and centre of mass:

I _M1'L% _M[L% _L1 _Lz
L=7 ¢ 27 129”1—2, V2—2

and for a typical arm, the following dimensions are used
(taken from Arnon 1990):

M, =252kg M,=13kg
Ll = 0.33 m L2 = 0.32 m (6)

()

—My-Li-ry-S57(41 + 42)
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For more information about the development of dy-
namic and kinematic equations see, for example, Asada
and Slotin (1986).

This 2DOF model gives us the end-point position
and velocity from the joint forces. The muscle model
equations that generate these forces are described
next.

2.2 The muscles

The human arm has many muscles that act on a single
joint. Some act across two joints simultaneously. The
present model is a simplified six-muscle model that rep-
resents all the muscles of the 2DOF arm. In the model,
there are two muscles that act on each individual joint
and two muscles that act on both joints simultaneously.
The torque at each joint is a weighted sum of the forces of
the muscles that act on that joint. Following Massone
and Myers (1996) one can write:

T =F1 flex = Froex + @ F3_prex — @ F3_oy

(7)
T =Fy plex = Faoext T b F3_piex — b F3_cy
where 7; is the torque at joint i and F; is the torque
created by a muscle of type j. Index 1 is for the shoulder,
index 2 is for the elbow, and index 3 is for the muscles
that act across both joints. The subscript ext stands for
an extensor muscle and flex for a flexor. Coefficients
a and b are chosen to be a =0.6 and b =04 as in
Massone and Myers (1996).

For each muscle a commonly selected Hill-type non-
linear mechanical model is used (Zangemeister et al 1981;
Winters and Stark 1987). The model is shown schemati-
cally in Fig. 2.

For each muscle, n; represents the neural input. The
value of n; is normalized to the range [0, 1]. This neural
input is smoothed with a first-order filter that represents
the activation contraction coupling in the muscle. Its
output is the normalized hypothetical force, F,, which is
converted to the hypothetical force, T, after scaling by
the maximum force, F,,.,, of ecach muscle [see (9)]. The
viscosity element, B, represents the relation between force

I, + M- (r3 +L1"’2'C2):|
12 + Mz'l"%
()
and velocity from Hill’s model:
“To)/b + =0
. {(a b +0) "
a-T, v<O0

a=125 d=3 b=1 v=—Xy/m

The viscosity, B, was assumed, for simplicity, to be a con-
stant by Jordan et al. (1994) and Massone and Myers
(1996) in order to obtain a linear muscle model. In this
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Fig. 2. The mechanical model of the muscle: n; is the neural input, the
first-order filter represents the activation contraction coupling, T, is the
hypothetical force in the muscle, B represents the relation between force
and velocity from Hill’s model, while the other elements represent the
mechanical properties of the tendon and other connective tissues
around the joint

work the full non-linear model is used. This property has
turned out to provide the desired smooth performance
with a simple control signal, as is described in the model
analysis section. The other mechanical elements repres-
ent the muscles and connective tissue properties around
the joint. The equations that describe this model are:

. 1
Fo=—(n; — Fy)

To=Fo Frax'm
(K (X — Xo) = To)

Xo = 3 ©)

Fn=B, X + K, (X — Xo)

where m is the mean arm moment. The values of the
parameters were as follows:

B, = 0.2[N*s/rad], K; = 30[N/rad], 1, =0.04[s],
m = 0.03[m], Fna(shoulder) = 800[N],
F . (elbow) = 700[N], F.(double joint) = 1000[ N7.

The values above were taken from Massone and
Myers (1996) with minor changes: only one filter was
used as the second one has a negligible time constant,
and the parallel elastic element was eliminated because
its value is small and has no important effect on fast
movements. [ts main effect is on the steady state, where it
causes a drift toward the resting point of the muscle. In
the present work only fast reaching movements are
studied, and not maintenance of a fixed position. The
major departure of the present model from Massone and
Myers (1996) is in the non-linear muscle model which
finds expression in the viscosity, B, according to Hill’s
model (8).

