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A simple and accurate onset detection method for a measured 
bell-shaped speed profi le

Lior Botzer and Amir Karniel*

Department of Biomedical Engineering, Ben-Gurion University of the Negev, Israel

Motor control neuroscientists measure limb trajectories and extract the onset of the movement 
for a variety of purposes. Such trajectories are often aligned relative to the onset of individual 
movement before the features of that movement are extracted and their properties are inspected. 
Onset detection is performed either manually or automatically, typically by selecting a velocity 
threshold. Here, we present a simple onset detection algorithm that is more accurate than the 
conventional velocity threshold technique. The proposed method is based on a simple regression 
and follows the minimum acceleration with constraints model, in which the initial phase of 
the bell-shaped movement is modeled by a cubic power of the time. We demonstrate the 
performance of the suggested method and compare it to the velocity threshold technique and 
to manual onset detection by a group of motor control experts. The database for this comparison 
consists of simulated minimum jerk trajectories and recorded reaching movements.

Keywords: onset detection, movement onset, velocity threshold, minimum jerk, feedforward control, reaction time

some upper threshold crossing point as the movement onset. These 
threshold techniques, however, tend to generate positive biases in 
the estimation of onset time. Other schemes, which strive to identify 
the transition time points between static episode and movement 
episode, have been suggested (Staude, 2001; Staude et al., 1996; 
Van Dijck et al., 2006), but these require extensive modeling and 
computation, based on the optimal detection theory, and the fi tting 
of additional, free parameters.

Here, we present a less complicated, alternative approach based 
on the notion that the point of movement onset can be regarded 
as a problem of change-point estimation between a static phase 
and a movement phase, both of which are corrupted by motor and 
tracking noises; however, this approach employs a simple, deter-
ministic motor control model and a linear regression to estimate 
the defl ection point. The issue of model estimation using the linear 
regression of non linear models has already been addressed (Li and 
Yu, 1999), but as far as we know, it was never applied as a tool for 
onset detection.

We modeled the initial static trajectory using a constant term 
model and the movement phase using a simple polynomial func-
tion with one parameter. Numerous models exist that account for 
the typical bell-shaped speed profi le of arm movement, such as the 
minimum-jerk trajectory model (Flash and Hogan, 1985), which 
provides an analytical polynomial model, but for which multiple 
parameters must be estimated. Here, we use the minimum accelera-
tion criterion with constraints (MACC) (Ben-Itzhak and Karniel, 
2008), which models the initial phase of the movement using a 
constant jerk, and as such, it requires the estimation of a single 
parameter that can be easily implemented via linear regression. 
Therefore, we named our approach the MACC-based onset detec-
tion method.

In addition to enabling precise onset detection, the technique we 
suggest may help elucidate the underlying mechanisms of motor 
control, such as the quantifi cation of feedforward motor program 

INTRODUCTION
Many neuroscientists consider the study of the motor system to be 
a window to the brain. Their work often involves tracking the posi-
tion of a human or other mammalian limb under various experi-
mental conditions. One essential parameter frequently extracted 
from the tracking data is the movement initiation time, or the onset 
time, which can also be used to assess other events, such as reaction 
time, peak velocity time, and target interception, among others. 
Correct onset detection, however, is also important for measur-
ing other properties of the movement, such as the time difference 
between muscle activation and onset of the movement (Corcos 
et al., 1992), or for measuring motor reaction time (Bekkering et al., 
1994). Although the onset time can be extracted using any one of a 
variety of methodologies, most studies employ the simple but inac-
curate method of velocity threshold. Thus, the issue of accurately 
detecting the onset time via a simple algorithm is still a challenge 
(Soda et al., 2008; Solnik et al., 2008; Van Dijck et al., 2007).

