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The nervous system analyses sensory information
(▶Sensory systems) and orchestrates motor commands
(▶Motor control). Many artificially engineered systems
face similar challenges. Following the notion of cyber-
netics, we strive to boost both scientific and technolog-
ical research by exploring the differences between
artificial control theory (▶Adaptive control; ▶Com-
puter-neural hybrids; ▶Control theory; ▶Nonlinear
control systems; ▶Signals and systems) and the bio-
logical motor control.

Computationalmotor control covers all applications of
quantitative engineering tools as well as other mathemat-
ical tools for the study of the biologicalmovement control

system, which includes the joints, muscles, sensory
organs and of course the nervous system.
For example, ▶feedback control, ▶adaptive control,

and ▶bayesian statistics, represent such computational
tools that were employed in the study of the biological
motor control system, see also [1–4].
The applications of computational motor control are

bidirectional: on the one hand control theory knowledge
is employed to generate new theories for the biological
motor control and on the other hand we draw inspiration
from the biological motor control in order to develop
new control strategies for artificial devices.
In the following two sections we describe this

interplay between science and technology and intro-
duce the main concepts in the field of computational
motor control that are further defined in the relevant
keywords throughout the encyclopedia.

Control Theory and Our Understanding of the
Biological Motor Control System
Brain researchers have always used technical analogies
stimulated by the status of the technology at the
time of writing. For a recent review of insights
from engineering theory that can shed some light on
biological complexity see [5]. These analogies are very
useful pedagogically and they could also be useful
scientifically as long as they are accurately stated. The
best way to accurately state an analogy is by means of a
mathematical computational model. In the 50s the
servo-mechanism was popular, and at that time Ragnar
Granit [6] wrote that the concept of servo-control is
practically as old as experimental physiology and could
be traced back to Claude Bernard’s idea about the
constancy of the internal environment (1865). However,
once the model is treated with a specific mathematical
model, one can study the gain of the feedback and
stability behavior, which are part of the feedback servo-
mechanism control theory and were not existent at the
time of Claude Bernard. The introduction of quantita-
tive comparison of physiological data to the computa-
tional model paved the way to new discoveries, such as
the time-varying gain [7] and the typically low gain and
large delays [8] that generated new understandings and
pushed researchers towards the notion of adaptive
control.
Feedback Control (▶Control) is the first technique

taught in any control engineering class [9]. Computa-
tional motor control evolved as part of the field of
biological cybernetics and the origin of the word
cybernetics refers to feedback control and indeed in the
early models for motor control, feedback control was
the main analogy and modeling tool [7,10].
In parallel to the development of ▶adaptive control

theory, physiologists have noticed that the simple servo
theory does not properly describe the biological motor
control system since the gains are low and changeable,
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and the delay does not enable proper control of rapid
movements [8]. The delay problem is partially resolved
by equilibrium theories (see ▶Equilibrium point con-
trol) where the feedback is performed instantaneously
by the muscle’s impedance (▶Impedance control).

Another prominent feature of the biological motor
control system which is not addressed by the servo
theory as well as by most modern engineering theories
is the redundancy of the biological motor system [11]
which enables obtaining the same goal by activa-
ting many possible muscle unit combinations (see
▶Coordination).

Most notably, adaptive control theory was required in
order to address the limitations of the servo theory and
is being increasingly employed in many studies of the
biological motor control system [12–16].

The Hierarchy of Feedback Adaptation Learning
and Evolution
Adaptation in the wide sense (WSA) is accommodation
to the environment, in other words, any processing of
sensory information that eventually changes the motor
behavior in one way or the other. Figure 1 presents a
map of four instances of this phenomenon where the
coordinates of this map are time-scale and majority of
change. We start with a description of the system
approach and then move to address each type of the
WSA separately to clarify the scope of each part in this
structural temporal hierarchy.

Structural Temporal Hierarchy
A prominent tool of the engineering approach is the
block diagram and we use it here to describe the various
notions in the proposed structural temporal hierarchy.

Figure 2 demonstrates such a diagram in which each
block is an input-output system. The output is a function
of the input. The term function is used here in the wide
sense to include transfer function that implies the
existence of dynamics and internal state variables
within the system as well as stochastic function that
implies the presence of noise or uncertainty.

When we think about a control problem we usually
have at least two systems: The controller and the
controlled system. For example if we wish to control the
position of the hand, we have the controlled system on
the one side, i.e., the relation between the neural
command to the muscles and the position of the hand,
and the controller on the other, i.e., the relation between
the intended movement and the neural signals to
the muscles implemented by the brain. (Other distinc-
tions are possible, such as considering the muscles as
part of the controller as discussed further in the next
subsection).

A prominent feature of the biological system is to use
the sensory information about the actual position of the
hand in order to improve the control of its position. This
simple idea was used by engineers from the beginning
of cybernetics (in part following observations of nature)
and was later developed to include adaptive control. We
follow the engineering terminology and use it to define
a hierarchy of methods to improve the control signal
and then try to use it to describe the brain as it controls
movements. The basic idea of this hierarchy was
first presented in [4] and here we further extend and
more accurately define and demonstrate it. The terms
feedback, adaptation, learning and evolution that are
used here to describe this hierarchy are overloaded with
various meanings and interpretations, therefore it is
crucial that we properly define what we mean by each
part of the hierarchy. We start from choosing the
appropriate definition from the dictionary and then
further define and demonstrate what we mean in the
context of the hierarchy and the engineering and
biological control systems.

Feedback
According to the Miriam-Webster Dictionary: “the
return to the input of a part of the output of a machine,
system, or process (as for producing changes in an
electronic circuit that improve performance or in
an automatic control device that provide self-corrective
action).”