Another minor change is in the relationship between
each muscle length and the joint angle. In the present
model the arm is in the horizontal plane, and the initial
point is when the shoulder is at 45 deg and the elbow is at

90 deg, as seen in Fig. 1. The relationships between each
muscle length X and the joint angle ¢ are:

Xsnoulder Flexor = (5 7/4 — 1) m

Xshoulder Extensor = (3" /4 + q1)-m
=(m—qz)'m

XEibow Extensor = g2 M

X bouble-loint Flexor = (9" T/4 — g1 — q2)*m
X Double-Toint Extensor = (3" T/4 + q1 + q2) m

XElbowalexor

(10)

With the manipulator kinematics and dynamics given,
the nervous system that controls the arm and produces
the neural input to each muscle can be modeled.

2.3 The nervous system model

The motor neurons that activate the muscles obtain their
inputs from the CNS and from the sensors in the arm
(muscle spindles, Golgi organs, skin and joint sensors,
etc.). Because of the delays and time constants of the
muscle activation processes, and since the modeled
reaching movements are very fast, there cannot be an
efficient real-time feedback control. Consequently, in the
proposed model, a pure forward control scheme will be
considered. The sensory information will be used, at the
end of the movement, for learning and adaptation only.

The model is based on the following simplifications
and assumptions:

» The target location is given. This assumption is based
on experiments that suggest that the information about
the target location in the workspace is mapped in the
cortex before the execution of the movement. See, for
example, Georgopoulos et al. (1993).

» Feed-forward control scheme. The information about
the performance is used only after the execution of the
movement. This assumption is based on the short
duration of the movement in relation to the delays
which prohibit an efficient feedback control (Inbar
1972; Hollerbach 1982), and on the work of Keifer and
Houk (1994) which suggests further evidence for the
masking of sensory information during the movement.

» Typical rectangular excitations to the muscles. In the
CNS there are mechanisms that can generate charac-
teristic stimuli to the muscles, for example, the adjust-
able pattern generator (APG) in the work of Houk and
Wise (1992). The typical shape of the muscle excitations
are modeled to be rectangular, and their timing and
amplitude are changed according to the desired move-
ment (see Gottlieb 1993).

A schematic description of the CNS control model for
reaching movement is given in Fig. 3. The target is
chosen in the cortex and is used as the input. According
to the target, a set of parameters which define the excita-
tion to the muscles is selected. These parameters are
amplitudes and timings. The APG generates the appro-
priate pulses to each muscle, and these commands go
through the spinal cord to the muscles and generate the
movement. At the end of the movement, and only then,
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Fig. 3. The CNS model: N¢ys is the activation command to the
muscles. There is a pattern generator (PG) for each muscle, that creates
a rectangular excitation according to the timing and amplitude para-
meters which are the output of the artificial neural network (ANN). The
input to the ANN is the desired target. The sensory information is
available only at the end of the movement, and only then is the ANN
updated

the sensory information is analysed, and the error found
is used to change the weights in the neural network that
generates the parameters. These changes would affect the
next neural control pulses and therefore only the sub-
sequent movements.

In this framework the first step is to define the shape
of the excitation and how it relates to the timing and
amplitudes (which are called here ‘the parameters’). In the
next section a learning scheme is described that deter-
mines the relation between the desired target and the
parameters.

2.3.1 The neuromuscular excitation and its parameters.
The muscle excitation is controlled by the CNS. It has
a typical shape, but its timing and amplitude change
according to the desired movement. The choice of para-
meters is described in Fig. 4. Each pair of muscles (flexor
and extensor) receives two pulses that come one after the
other. A vector of five parameters defines these two
pulses. The parameters are [Amp, RA, Tall, Tcoact, RT].
Amp is the amplitude of the activation in the range
[—1,1]. If Amp <O, then the order of activation is
reversed (see Fig. 4b). RA is the ratio of amplitudes
between the flexor and the extensor. Tall is the total time
of the excitation. Tcoact is the duration of the coactiva-
tion of both muscles. RT is the ratio of duration between
muscle activations. The parameters were selected for
their physiological interpretation.

