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Abstract  

     What is it inside the colorfully wrapped present? You pick it up to ear level and 

listen, shake it, and then listen again. To you, the basic principle of active sensing is 

quite clear – first absorb, then, if there is no movement or sound, shake it and then 

reabsorb.     

     We propose an extremely basic hypothesis for the active sensing of haptic 

interaction with dynamical systems. Our hypothesis asserts that in order to improve 

the efficiency of extracting information from a probed system, the sensor should act 

according to the following basic principle: if the probed system is passive, the sensor 

should be active; conversely, when the probed system is active, the sensor should be 

passive.  

     We proved the proposed principle for interaction with a second-order mechanical 

system with the goal to enhance classification performance between two possible sine 

power sources. We showed that the addition of an active power source to a passive 

testing sensor leads to decreased sensitivity in the amplitude and frequency of the 

tested power source. Further, an extension of this principle is provided, presenting the 

conditions for reduced sensitivity to spring and damper parameters. 

      To test its applicability for a linear system in a noisy environment, a computer 

simulation was performed demonstrating that classification performance improved by 

following the proposed principle.  

      Lastly, ten subjects probed an active virtual system under either active or passive 

conditions.  A comparison of the mean just-noticeable difference (jnd) of both 

conditions indicated significantly better sensitivity was obtained by following the 

principle. 
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1. Introduction 

In everyday life, we are bombarded by a rapid and endless stream of information 

requiring decisions. From the moment we are born and all through our lives, we spend a 

vast amount of our time exploring our environment. As we grow, we become more and 

more adept in the process of selecting the appropriate strategy for each “exploration task” 

we perform: We squeeze a ball to sense its compliance, we let tap water run through our 

fingers to determine its temperature, and we lift a metal box to estimate its weight. 

 

This exceptional ability we have is commonly known as “Active Sensing.” The 

Active Sensing paradigm is driven by a very basic logic: given the combination of a vast 

amount of data and limited processing resources and time, it is fundamental for the data 

acquisition process to be selective (Bajcsy and Campos 1992). 

 

Over the last three decades, this concept has been largely investigated with studies 

referring both to the macro level of general definitions and the micro level, describing 

mission specific algorithms in the fields of active vision, haptic object recognition, and 

methods of implementation in machine perception.  

 

     Bajscy addressed the question of what active sensing is, arguing that this concept 

refers not only to “active sensors” emitting energy to probe the environment, but also to 

"passive sensors employed actively" (Bajcsy 1988). The idea was extended through the 

definition of "exploratory procedures" for haptic object recognition (Lederman and 

Klatzky 1987), task modeling, system architecture, and algorithms for a task combining 

both visual and haptic exploration (Bajcsy and Campos 1992). 

 

     When discussing active sensing in humans, one relevant research direction is the 

sensitivity of humans to dynamical systems. Psychophysical experiments have been 

conducted to explore human sensitivity by measuring the just-noticeable difference (jnd) 

to different system parameters in various conditions (Pang, Tan et al. 1991; Tan, Pang et 



al. 1992; Beauregard, Srinivasan et al. 1995; Allin, Matsuoka et al. 2002). For example, 

Pang et al. (1991) utilized an electromechanical device, which produced a constant 

resistance force, to estimate the jnd for a manual discrimination of force by active finger 

motion.  A similar setup was utilized by Tan et al. (1995) to explore the effect of 

perceptual cues on compliance resolution.  In a recent study by Israr et al. (2009), 

subjects were instructed to remain active or passive while interacting with a virtual 

dynamical system. This system could either be excited by the subject (active 

subject/passive system) or by an external source (passive subject/active system). 

However, those studies do not consider the possible influence of the interrogators activity 

on the sensitivity while interacting with an active dynamical system, as suggested by our 

active sensing principle. 

 

     Whether discussing active sensing in the context of sophisticated computational 

algorithms or in that of human exploration, it seems there is no simple answer to the 

following basic question: When should the probing sensor be active and when should it 

be passive? 

 

In this paper, we have addressed the procedure of interaction with a dynamical 

system, defining “active system” as one containing energy producing elements and 

focusing on strategy to maximize the sensitivity to a given system parameter. We aimed 

to initialize a systematic theoretical approach to analyze the interaction between two 

dynamical systems of a sensor and its probed dynamical environment in order to answer 

the above question. Thus, we proposed an active sensing principle for haptic interaction 

with a dynamical system, formulated in the context of a classification problem, and then 

proved the principle for a basic linear mechanical system using phasor sensitivity 

analysis. The proof of this logical and basic macro level principle sets the grounds for 

improved data extraction in any interaction with the subclass of second-order dynamical 

systems. 