Onset detection time can be determined using a dedicated device 
such as a release switch (Mushiake et al., 1997), but this usually 
limits the subjects to specifi c point in space and restricts the experi-
mental setup. Alternately, onset detection time can be estimated 
from the tracked trajectory as measured by a tracking system, such 
as a magnetic/optical tracker (van Beers et al., 2004), or via the 
encoder of a robot assistant device (Georgopoulos et al., 1982; 
Shadmehr and Mussa-Ivaldi, 1994). The recorded trajectory can 
then be manually analyzed offl ine by a skilled professional, which 
does not guarantee a perfect and consistent detection scheme, or 
it can be detected automatically by a dedicated onset detection 
algorithm.

Automatic onset detection algorithms usually involve calculating 
position (Bays et al., 2005) or position derivatives, mainly veloc-
ity (Donchin et al., 1998; Georgopoulos et al., 1982; Moran and 
Schwartz, 1999; Roby-Brami et al., 2000; Scott et al., 2001) or higher 
derivatives, such as acceleration or jerk (Wyatt, 1998), and setting 
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changes. This may be accomplished by estimating the mean jerk 
at a very early stage of the movement when it is controlled solely 
by the feedforward mechanism (Carlton, 1981; Elliott et al., 2001) 
and before sensory feedback processes can intervene. Examples 
of such fundamental mechanisms may be the adaptation to force 
fi elds (Shadmehr and Mussa-Ivaldi, 1994), adaptation to changes in 
the load force of a lifting task (Flanagan and Wing, 1997; Flanagan 
et al., 1993), the quantifi cation of saccadic gain adaptation (Straube 
et al., 1997; Wallman and Fuchs, 1998), and the measurement of 
adaptation during visuomotor rotation (Rabe et al., 2009). A recent 
example by Scheidt and Ghez (2007) showed that adaptation to 
visuomotor rotation under special training may lead to curved 
movements. If the feedforward direction command is to be meas-
ured in such trials, it is vital that the correct onset be detected, 
the lack of which could cause the measured feedforward angle to 
deviate from its true value as a result of curved movement. Our 
technique may also be applicable when the timing between different 
actions must be measured, for example, when attempting to detect 
synergies among groups of muscles via their movement signals or 
between their principle components (Santello et al., 1998; Thakur 
et al., 2008). Finally, motor control studies of movements with lower 
signal to noise ratio as a result of shorter movement paths, such as 
movements of the fi ngers, the recording of signals from subjects 
suffering from bradykinesia, or measurements corrupted by severe 
noise conditions, may also benefi t from our method.

We begin by explaining the methodology and then compar-
ing its performance to that of other conventional methods. A 
Matlab code that implements the proposed algorithm is available 
online.

MATERIALS AND METHODS
THE MACC BASED ONSET DETECTION ALGORITHM
We assume that the trajectory has two distinct stages, a static stage 
followed by a movement stage, both of which are corrupted by 
normal zero mean Gaussian noise. We use two different models 
with an unknown change time point (t

0
) to describe this behavior. 

The fi rst model is simply a constant position, x
0
, of a straight line 

having constant zero velocity. A variety of models exist for the sec-
ond stage. One such model is the minimum jerk trajectory (MJT) 
model (Flash and Hogan, 1985), given in Eq. 1:

x x x x
t t
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( ) ,τ τ τ τ τ= + −( )⋅ − +( ) = −
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where x
0
 represents the end-effectors’ tracked position before the 

movement began and x
f
 is its fi nal position at time t T= f. In this 

model, the position at any given normalized time τ is a factor of the 
unknown parameters x

f
, x

0
, T

f
, and t

0
. Therefore, to correctly detect 

the onset of the movement, all four parameters must be estimated. 
Furthermore, some of the parameters, such as x

f
 and T

f
 are related 

to the fi nal movement, which can be the result of several sub-move-
ments. Correct identifi cation of the sub-movements necessitates a 
preliminary process of movement segmentation (Fishbach et al., 
2005), but this process itself depends on onset detection.