2.4 The learning algorithm

Let us put the model of the arm, muscles and PG’s
described above in one box, and a neural network
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Fig. 4. The shape of the pulses and the parameters that define it. When
AMP >0 the flexor is activated before the extensor (a); when
AMP < 0, the flexor follows the extensor (b)

Target Parameter | The Plant: End point
—_) Neural vector Pulse Generator, | movement
Network e

Muscle model,
2DOF manipulator

Fig. 5. The problem of finding the parameter vector, given the target.
The problem is how to train the ANN in a way that it will produce the
proper excitation parameters in order to bring the arm to the desired
end-point state

controller in another box, as shown in Fig. 5. The
question is how to train the neural network to produce
the proper parameters given the desired target.

To train the neural network, in most methods one
needs the error in the coordinates of the neural network
output. The problem is that the error is given in the
coordinates of the plant output. The transformation be-
tween the plant output and the parameters is very com-
plicated and not necessary to compute. What is needed is
the relationship between the errors of the output and the
errors of the parameters. These errors are small in the
trained network. The simplest scheme, which is a linear
model, was implemented, i.e. a linear model for the rela-
tion between changes in the plant output and changes in
its input. This linear model is called here the sensitivity
model. The linear relation is a simplifying assumption
that holds only for small regions of the workspace. This
drawback can be overcome as demonstrated and dis-
cussed in the simulation and discussion sections. It
should be stressed that this system is discrete in its nature
since the inputs are targets transformed to a parameter
vector by the neural network. Only the final state is the
output of the plant. This state is used to train the network
for better performance in the next movement which is the
next discrete event. A schematic description of the system
is given in Fig. 6 for the general case. In this model, IN is
a vector describing the desired state of the arm at the end
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Fig. 6. Schematic description of the learning algorithm using the sensi-
tivity model, which is a linear transformation from the output coordi-
nates to the parameters coordinates

of the movement, U is the excitation parameters vector,
and OUT is a vector describing the actual state of the
arm end-point at the end of the movement.

The algorithm:

1. Initiate the ANN and the sensitivity model.

2. For a desirable target, IN, calculate U and OUT.

3. Make a small perturbation on U, calculate OUT and
update the sensitivity model. (This stage can be done
using previously performed close movements.) This stage
can be skipped if the sensitivity model is satisfactory.

4. Transform the output error to the parameter error
using the sensitivity model and calculate the desired
network output, Ud:

Ud=U+ C-err =U + C-Sen-(IN — OUT) (11)

The constant, C, is in the range [0, 1], and it determines
the learning rate.

5. Update the ANN weights to get U closer to Ud. This
can be done using any learning algorithm such as back-
propagation or Levenbarg-Markart.

6. Go to stage 2.

This algorithm is analysed and simulated in the next
sections. Here and in the next section the specific proper-
ties of the ANN are not given since any ANN and
learning algorithm that minimize some output error
function will do. In the simulation section the exact
specifications of the ANN used are given.

3 Model analysis

In this section two parts of the model are examined. The
first part is the muscle model and its non-linearity and
the role it may have in the performance of movements.
The second part is the learning algorithm and its proper-
ties for some very simple cases.

3.1 The non-linear muscle model

The non-linear properties of muscle have been known for
a long time (Hill 1938), but they were considered a prob-
lem for the modeller (at least the engineer modeller). In

path path
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Fig. 7. A comparison between the speed profile of the end-point of the
arm with a linear muscle model (left) and with a non-linear muscle
model (right) in response to the typical rectangular pulse activation of
the muscles. In the upper figures the initial end-point positions and the
paths are shown. In the lower figures the end-point tangential speed
profiles are shown. Only the non-linear muscle model yields a bell-
shaped speed profile with a smooth stop. (The units are meters and
seconds)

the present work the non-linear property was necessary
in order to create a fast movement with a smooth stop
using the simple rectangular excitation. The control of
rectangular pulses is much simpler than the creation of
a complex profile of excitations during movement. That
is the reason why it is suggested here that the non-
linearity in the muscle may play a functional role by
allowing the use of such simple control signals. The
engineering idea which separates the controller from the
plant is not applicable to a biological system. The biolo-
gical system evolved as a whole to create the best perfor-
mance. So the muscle must be seen as part of the control-
ler and not only as a force generator [for more examples
of the importance of mechanical systems in motor con-
trol, see Full (1994)].