 

This paper is structured as follows: In Section 2, we describe the connection between 

system sensitivity and classification performance. Section 3 contains the claim and the 
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analytical proof. Section 4 presents a simulation example of a classification process 

demonstrating the principle in a noisy environment. Section 5 describes a psychophysical 

experiment with human subjects probing virtual systems. Lastly, a discussion is provided 

in Section 6. 

 

2. Sensitivity and Classification 

Consider the following basic binary classification task: Given an output of a 

dynamical system, Y, we would like to classify the value of one of its parameters, X, 

above or below the threshold value   . For this purpose, we wish to maximize the 

difference in the measured output for small changes in the parameter value.   

 

In the presence of white Gaussian noise, the slope of Y with respect to X directly 

determines our ability to discriminate between two adjacent values of X, indicating the 

success rate of the best possible classifier. As shown in Figure 2.1, the output of the 

system depicted in red will clearly lead to a better classification performance than the 

system depicted in blue.  

 

 

Figure 2.1 Output of a system Y as a function of an inner parameter X (contaminated with white Gaussian 

noise at 1 dB). Blue and red solid lines represent two possible relations between the system's output and 

one of its parameters. Dotted and dashed lines represent the changes in the value of output for each of the 

two relations for similar values of parameter X.  



 

One natural way to analyze this relationship is with the use of “Sensitivity” (S), defined 

as: 

(   )     |
  

  
 
 

 
| 

The sensitivity depends upon the system's output response to parameter change at the 

proximity of the operating point. Our underlying assumption is that for a given 

value      , there is an adjunct environment where the input-output relationship is 

approximately linear. Hence, to measure the influence of a parameter value on the 

system's output, we simply derive the output of the system with respect to the parameter 

at the operating point. 

 

    Weber's law addresses the minimal change in stimuli magnitude required to produce an 

evident alteration, a just-noticeable difference (jnd) in the sensory sensation (Weber 

1996). In its classical formulation, the law states that the ratio between the increment for 

noticeable difference    and the background intensity, known as the Weber Fraction 

(WF), is constant:  

(   )   
  

 
         . 

This concept is closely related to the notion of sensitivity. Let us assume that for an 

incremental input change of    , the change in output value is    . If we could enhance 

the sensitivity at this operating point by a factor of   (   ), it would enable us to 

observe the exact same output change for an incremental input change of   ̂  
   

 
    . 

Previously, we were able to detect a change of     in our parameter, whereas now it is 

possible to detect a change of  
   

 
. The direct outcome of this enhanced sensitivity is the 

decrease in the Weber fraction:     
   

 
, enabling improved classification 

performance. In other words, the discrimination capability could be equally measured by 

either the success rate or by the WF because sensitivity correlates with both.  

 



Returning to our discussion of active sensing,  the question now becomes: What kind 

of strategy applied while interacting with a dynamical system will yield the highest 

possible sensitivity? 

 

3. The Principle  

3.1 Assumptions 

The linear second-order mechanical system described in Figure 3.1 consists of a 

combination of a testing system comprised of a spring, a damper, and an optional power 

source, in addition to an active tested system comprised of a spring, a damper, a mass, 

and a sine power source. We considered the Root Mean Square (RMS) of the mass 

trajectory and examined the system's sensitivity to a change in the frequency and 

amplitude of the power source. We compared system sensitivity under two testing 

conditions—with and without an additional power source—and analytically derived that 

the additional power source will lead to a reduction in the system’s sensitivity under the 

following conditions: 

 

1. The whole system consisting of both the tested system as well as the testing 

input is at a steady state. 

 

2. The force function of the testing system can be presented as a weighted sum of 

its sinusoidal functions.  

 

3.2 Claim 

     The introduction of an additional power source to a testing system (right side of 

Fig. 3.1) will result in a reduction of system sensitivity with respect to a change in 

the frequency or amplitude of the tested sine power source and will, consequently, 

degrade the classification performance (Fig. 3.2).  

 

 



                      
 
 

Figure 3.1 Second-order mechanical system consisting of a spring, a damper, a sine power source, and a 

mass interacting with a spring, a damper, and an optional power source. 

 

 

                                
 

 

Figure 3.2 Claim: Introduction of an additional power source to a testing system will result in a reduction 

of system sensitivity. 

 

 

3.3 Sensitivity to frequency  

    In this section, we prove the claim for sensitivity to frequency, and in the next section 

we prove it for sensitivity to amplitude.  A detailed analytical calculation can be found in 

Appendix A, and a summary of the analysis results can be found in Appendix C. 

 

     We begin the analysis by considering a single sine testing power source, then we 

extend it to a sum of sine power sources, and finally we consider the case in which one of 

the power sources was at the same frequency as the tested power source. We start with a 

system in which our testing sensor was passive (   ). 

 

Testing system 

 

Tested system 

 



The system’s differential equation is given by: 

 

(     )   ̈    ̇          (   ) 

 

Where    is the mass trajectory,   (     ),        , and        .   