In this work, we employ an alternative model that describes the 
initial phase of the movement trajectory (once x

0
 and t

0
 are known) 

with a single parameter, U
m
.
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The model (Eq. 2) is based on the minimum acceleration trajec-
tory with constraints criteria. This MACC model (Ben-Itzhak and 
Karniel, 2008) asserts that the position x(t) is controlled by a series 
of three sign-alternating constant jerk segments (U

m
, C

0
, U

m
) with 

optimal switching times (t
1
, t

2
).

For onset detection, we are only interested in the initial phase of 
the movement (0 < t < t

1
), where the position depends solely on the 

cubic power of time, and a constant jerk U
m
. Thus, the remainder 

of our analysis ignores the other parameters of this model.
The derivation and justifi cation of the MACC model were done 

by Ben-Itzhak and Karniel (2008). Early in the movement, however, 
when τ << 1, the MJT and the MACC are similar and the cubic 
power of time is the dominant factor. This observation is applicable 
to our onset detection method.

The joint model describes the initial static and movement 
phases, and it can be summarized as follows:
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(3)

Four problems are inherent in the use of this model: (1) 
Estimation of the initial static position – x

0
; (2) Estimation of the 

initial jerk U
m
 that best fi ts the data; (3) Estimation of the time 

change point t
0
; and (4) Identifi cation of the time interval ΔT. We 

describe the mathematical solution using the signal that is sampled 
at a constant time interval, Ts, with a total of N sample points. The 
fi rst three parameters are calculated through a method explained 
below, while the time interval ΔT should be set according to our 
prior knowledge of human reaction time and feedback loop delay. 
This issue and an analysis of parameter sensitivity are addressed 
later.

First we segment the trajectory and its appropriate time points 
into equal-sized segments denoted 

r
xl and 

r
tl, respectively (Eq. 4), 

each with m data points (m < N). Theoretically, the segmentation 
should be repeated for the entire sampled signal, but in this case, as 
justifi ed later in the text, it was done only for that portion of the data 
in which we believe with high certainty that the onset resides.
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(4)

Our problem is thus redefi ned as a problem of estimating, which 
data segment ( , , [ , ])

r r
x t t t tq q q s f m∈ − +1  best fi ts the static model and 

which adjacent data segment ( , , [ , ])
r r
x t t t tq m q m q m s m f+ − + − + − + −∈1 1 1 1  

best fi ts the constant jerk model. To that end, we estimate the model 

Frontiers in Neuroscience | Neuroprosthetics June 2009 | Volume 3 | Article 61 | 2



Botzer and Karniel Simple and accurate onset detection

parameters (i.e., x
0
, t

0
, U

m
) for the entire segments and then select 

as a solution the set of parameters that best fi ts the data.
The model for the static phase for each data segment 

r
xq (Eq. 5) 

is the simple mean of that segment, and it is an estimation of the 
true average x0 (under reasonable assumptions of normal Gaussian 
zero mean additive noise).
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The second term of the model (Eq. 3) is based on a constant jerk 
model that includes three parameters (x

0
, t

0
, U

m
). For every segment 

r
xq, the estimation value of x

0
 is simply defi ned as the average value 

of the segment ˆ ( )x q0 , the value of t
0
 is defi ned as the end point of this 

segment t
q
, and fi nally, U

m
 is defi ned as the best root-mean-square 

(RMS) solution that fi ts the data in the adjacent time segment r
tq m+ −1. These estimations and assumptions are summarized for a 
single onset point t

q
 (Eq. 6).
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The fi t quality of the joint model to the data is defi ned as the 
sum of the RMS errors between the data and the combined model 
(Eq. 7), which includes the static model (Eq. 5) and the constant 
jerk model (Eq. 6). Finally, the estimated onset point t̂ 0 is defi ned 
as the time point at which the sum of those RMS errors (Eq. 8) 
is minimized (a local minima exists), and the mean jerk, which 
describes the motor command, is simply ˆ (ˆ )U tm 0 .
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Theoretically, the minimum could be searched for within the 
entire signal. However, since the onset time clearly cannot be found 
near peak velocity, we limit the maximum search point t

f
 by using 

the peak velocity threshold technique together with a relatively 
high threshold value. This technique assures with high certainty 
that the movement onset exists prior to this time point. In our 
implementation, we found that a threshold of 20% of the peak 
velocity is satisfactory, namely

t ArgMax xf
t

= ⋅0 2. { }&
 

(9)

In the event that more than one local minimum exists in the 
model, we simply select the latter as the onset point.