The performance of a linear model and a non-linear
model in response to the rectangular control pulses is
seen in Fig. 7. For the linear muscle model the viscosity is
constant, B = 4.5[N*s/rad], instead of the Hill-type rela-
tion in (8).

It can be seen that the arm with the linear muscle
model, does not stop in response to pulses, but has an
overshoot and oscillatory behaviour at the end of the
movement. Under the same conditions, the non-linear
muscle can evoke a fast movement with a smooth stop.
This is only a demonstration, but this example is repre-
sentative of the improved arm performance achieved
with a non-linear muscle model under the assumed con-
ditions. The reason for this phenomenon can be ex-
plained by observing the behavior of a simple second-
order system in its standard form. The transfer function
in the Laplace transform domain is:

wa
a

: 12
24+ 2-E w5 + w? (12)
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All the characteristics are known for such a system. w,, is
the natural frequency, ¢ is the damping coefficient, and
a is the gain. Let us look at the overshoot (OS) and the
time to reach the maximum (f,,,,):

Imax = TC/(Wn.\/ 1 - 52)
0S = EXP(—7- ¢/ /1 — &) (13)

For the human arm, the system is underdamped, i.e.
& < 1 (see, for example, Inbar 1996). It can be seen from
(13) that as & gets smaller, the movement speeds up but
the overshoot increases. So in a linear system a trade-off
exists between small overshoot and fast movement. In a
non-linear system the parameter can change during the
movement to achieve a fast movement without any over-
shoot, as seen in Fig. 7.

In order to examine the effect of the non-linearity,
two commonly used types of muscle model were ana-
lysed. The conclusion, as shown below, is that the non-
linearity, which is different in each type of model, has the
same effect on the normalized second-order model para-
meters.

Let us look, first, at the mechanical second-order
model in Fig. 8.

The transfer function of this model is (14) and the
parameters are (15)

X —1

- - 14
P M-s>4+Bs+k (14)

1 k B
I L= | - - 15
a=-—7 W v C o (15)

In trying to find the parameters of such a model, it
was shown (Inbar 1996) that K changes during the move-
ment and it has a positive relation to the activation of the
muscle.

Now let us look at the following model (Fig. 9), which
is the type used in the present paper:

Its transfer function is (16).

X —k, 1
P B M-s*>+ksM-s+Bkgs

(16)

In our model the input, P, is a pulse, which brings X to
a new location. This is equivalent to applying a step and
multiplying the transfer function by S to get a second-
order transfer function. The parameters of this function
are (17).

1 ks M -k
B " TYM T 18 a7

a=—
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Fig. 9. Third-order mechanical model of the muscles and the joint. In
this model type B is positively related to the activation P.

For this model, B is changing according to Hill’s model,
and it has a positive relation to the activation of the
muscle.

If one looks at the parameters of the second-order
systems (15, 17) one can see that B, in the second model
plays a similar role to K in the first model.

The important aspect for this work is that, for both
kinds of modeling, at the end of the movement, when the
excitations terminate, ¢ goes up, and the arm can stop
smoothly without overshoot.

3.2 The learning algorithm in some simple cases

For the simple case of the linear invertible plant, one can
prove that the algorithm converges. The following the-
orem and its proof relate to the algorithm described in
Sect. 2.4.

Theorem: Let the plant transformation matrix be P,
the sensitivity transformation matrix Sen, and the desired
ANN output U,. If (i) the plant is linear and invertible, (ii)
Sen = P~ ! and C = 1, and (iii) the ANN learning algo-
rithm is such that at each step |[U — U | is getting smaller,
then the whole algorithm converges asymptotically.