 

This is a classical equation representing a damped-driven harmonic oscillator. In our 

case, the solution of this second-order inhomogeneous differential equation for   is a 

combination of a transient (i.e., homogenous) solution of the form 
21 1211 XCXCXh 

(where 
11X and 

21X are decaying exponents) and a steady state solution of the form 

 ̃    (    ) (where  ̃ is a constant and   is the phase shift, in this case 0). Following 

the assumptions, we address only the steady state solution. Since our focus was on 

sinusoidal power sources, our steady state assumption enabled us to use phasor analysis, 

choosing the commonly utilized Root Mean Square (RMS) representation for the mass 

magnitude rather than the peak of the amplitude sinusoidal. 

 

The RMS of the output is given by: 
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We denote  
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And derive the system’s sensitivity: 
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Next, we analyzed the addition of a weighted sum of sine power sources. 

The updated differential equation is: 
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The RMS is given by:  
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Where: 
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As before, we notice: 
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Hence, we concluded that the addition of a weighed sum of sine power sources will lead 

to a reduced sensitivity to frequency change. 

 

We now address the case in which the expression ∑      (   )
 
    contains      . 

Without loss of generality, we assumed that       for    .  

The sum of the two equi-frequent sine functions could be expressed as: 
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Where    is the relative delay between the two functions and    is given by: 
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And the RMS would be given by: 
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Where     
    

           ( ) 

 

The derivation of sensitivity with respect to    for this expression is very similar to the 

one we performed in Section 3.2.  

 

The final expression for this case is given by:  
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The redundant version of this case (testing sensor contains a single sine function) is quite 

similar to the original case expressed by Equation (3.3.2), with the only difference being 

the amplitude of the sine power source: 

     
√ 
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Where     

    
           ( ) 

Hence, the sensitivity of the system to frequency change with addition of an equi-

frequent sine power source remains the same. 

 

3.3 Sensitivity to Amplitude 

The original expression for a single sine power source is:  
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System sensitivity to amplitude is given by: 
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The sensitivity for a testing sensor consisting of springs, dampers, and a weighted sum of 

single sine power source (           ) is: 
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The redundant version of this case [single sine power source – Equation (3.3.2)] was 

calculated from this result by taking           and denoting          : 
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    contains     : 
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Deriving with respect to    and multiplying by       will lead to: 
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Where   ∑
  
   

  

 
    and        

 

To prove our claim, we needed to analyze the denominator and verify that it was indeed 

greater than one. For this purpose, we analyzed the opposite scenario and showed that the 

condition for this scenario could not be fulfilled: 
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For this to be possible, we need our equation to fulfill the following conditions: 

Either   
         ( )    and (  

         ( )   )    or vice versa.  

Now, let us analyze each part individually: 
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Now, the second expression:  
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This is a contradiction to  (b). 

 

In the borderline case where:  
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Once again, we have a contradiction. From the first expression, we receive       , but 

from the second:  

    
 

  
      . 

Hence, the sensitivity is reduced. 

 

For the redundant case where    , the sensitivity will be reduced in all cases but 

   ( )     and      , for which it will remain the same. 

 

In addition to the proof of the principle for the frequency and amplitude of the tested 

sine power source, we analyzed an expansion for additional system parameters, and we 

determined the conditions for enhanced sensitivity to damper and spring constants. Those 

conditions are presented in Appendix B. 

 

4. Demonstration of the concept 

4.1 Simulation of dynamical system interaction in a noisy environment 

     To demonstrate the active sensing principle, we constructed a classification task based 

on data from a computer simulation, closely related to the system depicted in Section 3. 

We employed two testing models closely resembling the models depicted in Section 3 

(active and passive scenarios). The tested parametric families were based on each of the 

two models, where every “family member” corresponds to a different combination of 

parameter values in the system: 

 

a. The “passive family”: A linear spring-dashpot (Karniel and Inbar 2000) –

           ̇. The parameters K and B are assigned one of five 

predetermined pairs of values (  {              }   {         }). 

 

b. The “active family”: A sine with linear spring-dashpot –          (    )  

     ̇. Values of K and B are as in the linear spring-dashpot model. Sine 



frequency is   [       ]. The frequency range was selected to correlate with 

previous data analysis which was done on recordings of subjects' handshake 

movements administered through a Phantom® Desktop haptic device
TM

 

(SensAble Technologies Inc) (Karniel, Avraham et al. 2010; Avraham, Nisky et 

al. 2012). 

 

     During the simulation, each of the models performed interactions with all members of 

the tested parametric family (mitigated by a 1 kg mass). Features based on the mass 

trajectory such as maximal force and velocity, position change frequency, mean 

acceleration, jerk, and energy were extracted from each simulation and utilized to 

discriminate between pairs of different members of the same parametric family (data 

from two different interactions with the same testing model used for a binary 

classification task).  The score for each model was given based on the total classification 

performance of all possible combinations of the tested parametric family. 