The suggested model has a single free parameter, m, which 
defi nes the durations of both the stationary and the initial move-
ment trajectory segments. The selection of m is governed by two 
opposing factors: increasing m will both decrease (due to noise) 

and increase (due to misfi t of the model) the error. Furthermore, if 
we assume that the model is adequate and that noise is independ-
ent, then the RMS error is simply the variance of the noise, which 
decreases as a function of the total sample size (i.e., in our case, the 
duration of 2m − 1 samples). On the other hand, higher m values 
may invalidate our assumptions, i.e., of a constant position prior 
to movement onset and a constant jerk in the initial portion of the 
movement, about the model.

In addition to these issues, we should also consider motor sys-
tem physiology, specifi cally, a minimum reaction time (Carlton, 
1981; Paillard, 1996) of an order of 100 ms, which may modify 
both the constant position term prior to the initiation of move-
ment and the movement trajectory as a result of the sensory 
feedback loop. Likewise, it is important to emphasize that the 
model can also predict the feedforward initial jerk, U

m
, which 

may also be infl uenced by the feedback loop if the selected m 
is too large.

Theoretically, the duration could be defi ned differently for 
the two segments. However, as a result of a sensitivity analysis of 
this parameter and for the sake of simplicity, we chose to imple-
ment the model incorporating equal durations for both segments. 
These fi ndings are summarized and addressed in “Results” and 
“Discussion” sections.

We provide an online Matlab code that implements the MACC 
model, and this code may be freely downloaded at http://www.bgu.
ac.il/∼akarniel/pub/MACCInitV4.rar

EVALUATION METHOD
We evaluated our proposed MACC-based onset detection algo-
rithm by comparing its performance to those of other methods 
(velocity threshold technique and manual detection by a group 
of motor control experts) on a simulated movement and on real 
reaching movement databases.

Generated using Matlab R2008b software (MathWorks 
Corporation), the simulated movement database comprised move-
ments that started with initial static segments and were followed by 
movement trajectories patterned after the minimum jerk trajectory. 
The static segment had a constant zero position value and duration, 
whereas the minimum jerk trajectory total movement path and 
total movement time parameters (x

f
, T

f
, respectively) were selected 

from a unifi ed probability distribution in the range x
f
 ∈ [0.1, 0.5] m 

and T
f
 ∈ [1, 2.25] s. Using a sampling interval of 10 ms, we formed 

our main dataset by simulating 500 random movements based on 
these parameters. The simulation database included fi ve similar 
datasets, each with an incrementally higher variance level of added 
zero mean white Gaussian noise. Altogether our database included 
2500 movements, which were not preprocessed with a low pass 
fi lter and were analyzed as is.

For each movement in the database, we computed the esti-
mated onset time %t 0 using both the MACC model and the velocity 
threshold technique. Figure 1 shows an example of such a trajec-
tory and the appropriate MACC model error and the estimated 
onset time.

The score of each method under each noise level was defi ned as 
the RMS difference between the true onset and the detected onset 
time across the dataset. Since the RMS errors are not necessarily 
Gaussian, we could not use a simple T distribution to compute 
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the confi dence intervals, and instead, we employed a bootstrap 
technique (p < 0.05) (Efron and Tibshirani, 1998).