Proof: First let us define a target function to minim-
ize:

Z = |IN — OUT|| (18)
Looking at Fig. 6, one can write for each step:
U,i) = U(i) + C-Sen-(IN — OUT())) (19)
and using the theorem assumption:
Uyi)=U()+ 1-P~*-(IN — OUT(i))
=U@{)+ P ' IN — P~ 1-OUT(i)
=U@l)+P " IN-U@l=P "IN (20)

which means that U, is constant for this case.
From (19) it can be written:

[UG) — U =[P~ (IN — OUT()) 21

And since |U — U,| is assumed to be always getting
smaller:

UG+ 1) — Uy < |U(i) — Ug| =P~ (IN — OUT(i + 1))|
<|P'-(IN — OUT()| = Z(i + 1) < Z(j) (22)
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The target function Z is a monotonically descending
function. From the global convergence theorem (see
Luenberger 1984) it can be concluded that the algorithm
converges asymptotically.

This was only to show that the above scheme is
a reasonable procedure with the given assumptions.
However, the human arm is a non-linear system that may
not be invertible, and therefore the sensitivity model
must be acquired by learning. The overall system model
performance can be investigated only through simula-
tion, which is carried out in the next section.

4 Simulation of reaching movements

The algorithm of learning and performing a reaching
movement was simulated both for a single- and for a two-
joint system. In each simulation, ten targets were present-
ed to the model. The reaching movements were simulated
sequentially. Each cycle of ten reaching movements and
ten perturbed movements is considered an epoch. After
each epoch the sensitivity model and the ANN are up-
dated. The sensitivity model is updated to the optimal
linear model, with respect to the mean square error
(MSE), using the last 200 movements. The ANN is a one
hidden layer neural network with 16 elements in the
hidden layer. Each hidden element has a hyperbolic tan-
gent sigmoid activation function, and each output unit is
a linear function of the hidden units output. The ANN is
updated using two epochs of the Levenberg-Markart
algorithm. The Matlab implementation of those algo-
rithms was used (see Demuth and Beale 94). For a com-
prehensive foundation of ANN, see Haykin (1994).

4.1 Single joint

In single-joint simulations the shoulder was fixed and the
lower arm moved about the elbow joint. Two muscles of
the elbow were activated, and two parameters, Amp and
RA, were the control parameters. The rest of the para-
meters were fixed to the following values: Tall = 20,
Tcoact = 0.4, RA = 0.5. These values were chosen heu-
ristically, after some trial and error, to create a fast
movement (i.e. total movement time of less than half
a second) and to allow movements that cover the entire
workspace. The errors were two: (i) signed distance from
the target and (ii) speed at the end of the movement. The
results of such a simulation are given in Fig. 10, where
one can see that the arm reaches the target (in the circle)
and the speed profile has a smooth bell shape. The error
during the learning is shown in Fig. 11, as a function of
the number of epochs. It is not expected that the error
will converge to zero since the sensitivity model is linear,
while the relation between the errors may not be.

The reason for using signed distance is that the rela-
tion between the distance error and the excitation ampli-
tude is positive in one direction and negative in the other.
In such a situation no linear sensitivity model can be
adequate. The solution is to use a signed distance error
(i.e. positive in one direction and negative in the other).
This solution will be referred to also as a proper selection
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Fig. 10. Single-joint learning. Four examples were taken from the
learning set. The paths of the end-points and the initial and final
positions are at the left. The speed profiles are in the middle. The muscle
excitation signals are at the right. (The units are meters and seconds)
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Fig. 11. Learning error of single-joint training. The errors are end
speed (m/s) and signed distance error (m). The errors are not necessarily
monotonically decreasing because the sensitivity model is not always
correct

of parameters and error. Another possible solution is to
use two different sensitivity models for each area. These
solutions are considered again for the two-joint case.