 

4.2 Testing the classification performance of the models 

     Following the simulation, we performed a classification process assessing each model 

type for its efficiency in discriminating between family members of the same parametric 

family (graded separately for discrimination of each of the five families). For this 

purpose, we used a linear classifier (Bishop 2006). This type of classification is based on 

the assumption that the output result of the classifier (target) can be expressed as a 

weighted sum of the inputs: 
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   serves as intentional biases. 

 

  Each weight in this model represents the relation between a specific input and output 

pair (Karniel and Inbar 1999). We chose a Mean Square Error (MSE) cost function and 

utilized steepest descent (gradient descent) to determine the weights. All simulations and 

data analyses were performed utilizing MATLAB 2009 b. 

4.3 Classification Results  

  The classification results (Fig. 4.1) clearly demonstrate our principle; one can see that 

the sine-spring-damper active sensor performed significantly better than the spring-

damper sensor in the spring-damper parametric family (passive-tested system) and that 

the passive sensor performed significantly better than the active sensor in the sine-spring-

damper parametric family (active-tested system). 

 

 

 

 
Figure 4.3.1 Simulation results: Classification performance of sine-spring-damper and spring-damper 

sensors interacting vs. spring-damper (Right) and sine-spring-damper (Left) parametric families. 

5. Manual discrimination experiment  

5.1 General 

  In this section, we consider a possible extention of the proposed principle beyond the 

linear case by examining human–robot interactions. In this interaction,the simulated 

object is linear, but the interogator (human) is probably not. To accomplish this goal, we 



carried out a slightly simplified variant of the classical manual discrimination experiment 

(Berliner and Durlach 1973; Pang, Tan et al. 1991; Tan, Durlach et al. 1995), performing 

a force stimuli discrimination task utilizing a robotic haptic device. 

5.2  Subjects and apparatus 

   Ten subjects, four males and six females (S1-S10, all students at the Ben-Gurion 

University of the Negev, 24–35 years old, average age of 27) were paid to participate in 

the experiment. All participants were right-handed and without any known motor 

impairment. Each subject signed an informed consent form to participate in the 

experiment, as stipulated by the institutional Helsinki committee, Beer-Sheva, Israel.  

 

  During the experiment, subjects held the handle of a robotic arm (SensAble 

PHANTOM® Desktop™ Haptic Device), which produces forces according to 

preprogrammed software and samples the time and position of the handle base at 100 Hz. 

Each subject was seated on a chair facing the robotic arm with his or her right arm placed 

on the right armrest, with the elbow in the middle so that the front part of the forearm 

extended over the armrest in the direction of the robotic device. A 21" LCD computer 

screen was placed at approximately 45  to the left of the chair at eye level. The subject’s 

left palm was placed on the control keyboard (see Fig 5.3.1). Subjects were equipped 

with ear plugs to eliminate any possible auditory cues arising from the motion of the 

robotic arm and were instructed to focus on the computer screen during each interaction, 

reducing possible visual cues.  

5.3 Stimuli 

  While the subjects held the handle of the haptic device during the trial, they 

experienced forces that were a combination of a spring, a damper, and a sine power 

source set in a configuration similar to that described for the tested system in Section 3.2. 

 

  The values of the different parameters of the experiment are presented in Table 1. The 

values of frequency and amplitude for the power source     (   ), as well as spring and 

damper constants were chosen based on previously performed research on the 



characteristics of the human handshake (Karniel, Avraham et al. 2010; Karniel, Nisky et 

al. 2010).  

 

      During each interaction, the haptic device presented the subject with one of two 

possible stimuli defined by the amplitude of the sinusoidal power source: reference 

amplitude   or examined amplitude     , where    is a positive increment.   

 

 

 

 

 

Figure 5.3.1: The experimental setup. Subject sat on a chair facing the SensAble PHANTOM® 

Desktop™ Haptic Device. During the experiment, the subject was instructed to look at the computer screen 

in order to reduce possible visual cues. 

5.4  Procedure 

A one interval two-alternative forced-choice paradigm was applied (Macmillan and 

Creelman 2004).  For each trial, the power source of the tested system had either 

reference amplitude   or examined amplitude of     , both given with equal a priori 

probability. Subjects were informed that they were going to experience one of two 

possible systems, either a reference system applying low force or a test system applying 

higher forces. A five-second trial was followed by the subject’s answer to the question, 

"Was the force high, or was it low?"  Instructions on the computer screen directed 

subjects to push the “home” button for low force and “end” for high force. Following a 

subject’s choice, correct answer feedback was given.  