In addition, we compared manual onset detection of the motor 
control experts (experienced researchers in the BGU computational 
motor control laboratory) to the automatic methods mentioned 
previously. The database for this comparison was based on a subset 
of the previously mentioned database. Each expert analyzed the 
same 120 movements built from the identical set of 30 movements 
extracted from the fi rst four datasets. The noisiest of the datasets 
was not included in this analysis. Movement positions and veloci-
ties were presented to the experts on a PC screen. Each movement 
profi le was displayed with a different shift selected from a ran-
dom unifi ed distribution of 200 ms. Using a special tool written 
in Matlab, each expert selected the onset time.

In addition to that for synthetic movements, we created another 
database composed of recorded reaching movements. This addi-
tional database was specifi cally constructed to validate the effi cacy 
of the MACC model on real movement with real noises and also to 
inspect whether the trend that we observed between the different 
methods on the synthetic database is also evident in the recorded 
movement database. Finally, the between-subjects variability of 
manual onset detection may be used to justify the use of automatic 
onset detection instead of manual segmentation.

The reaching database consisted of 100 reaching movements 
collected from 10 subjects after receiving their informed con-
sent. Each subject was asked to perform 300 planned reaching 
movements of 12 cm while their hand position was tracked by a 

Phantom desktop (Sensable™) with dedicated software at 150 Hz. 
The criteria for selection of the 10 movements per subject were 
based on automatic measurements of signal noise levels. We only 
selected movements with noise levels similar to those in the fourth 
synthetic dataset. The noise level was defi ned as the RMS of the 
residual signal after its movement component was fi ltered. Two 
fi lters in series, the fi rst a high-pass fi lter (51 taps, hamming win-
dow, cut-off 5 Hz) and the second a local detrend fi lter (median 
fi lter, 10 samples) constitute the fi ltering stage, which removed 
any local DC leftovers.

Another group of experts, comprising the former group of 
experts and one new recruit, performed additional onset detec-
tion tasks on the reaching movement database using the same 
Matlab tool as described before. Their results were compared to 
those from automatic detection of both the MACC and of the 5% 
velocity threshold.

RESULTS
We compared the performances of two automatic algorithms for 
the detection of movement onset using simulated movement and 
human reaching movement databases.

For MACC onset detection, the time windows for the segments 
(m) were defi ned as 15 sampling points, each with a duration of 
150 ms. This value is short enough to capture early movement onset 
and to facilitate the use of the mean initial jerk as an estimator of 
the feedforward command. Later in “Results” section we describe 
the sensitivity analysis of this parameter.
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FIGURE 1 | Example of a single trajectory without noise and the estimated onset point using the MACC based onset detection model. (A) Position as a 
function of time; (B) velocity profi le; (C) model error (blue) and its minima defi ned as the estimated onset point (blue circle). Black dashed vertical lines on the 
position and velocity illustrations mark the true onset time at 0.5 s.
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A performance comparison of the two automatic algorithms, 
in terms of RMS error, is provided in Figure 2 as a function of 
noise level. The results are presented as mean errors and confi -
dence intervals (p < 0.05) for the MACC model and for the velocity 

threshold method at two different peak velocity threshold levels 
(5% and 0.01%). MACC model error is substantially lower than 
that of the velocity threshold technique, even without noise. This 
difference is the result of the inherent bias in the velocity threshold 
method and is related to threshold level. Therefore, we also com-
pared the results of a lower peak velocity threshold of 0.01% that 
has a MACC-equivalent performance without noise. Although this 
threshold value was superior to the 5% value, its RMS error was 
consistently higher than that of the MACC model wherever noise 
level was increasing.

Algorithm performance was also compared to a motor control 
specialist’s manual segmentation, and their respective perform-
ances were, in turn, compared to the capacities of the automatic 
segmentation techniques. The results show (Figure 3) that, in terms 
of mean error, MACC model performance was consistently better 
than the manual and the velocity threshold techniques, and that 
the experts performed better than the automatic velocity measure-
ment technique. An examination of error behavior with increasing 
noise level shows that the error increases faster for manual onset 
detection than for MACC-based onset detection, which implies that 
MACC was less sensitive to noise. Note that at low noise levels, both 
manual detection and the velocity threshold methods exhibit biased 
detection, which is not evident in the MACC algorithm.