4.2 Two joints

In two-joint simulations, four muscles were activated
and four parameters, Amp and RA for each joint, were
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Fig. 12. Comparison of close targets vs spread targets. The close tar-
gets are easier to learn. In the bottom left corner are 10 close targets of
the first simulation. The other 10 targets are spread and are related to
the second simulation. (Units are meters)

the control parameters. The rest of the parameters were
fixed to the following values: Tall =20, Tcoact = 0.4,
RA = 0.5. The errors were three: (i) distance from the
target, (ii) direction error (difference between the desired
and the actual direction), and (iii) the speed at the end of
the movement.

Ten targets were spread over the workspace, and the
algorithm was activated in order to learn to reach them.
One can see in Figs. 12, 14 and 15 that the speed profile is
smooth and approximately bell-shaped, and the path is
close to a direct line.

In Fig. 12 the results of two simulations and two sets
of targets are shown. The first simulation involved a set
of 10 targets in a small area (about x = —0.01, y = 0.41).
The other set of ten targets was spread over the work-
space. One can see that for the close targets, the error is
much smaller than for the spread targets.

There are two solutions for the spread targets. The
first is to map the working area with separate sensitivity
models in order to obtain a piecewise linear sensitivity
model. The second solution is to define the parameters
and error in a way that enlarges the area where the linear
sensitivity model is appropriate. The second solution can
be regarded as pre-processing or post-processing, before
or after the sensitivity model. This approach was imple-
mented by converting the direction error to two indi-
vidual joint angle errors. This conversion is a kinematic
conversion, and it requires knowledge of the geometrical
dimensions of the arm. This transformation is justified
since the nervous system has this knowledge. The geo-
metrical dimensions are fixed under normal operating
conditions. They may change very slowly during growth,
and so they can be learned through another long-term
mechanism. The results after the last modification are
much better, and an example is shown in Figs. 13, 14, and
15. It can be seen that the movements are approximately
straight lines and the speed profile is bell-shaped.

There is room for improvement in the performance of
the proposed controller scheme since only the amplitudes
were controlled and the other parameters were held fixed.
Further investigation of the learning scheme is also pos-
sible. The size of the ANN and the number of hidden
units were not optimized, learning algorithms were not
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Fig. 13. Learning error of two-joint training (with kinematic pre-pro-
cessing). The shown errors are: end speed error (for each joint), distance
error and direction error

path End point speed Neural input
0.6 g~ ; r
050 . -\ i 1 02
0.4] d/a o] 05 =1
P 0 oLl i
01 0 041 0 0.5 0 0.5
path End point speed Neural input
0.6 ———1=
0.5_._&,‘@_ - 1 o2}
040 . _¥Y_ 1] 0.5 Y
N L . 0 ollals
01 0 01 0 0.5 0 0.5
path End point speed Neural input
0'6 [l [
05) o o -4 1 02
0.4l 1. _ & v 05 e
. 8‘ . 0 ot
01 0 041 0 0.5 0 0.5
path End point speed Neural input
0.6 p ey
05[] .- 8 1 02
04l . V7. _i ] 0.5 = -
o ob ik
01 0 04 0 0.5 0 0.5

Fig. 14. Two-joint learning. Four examples from the learning set of the
simulation with kinematic pre-processing. The paths of the end-points
and the initial and final positions are at the left. The speed profiles are in
the middle. The muscle excitations are at the right. (Units are meters and
seconds)

compared, and generalization capabilities were not
checked. The reason for not doing the above lay in the
long computational time to simulate the model. It is
important to mention here that most of the computa-
tional time was used in calculating the arm dynamics and
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Fig. 15. Reaching movement for all 10 targets in the learning set. This
is the result of the simulation with kinematic pre-processing. (Units are
meters)

the non-linear muscle dynamics and not in the ANN
control. These long calculations are needed only in simu-
lation. In the biological system they are a by-product of
the muscles and the arm structure. However, despite the
shortcoming of the simplified controller, the presented
results are sufficient to demonstrate that the proposed
learning algorithm for the parameters of rectangular ex-
citation pulses is adequate for controlling and performing
typical reaching movements.