 



   An experiment run consisted of 16 practice trials followed by 64 test trials, and took 

15–20 minutes. The increment on each run was set to one of four possible values: 10, 15, 

20, or 25 percent and kept constant throughout the run. The complete experimental 

session was composed of four runs (one for each value), with the increment changes 

arranged in an ascending order. One experimental session took up to 1.5 hours. 

 

  Two exploratory conditions were tested, referred to as “active” and “passive.” Every 

participant performed the complete experimental session twice on adjacent days, once for 

each condition. During the “passive” condition, subjects were instructed to be led by the 

robot without applying any additional force. During the “active” condition, the subjects 

were instructed not to remain passive, i.e., to test the forces produced by the haptic device 

while applying force on the handle of the robotic arm. The subjects were allowed to 

choose any self-applied force to assist themselves to perform the task at hand, and the 

order of the sessions was randomized between subjects. Half of the subjects began with 

the “active” condition session the first day, followed by the “passive” session  the second, 

and the other half vice versa.  

 

  A total of 320 trials was collected for each participant during a single experimental 

session, while a total of 6,400 trials was collected during the entire experiment. Parameter 

values used can be found in Table 1. 

 

Table I: Parameter values for the experiment 

Parameter  A0(N) ΔA/A0 (%) K [N/M] B[N∙m/Sec] ω1[Rad/Sec] 

Value 1 10,15,20,25 20 10 10 

 

5.5 Data analysis 

     Subjects' answers for each experimental condition were used to calculate the estimates 

of sensitivity index   , response bias  , and the jnd from the stimulus–response matrix 

(Berliner and Durlach 1973). In this analysis method, the underlying density functions 



represent the sensory process related to a two-stimuli discrimination task assumed to be 

normal with means    and    and of equal variance    

 

The sensitivity index   , defined as the normalized distance between the two means, can 

be formulated as follows: 

(     )    (     )  

And the response bias: 

(     )   [  (     )]    

 

representing the normalized distance between the response criterion   and the midpoint 

between the expected values of the distributions. 

 

      Given that the alteration in   value is approximately proportional to the 

increment     , the slope      (    ) can serve as an estimate of the subjects' 

performance level. Furthermore, if the results are characterized by an unbiased response 

behavior (   ), a 75% correct performance threshold would conform to     , 

providing a straightforward Weber fraction (jnd %) estimate as the inverse of the slope   

at that point. 

 

     The WF for each participant was estimated as the inverse of the slop   (    ), 

averaged over all increments (for the tested reference force amplitude A) for each 

participant. The mean WF for each experimental condition was derived from the 

individual WFs pooled across all subjects' results for that condition. See Tan et al. (1995) 

for more details. 

 

     Another procedure, utilized by Israr et al. (2009), provides a slight alteration of the 

above-mentioned method. According to this procedure, participants’ WF is estimated by 

first calculating the inverse of  (    )(WF) for each increment value and then 

averaging overall WF values, interchanging the order of actions of the previous method.  

In our case, any significant result with respect to the jnd was validated for both 

mentioned procedures. 



 

     Subject performance was tested on four increments: 10, 15, 20, and 25%. Because all 

subjects showed significantly different behavior in the last increment during the active 

condition (possibly due to fatigue), only the first three increments were subsequently 

utilized to estimate the jnd. 

 

    To test the significance of jnd differences between the “active” and “passive” 

conditions, we utilized a paired one-tailed bootstrap analysis (10,000 repetitions), as well 

as a Wilcoxon signed-rank test. The choice of nonparametric methods arose not only due 

to the relatively small sample size, but also because each group included a mixture of jnd 

scores from both the first and second days of the experiment (primary or repeated 

interactions with the robot). 

  5.6 Results 

 

     All ten subjects performed better in the passive condition, as predicted by the 

proposed active sensing principle (Fig. 5.1). A summary of the results including jnd and 

response bias values for each condition is given in Table 2.  

 

     The response bias was found to be negligible both overall and for each of the 

experimental conditions separately, with the total response bias average of      

        and bootstrap 95% interval of [-0.0612 0.0620], response bias for the passive 

condition of                  and bootstrap 95% interval of [-0.1403 0.0461], and for 

the active condition of                 and bootstrap 95% interval of [-0.0214 

0.1431]. It seems the subjects had a slight (but not significant) tendency to more often 

answer “low force” when tested in the passive condition and vice versa for the active 

condition. 

 

 

 

 

 



Table II: Summary of Results 

 JND (%) Response Bias 

 Method 1 Method 2  

Condition  Average Std. Error Average Std. Error Average Std. Error 

       All  18 2.03 22.85 2.05 -0.0019 0.0313 

Active 22.46 3.15 28.09 6.54 0.047 0.0466 

Passive 13.54
a
 1.63 15.12

b
 2.18 -0.0508 0.0402 

a
 Significantly different from mean 'active' value (Method 1, p=0.005). 

b
 significantly different from mean 'active' 

value (Method 2, p<0.005) 

 

 

 

Table 2: Summary of results. Mean and standard error are given for response bias and jnd%. Results concerning jnd 

are given for the two methods of calculation mentioned above. Method 1— following Tan et al. (1995), Method 2— 

following Israr et al (2009). 