Another group of experts analyzed real reaching movements 
(Figure 4, example of a single movement), taking the position and the 
velocity of the movement as explained in “Methods” section. Their 
performances were compared to those of the automatic MACC and 
velocity threshold techniques (Figure 5). The results refl ect the wide 
variability that existed among the experts – although most expert 
analyses produced results in agreement with MACC, two expert com-
putations yield results closer to the 5% velocity technique.
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FIGURE 3 | Mean onset error presenting the accuracy of the MACC onset 

detection method over manual onset detection by experts and automatic 

velocity-based onset detection. Bar represents mean value and error bar 

shows mean confi dence intervals (p < 0.05). Gray: performances of six manual 
experts; Blue: automatic MACC model performance; Blue star: MACC model 
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Relative to almost all the experts, the MACC model was 
 negatively biased. Experiments with comparably simulated data-
bases produced similar fi ndings in which the true onset is known, 
a fact that reinforces our fi ndings. These fi ndings also suggest that 
manual onset detection, although largely in agreement with the 
MACC model, is positively biased.

We analyzed the sensitivity of the segment duration (m) using 
the synthetic database and explored both symmetric and asym-
metric segment durations for the stationary and initial move-
ment segments. Our fi ndings show that when both segments are 
increased equivalently, the RMS onset error decreases as an inverse 
function of the time window size (observation discussed earlier). 
The minimum of this function is achieved in our simulated data-
base at a value of 20 samples (i.e., a total time window of 390 ms). 
Further increases in window size cause the error to increase, prob-
ably because of the inadequacy of the model. Although the mini-
mum is achieved at a segment size of 20 samples, we posit that 
our selection of a smaller window size of 15 samples is preferable 
since it may incorporate changes in the movements that are related 
to a feedforward mechanism and it could provide a better tool 
for detecting movement with a shorter reaction time. The extra 
mean RMS error in our sensitivity analysis due to this selection 
was about 10 ms. Our code accommodates the fl exibility to defi ne 
separate segment durations. Another theoretical possibility is to 
employ a multiple onset detection scheme based initially on a wide 
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determined by the 5% velocity threshold. Onset detections by the experts for this example ranged from 0.26 to 0.32 s, while the MACC onset detection was 0.26 s.
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FIGURE 5 | The RMS onset time of seven experts (E1 through E7) on a 

real database compared to MACC and 5% threshold techniques. Gray: 
individual mean expert performance; Blue: MACC mean onset detection; Red: 
5% velocity threshold onset detection. Graph shows that the experts’ 
variabilities range between those of the MACC and of the velocity threshold 
techniques. Onset detection of fi ve out of the seven experts does not differ 
statistically from the MACC. The onset detection trend present in the 
synthetic database between the three methods also exists in this database.
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Perform. 7, 1019–1030.

Corcos, D. M., Gerald, L. G., Latash, M. L., 
Almeida, G. L., and Agarwal, G. C. 

constraints implies bang-bang control 
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ments. Neural Comput. 20, 779–812.

Botzer, L., and Karniel, A. (2008). 
Feedback adaptation during reaching 
movements with visuomotor delay. 
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time window (larger m values) to make a rough detection of the 
onset time, after which the algorithm switches to a narrow search 
window focused around the approximated time point. This may 
improve algorithm accuracy and decrease its sensitivity to noises 
and sub-movements.

DISCUSSION
We present a simple yet effi cient and accurate method for detect-
ing movement onset. The method was shown to be superior to the 
conventional velocity threshold based method when tested on a 
simulated database that included minimum jerk movements cor-
rupted with random Gaussian noise. It also performed better when 
used on actual recordings of reaching movements. A performance 
comparison with onset detection by experts using the same two 
databases revealed the presence of inconsistencies (absent when 
using automatic onset detection methods) between the expert 
evaluations. Finally MACC onset detection method performance 
on the synthetic database had smaller errors and earlier reaction 
times than the conventional velocity threshold technique. Because 
this trend was also evident in the database of recorded movements, 
we believe that our method is more accurate.