5 Discussion

5.1 The muscle model

The role of the muscle properties in creating a smooth
bell-shaped speed profile was demonstrated. There are
some weaknesses to the muscle model that should be
noted. The mechanical model, which is a Hill-type model,
is based on small signal isometric or isotonic conditions.
The behaviour of the muscle parameters during move-
ment is not clear yet, and thus the model should be
regarded as an approximation only. A second drawback
of the model is its being a time-invariant model. The
muscle parameters are changing significantly under
changing conditions (angular position, velocity, loads,
etc.), and fatigue must be considered in cases of a long
period of training.

The investigation of the model by studying the para-
meters of a second-order system (Fig. 9) as an approxi-
mation to the entire model is supported by a recent
robustness study of the same arm model with a linear
muscle model (Myers and Massone 1997). The relation-
ships achieved in that work between the viscosity, B, and
the time-to-peak and maximum velocity can be deduced
from the parameters of the simplified second-order
model (17). Another work that was published recently
by Krylow and Rymer (1997) concerns the role of
the muscle properties in producing smooth movements.

The present work complements their efforts. They pre-
sented experimental data, and here the model was
simulated within a simple control strategy and the im-
portance of the non-linear properties was stressed and
analysed.

The importance of the mechanical part of the motor
control system cannot be over stressed. In this work,
another example was added to this idea, which was well
described in Full (1994). A comprehensive simple muscle
model is important if one is to achieve a proper under-
standing of the motor control mechanisms in the human
nervous system. Muscles provide the only natural ob-
servable output for nervous system activity. Thus, they
are the window through which one can look at the brain
and the mind. The motor control research can be re-
garded as the act of polishing this window. In this re-
spect, it is the first act in understanding the nervous
system.

5.2 The control

Control of the muscles can be achieved with simple
rectangular pulses. There is no need for the nervous
system to calculate the trajectory in order to achieve
a typical reaching movement. This can simplify the con-
troller significantly. And it has physiological support in
the form of hierarchic control through PG’s which create
the rectangular pulses and let the upper system specify
only a few parameters. The rectangular shape is simple
for simulation and analysis. In the biological system,
because of the temporal and spatial filtering, there is
a large set of shapes that would give the same qualitative
results. The main conclusion is that only a few para-
meters of the excitation need to be controlled by the CNS
due to the dynamic properties of the neuromuscular and
the musculoskeletal systems.

After this study was carried out, a work with a similar
parametric control scheme by Bock et al. (1993) came to
our attention. In their work a 2DOF robotic arm is
controlled with prototypical control torque signals that
are defined by a set of parameters. Their control signals
are not rectangular, and their robot naturally does not
have any muscles. Their work serves as an example of
a potential use of a biologically based approach to robot
control.

5.3 The learning scheme

The control scheme with the linear sensitivity model was
chosen for its simplicity. It may have an additional ad-
vantage since one can extract the relationship between
the excitation parameters and the end position state from
the sensitivity model.

As demonstrated, the suggested control scheme
works well when limited to restricted areas of the work-
space. But with proper pre-processing and/or choice of
parameters, the entire workspace can be covered.
The proposed algorithm is not proven to converge for
all starting conditions. It can get into local minima,
or even diverge during the learning phase to unreason-
able movements outside the workspace. For robotics



implementation, a more robust algorithm is needed. But
this algorithm was sufficient for the purposes of modeling
reaching movement and demonstrating the concept of
plant controller interaction. Final position errors were of
the order of millimeters, which is reasonable biologically
speaking. But in simulation without noise, a better accu-
racy can be achieved. The way to achieve it is, as men-
tioned, a piecewise linear model or a better choice of
parameters and errors. In this work only 2 parameters of
5 were used, and only 4 muscles from 6 were activated.
Certainly, the proper incorporation of these control
parameters would improve the performance. On the
other hand, more free parameters will introduce redund-
ancy, which is a major problem for any learning scheme.
Finally, for the sake of completeness, external forces,
noises, robustness, and energy considerations can be ad-
ded to the model.

The entire model presented in this paper was a simpli-
fied one for learning and performing fast reaching move-
ments. In other slower or more complicated movements,
feedback must be incorporated during the movement or
between short pre-programmed movements.
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