 

     The mean jnd % value for the passive condition (average of 13.54% with std. of 5.5%) 

was found to be significantly lower [10,000 repetitions one-tailed bootstrap (Efron and 

Efron 1982), p<0.004, and one-tailed Wilcoxon signed-rank test for the median 

(Wilcoxon and Wilcox 1964), with p=0.005] than that of the active condition (average of 

22.46 % with std. of 8.44%).  The results are presented in Figure 5.6.1. 

 

 
 

 

 

 

 

 

 

 

 

Figure 5.6.1: Left: jnd% for passive and active conditions estimated for each of the ten subjects. All 

subjects performed better in the passive condition. Right: Mean jnd% and standard error on each of the 

conditions. The mean jnd% value for the passive condition is significantly lower than that estimated in the 

active condition (10,000 repetitions one-tailed bootstrap, p<0.004). 
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6. Discussion 

     In this paper, we have presented the active sensing principle for haptic interaction with 

dynamical systems: to act on a passive system and to absorb information from an active 

system in order to maximize sensitivity and, therefore, classification performance. We 

have provided an analytical proof of the principle for a linear second-order mechanical 

system. Additionally a computer simulation example demonstrated the principle in a 

noisy environment. Finally, we performed a psychophysical experiment comparing 

subjects' discrimination performance in active and passive conditions. Our results support 

the proposed principle.  

 

  In Section 2, we formulated the problem of active sensing, articulating the merits of 

improved sensitivity in the context of a classification problem. Improved sensitivity is 

without doubt an eminent quality and plausible cost measure for interaction with 

dynamical systems. Notwithstanding, it is important to note that the specific choice of a 

cost measure is directly related to the nature of the task at hand. Hence, the expansion of 

the proposed principle to additional active sensing scenarios may require the 

consideration of adjustment or alteration of the discussed cost measure. 

 

  This study employed phasor analysis, typically used to study the steady state.  

However, since our results are valid for the sum of sinusoidal functions, one can use 

Fourier analysis and conclude that our results are also valid for a variety of force 

functions. Nevertheless, in the analysis of this study, we did not address the possibility to 

incorporate feedback or to study the system by perturbing it and inspecting how it returns 

to equilibrium. 

 

       The diminishing effect of feedback on system sensitivity to plant parameter variation 

(Mazer 1960; Cruz Jr. and Perkins 1964; Kreindler 1968) and its effect on impedance 

(Blackman 1943; Rosenstark 1974) has been demonstrated in the literature.  However, in 

active sensing, one can control the feedback and, therefore, it is possible that a specific 

active sensing strategy may enhance sensitivity. The study of system characteristics 



through the introduction of perturbation is a very common procedure of control theory. 

The assumptions we have made in our proof in Section 3 (i.e., steady state and power 

source represented as the weighted sum of sinusoidal functions) impose some restrictions 

on the incorporation of perturbation analysis in the current scope. Nonetheless it is 

important to note that some forms of perturbations could be addressed since they can be 

approximated to a given precision as a sum of sinusoidal functions. 

 

  In Section 3 and Appendix B, we analyzed the relative sensitivity of active and 

passive probing sensors for various parameters of the tested system. In the case of 

frequency and amplitude of the tested power source, our analysis leads to an explicit 

conclusion. An inspection of the calculations for the case of spring and damper 

parameters shows that sensitivity to these parameters of the active-tested system can be 

improved by introduction of an active power source to the probing sensor, granted that 

specific conditions with respect to the relation and range of testing and tested system 

parameter values are fulfilled. Note, that although improved sensitivity in an active–

active scenario is theoretically possible, it is constricted to a specific range of values. 

Beyond this range, the active power source addition will lead, as in the previous case, to 

diminished sensitivity. Furthermore, fulfillment of the specified conditions requires the 

adjustment of our testing system parameters in accordance of those of the tested system. 

Therefore, one can extend our principle beyond the cases proven in the body of this paper 

to other more general conditions such as the simulated noisy condition and a wide range 

of other systems by replacing the deterministic notations with stochastic ones, asserting 

that the expectation of the sensitivity should increase by following the active sensing 

principle.  

 

  In Section 4, we demonstrated the proposed principle via computer simulation. The 

parameter range was chosen to reflect the range of human movement in the simulated 

task, as it was empirically found in a previous study related to a Turing-like test for motor 

intelligence (Karniel, Avraham et al. 2010; Karniel, Nisky et al. 2010).  