Our method does not assume that the constant term is known 
apriori, and therefore, its average value is estimated using the mean 
value of the segment, a process that leads to increases in the RMS 
error in the model. However, if the exact position in the experi-
mental setup is known, then onset detection can be improved by 
omitting the use of the estimated average, thereby reducing the 
error.

In addition, our method assumes that the initial portion of the 
movement can be modeled by a third order power of the time series. 
This concept is consistent with the idea that the initial part of the 
movement can be modeled using a constant jerk, as suggested by 
the MACC model (Ben-Itzhak and Karniel, 2008). The jerk signal 
has been used in the past for the detection of movement onset 
(Wyatt, 1998), but in that case, it was used as a simple threshold 
similar to the velocity threshold.

The simulated database that we created was based on the 
assumption that human reaching movement can be depicted via the 
minimum jerk model (Eq. 1) (Flash and Hogan, 1985; Shadmehr 
and Mussa-Ivaldi, 1994; Wolpert et al., 1995). The minimum jerk 
model can be regarded as a fi fth order polynomial having null 
terms for time power series lower than three. Although the coef-
fi cient of the third order term is not the largest among the time 
power series, its contribution to the model in the early stage of the 
movement is higher than the other terms. The fi t of a third order 
power series, therefore, seems appropriate even if the movement 
appears to be better modeled by the minimum jerk rather than 
by the MACC model. If one assumes that the constant jerk model 
accurately describes the initial movement phase and that the noise 

at each sampled position point is statistically independent, then 
the suggested algorithm, which uses linear regression, has a lower 
noise variance that is proportional to the inverse of the number of 
samples used in the regression. Even if the condition of independent 
noise is not entirely met, its partial fulfi llment is an improvement, 
albeit to a lesser degree, over the use of a single threshold point.

The notion of movement onset detection using two separate 
models, one for the static phase and the other for the movement 
phase, has been previously suggested (Staude, 2001). In that study, 
it was assumed that the noised model command drives a plant that 
can be represented as an all-pole fi lter; thus, in order to reveal the 
underlying motor command, a data-tuned inverse model was used 
and its output error was evaluated using a log likelihood ratio test. 
The fi nal decision is made when the inverse fi lter error crosses some 
threshold. Although this technique produces accurate results, under 
the above assumptions, its diffi cult implementation and complexity 
prevent it from becoming a practical method for onset detection.

Very fast reaching movements, also called ballistic movements, 
are by defi nition controlled entirely by a pre-planned, feedforward 
controller. However, there is mounting evidence that practical 
reaching movements are also infl uenced by the feedback (Botzer 
and Karniel, 2008; Desmurget and Grafton, 2000; Ma-Wyatt and 
McKee, 2007; Saunders and Knill, 2003, 2005). This emphasizes 
the importance of using a movement onset detection algorithm, 
such as that presented here, which uses only the initial portion of 
the movement where said movement is still dominated by the pre-
planned, feedforward controller. As a consequence, when the pro-
posed algorithm is used with the appropriate time window (m), it 
is superior to threshold techniques (e.g., velocity threshold) since it 
is insensitive to fragmentation of the movement (sub-movements) 
that may appear later. Moreover, the suggested model, which esti-
mates the initial jerk (Ûm), may be used to estimate feedforward 
dynamics such as trial-by-trial adaptation during exposure to force 
fi elds, perturbation, or other imposed environmental changes.

We propose an onset detection method that provides an accurate 
estimation of the onset time and an average value for the initial 
feedforward motor command. The potential applications include 
reaction time evaluation, feedforward trial-by-trial adaptation 
analysis, and onset detection. The proposed tool is expected to be 
useful for analyzing reaching movements and similar movement 
profi les commonly measured in motor system studies.
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