 



  The conditions presented in the noisy simulation example as well as in the 

psychophysical experiment of human robot interaction were not analytically validated.  

The results supporting the principle beyond the linear case encourage future studies to 

extend its rigorous proof to cases of interaction with higher order nonlinear systems, in 

general, and with haptic devices, in particular.  

 

  It is important to note that in order to accurately estimate the jnd, a considerably 

longer experiment design with the WF calculated at different reference forces is required.   

Notably, a large number of experimental run repetitions would be desired to account for 

the possible effect of training. Moreover, this type of design would enable the felicitous 

validation of additional conditions. Among these conditions are an affirmation that the 

rectified receiver operation curves are straight lines with a united slope and that the 

temporal variability of    values is consistent with the Bernoulli process assumption. A 

good example for such a meticulous validation process can be found in Pang, Tan et al. 

(1991).   

 

     In the framework of our simplified experimental procedure, we did not account for the 

conditions mentioned in the above mentioned study as we focused only on the fulfillment 

of cardinal elements such as the proportionality between   and the increments and a 

negligible response bias. Nevertheless, it is important to bear in mind that our primary 

goal was not the estimation of the jnd for a novel environment or property 

(force/compliance, etc.) but to test our active sensing hypothesis by comparing the jnd of 

active and passive human discrimination.  

  Performance of additional experiments, following the guidelines mentioned above, 

would allow a more precise estimation of the jnd for the described discrimination task. 

Notwithstanding, disregarding the accuracy of the jnd estimation, the methodology used 

here is sufficient for a valid comparison of performance between the active and passive 

conditions.   

 

  The proposed principle could be useful for various applications in the field of active 

sensing and robot–human interaction, in general, and in the study of human interaction 



with external dynamic systems, in particular, providing us with additional insight to 

human perception of dynamical systems. Whether humans actually follow this principle, 

is still an open question of great interest to the motor neuroscience community. 
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Figures 

Fig. 2.1: Output of a system Y as a function of an inner parameter X (contaminated with white Gaussian 

noise at 1 dB). Blue and red solid lines represent two possible relations between system output and one of 

its parameters. Dotted and dashed lines represent the changes in the value of output for each of the two 

relations for similar values of parameter X.  

Fig. 3.1: Second-order mechanical system consisting of a spring, a damper, a sine power source, and a 

mass interacting with a spring, a damper, and an optional power source. 

Fig. 3.2: Claim: Introduction of an additional power source to a testing system will result in a reduction of 

the sensitivity of the system. 

Fig. 4.3.1: Simulation results: Classification performance of Sine-Spring-Damper and Spring-Damper 

sensors interacting vs. Spring-Damper (Right) and Sine-Spring-Damper (Left) parametric families. 

Fig. 5.3.1: The experimental setup. Subject sat on a chair facing the SenseAble PHANTOM® Desktop™ 

Haptic Device. During the experiment, the subject was instructed to look at the computer screen in order to 

reduce possible visual cues. 

Figure 5.6.1: Left: jnd% for passive and active conditions estimated for each of the ten subjects. All 

subjects performed better in the passive condition. Right: Mean jnd% and standard error for each of the 

conditions. The mean jnd% value for the passive condition is significantly lower than that estimated for the 

active condition (10,000 repetitions one-tailed bootstrap, p<0.004). 

 

 



 

 

 

 

 

 

 

 

Tables 

 

Table I: Parameter values for the experiment 

Parameter  A0(N) ΔA/A0 (%) K[N/M] B[N∙m/Sec] ω1[Rad/Sec] 

Value 1 10,15,20,25 20 10 10 

 

Table II: Summary of Results 

 

jnd (%) 

Response Bias 

 

Method 1 Method 2 

 

Condition  Average Std. Error Average Std. Error Average Std. Error 

       

All  18 2.03 22.85 2.05 -0.0019 0.0313 

Active 22.46 3.15 28.09 6.54 0.047 0.0466 

Passive 13.54
a
 1.63 15.12

b
 2.18 -0.0508 0.0402 

a
 Significantly different from mean “active” value (Method 1, p=0.005). 

b
 Significantly different from mean “active” value 

(Method 2, p<0.005) 

 
Table 2:  Summary of results. Mean and standard error are given for response bias and jnd%. Results concerning jnd 

are given for the two methods of calculation mentioned above. Method 1— following Tan et al. (1995), Method 2— 

following Israr et al.(2009). 

 



 

 

 

 

 

 

 

 

 

 

Appendix A. Sensitivity-detailed calculation 

This appendix provides the detailed analytical derivation for the proof of the claim for 

sensitivity to frequency and amplitude (Section 3.3).The differential equation of the mass 

trajectory (no power source in testing system) is given by: 
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Where    is the mass trajectory,   (     ),          and        .   

The RMS of the output is given by: 
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Now, let us consider an active probing sensor with       (     ).  

The updated differential equation: 
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And the RMS of the output is: 
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The updated sensitivity to a change in frequency would be: 
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Presenting the sensitivity    in terms of     : 
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Following the addition of a weighted sum of a single sine power source, 

the updated differential equation is: 
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The RMS is given by:  
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Where    (    
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As before, we notice: 
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Now, we address the case when the expression ∑      (   )
 
   contains      . 

Without loss of generality, let us assume that       for    .  

The sum of the two equi-frequent sine functions could be expressed as: 
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Where    is the relative delay between the two functions and   is given by: 
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And the RMS would be given by: 
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Where     
    

           ( ). 



The derivation of sensitivity with respect to    for this expression is very similar to the 

one we performed in Section 3.2.  

The final expression for this case would be given by:  
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The redundant version of this case, expressed by Equation (4), (testing sensor contains a 

single sine function), is quite similar to the original case expressed by Equation (2), with 

the only difference being the amplitude of the sine power source: 
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Hence the sensitivity of the system to frequency change with the addition of an equi-

frequent sine power source remains the same.  

 

Sensitivity to Amplitude 

The original expression for a single sine power source is: 
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Systems sensitivity to amplitude is given by: 
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The sensitivity for a testing sensor consisting of springs, dampers, and a weighted sum of 

single sine power source (           ) is: 
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The redundant version of this case [single sine power source - Equation (4)] is calculated 

from this result by taking           and denoting          : 
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Deriving with respect to    and multiplying by       will lead to: 
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To prove our claim, we need to analyze the denominator and verify that it is indeed 

greater than one. For this purpose, we analyzed the opposite scenario and showed that the 

condition for this scenario could not be fulfilled:  
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For this to be possible, we need our equation to fulfill the following conditions: 

Either   
         ( )    and (  

         ( )   )    or vice versa.  

 

Now, let us analyze each part individually: 
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This is a contradiction to (2) above.  

 



In the borderline case where:  
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Once again, we have a contradiction: From the first expression, we receive        , 

but from the second  
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Hence, the sensitivity is reduced. 

 

For the redundant case where    , the sensitivity will be reduced in all cases but 

   ( )     and      , for which it will remain the same 

Appendix B. Sensitivity-additional analysis 

In Section 3.3, we presented an analytical derivation for sensitivity to frequency and 

amplitude. In this appendix, we present an expansion of the analysis for additional system 

parameters and present the conditions for enhanced sensitivity to damper and spring 

constants. 

Sensitivity to spring and damper constant  
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With the addition of a weighted sum of sine power sources (           ): 
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Once again, we explore the conditions for improved sensitivity. As we have seen, this 

could be rephrased in the following manner: 
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The redundant version of this case (testing the sensor power source is a single sine 

function) could be easily derived from this result by taking           and denoting 

          : 
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The conditions which fulfill this inequality are: 
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Since both    and   are positive, the first two expressions could be rewritten as follows: 
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Since we determined (        
  )    as a preliminary condition, the above 

inequality is valid for   
    

 . Without loss of generality, we will assume          so 

that the following condition is equivalent to      . Therefore, summarizing the 

conditions: 
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Hence, the conditions in this case would be: 
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Thus, enhanced sensitivity cannot be achieved unless one of the two following conditions 

is fulfilled: 

 The frequency of the testing sine power source is higher than the frequency of the 

examined sine, and both frequencies are below the system's resonant frequency. 

OR 

 The frequency of the testing sine power source is lower than the frequency of the 

examined sine, and both frequencies are above the system's resonant frequency. 
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The expression is very similar to the one we have seen in Section 5.2: 
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Hence, the conditions could be derived easily from our calculations in the previous 

section (sensitivity to damping constant): 
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Notice that the index begins with i=3 (instead of i=2, as in the previous section). 

 



 

Sensitivity to damper constant  

 

We will begin as before with the expressions: 
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Now, for the addition of a weighted sum of single sine power source (           ): 

   
 

√ 
√
  
 

  
 ∑

  
 

  

 

   

 

 

    |
   
   

 
  
  
|  ||

   
   

 (     )

  
  ∑

   
   

 (     )

  
 

 
   

 √
  
 

  
 ∑

  
 

  

 
   

 
  

√
  
 

  
 ∑

  
 

  

 
   

||   

 

      

  ∑
  
   

   
 

  
   

   
 

 
   

  ∑
    

 

    
 

 
   

 

The conditions for an improvement in the sensitivity are: 
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And for the redundant version of this case: 
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After some minor algebraic manipulations, we derive: 
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Finally, when the expression ∑      (   )
 
    contains       , the expression we are 

analyzing is very similar to the one we have seen for      , and the condition for 

sensitivity improvement would be: 
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