According to the Oxford Dictionary: “a. Electr. The
return of a fraction of the output signal from one stage of
a circuit, amplifier, etc., to the input of the same or a
preceding stage.”

We refer to a system as feedback control when
sensory information is fed back to generate the control
signal during the performance of the task (see Fig. 2).
The signal flows from the sensory system to the control

Computational Motor Control: ERN. Figure 1 The
temporal structural hierarchy of wide sense adaptation in
the motor control system. Feedback, Adaptation,
Learning and Evolution are instances of wide sense
adaptation where sensory information is integrated and
employed to change the control signal in various
techniques and time scales.
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system, this path could be long or short depending on
the specific system; however, there is no change in the
control system and the changes in the control signals are
the result of changes in the sensory signals.

In the biological system the shortest path is typically
described as the feedback reflex loop, which includes a
monosynaptic pathway. However, there is a shorter
pathway for feedback within the muscle. The simple
mechanical property of stiffness (i.e. the force being
proportional to the length of the muscle) could be
referred to as feedback control, since the control signal
(the force) is influenced by the outcome that is sensed
by the length of the muscle. This last example demon-
strates a limitation of the engineering approach, since
the blocks usually hide the detailed structure, therefore
if we define the control signal as neural input we would
never note the internal feedback loops within the
muscle and joint. In such block diagrams there is always
a tradeoff between simplicity and accuracy and one
should note that the hierarchy described here for a
specific level of abstraction could be multiplied within
each block.

Let us summarize this discussion with a formal
definition of feedback control: Feedback Control: of a

given input-output system is the usage of the output
signal in order to generate the control signal in real time,
i.e., the time scale of changes in the control signals is
determined by the propagation of signals through the
channels and the control system.
Figure 1 captures the main properties of feedback:

signal flow in real time without changes in the system.

Adaptation
According to Miriam-Webster: “adjustment to environ-
mental conditions: as (i) adjustment of a sense organ to
the intensity or quality of stimulation (ii) modification
of an organism or its parts that makes it more fit for
existence under the conditions of its environment.”
According to the Oxford Dictionary: “2. a. The

process of modifying a thing so as to suit new condi-
tions: as, the modification of a piece of music to suit a
different instrument or different purpose; the alteration
of a dramatic composition to suit a different audience.”
Adaptive control is a control strategy where the

controller can change its function to accommodate
changes in the controlled system or in the environment.
Here not only the signals are changed but also the con-
trol system is changed based on the sensory information

Computational Motor Control: ERN. Figure 2 The hierarchy of wide sense adaptation in the control of arm
movement. The biological motor control system is separated into three parts: the arm, which consists of the
musculoskeletal system, the controller that may include internal models, state estimators as well as feedback
controller, and the desired trajectory generator that represents higher brain functions. Feedback control changes only
the control signals but does not change the functions of any part in the system. Adaptation may change the
parameters of the controller, in particular parameters of the internal models. Learning may change the structure of the
internal model and may also change the desired trajectory. Evolution can change each and every aspect of this
system including the structure of the limb such as the number of joints in the arm. The external world influences the
sensory feedback, which plays a crucial role in all these processes. Many studies manipulate the feedback by
including force perturbations and altered visual feedback in order to excite these processes and analyze their
properties. This diagram concentrates on the control of one arm movement, and therefore in this subsystem the
external world is not influenced by the wide sense adaptation. However, in real life, outside the control experiments
and rule-based games, the human brain has evolved to be capable of changing the environment and this
capability is part of the learning process, therefore the learning process includes also changes in the strategy
beyond changing the internal model and the desired trajectory, such as modifying the force perturbations
by manipulating the environment.
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received. These changes in the system are typically
slow compared to the time-scale of the feedback. The
controller includes a finite set of adjustable parameters
and a third system observes the flow of signals to and
from the control system and determines how this set of
parameters should change in order to improve some
measure of performance.

Adaptive control: Changes in the parameters of the
control system that are generated after observation of
previous control and sensory signals in order to improve
the future performance of the system over a well-
defined task or measurements of performance.

Learning
According to Miriam-Webster: “1 a (1): to gain
knowledge or understanding of or skill in by study,
instruction, or experience <learn a trade> […] b: to
come to be able <learn to dance>.”

According to the Oxford Dictionary: “1. The action
of the vb. LEARN. a. The action of receiving
instruction or acquiring knowledge; spec. in Psychol.,
a process which leads to the modification of behaviour
or the acquisition of new abilities or responses, and
which is additional to natural development by growth or
maturation; (freq. opp. insight).”

While adaptation is a change in parameters of the
controller that improves the performance in certain
types of behavior, learning may generate a completely
new behavior, as in skill acquisition, or may employ a
new strategy to achieve the same task. In both cases the
controller may change its structure. Such change in the
biological system may include the recruitment of new
brain areas or generation of a new neural circuit for a
specific task. In artificial systems the controller may be
replaced with another controller. At this point our
technology does not provide an effective learning
machine and it is highly possible that observing the
biological system and modeling the neural control of
movement may generate new control strategies that
would later be used for artificial intelligent control,
perfected by control engineers, and then return to serve
as models for the brain.

Learning Control: change of the control system in
order to generate a new type of behavior.

Evolution
According to Miriam-Webster: “2 c (1): a process of
continuous change from a lower, simpler, or worse to a
higher, more complex, or better state; 4 b: a theory that
the various types of animals and plants have their origin
in other preexisting types and that the distinguishable
differences are due to modifications in successive
generations.”

According to the Oxford Dictionary: “6. Biol. a. Of
animal and vegetable organisms or their parts: The
process of developing from a rudimentary to a mature

or complete state. c. The origination of species of
animals and plants, as conceived by those who
attribute it to a process of development from earlier
forms, and not to a process of ‘special creation.’ Often
in phrases doctrine, theory of evolution 7. The
development or growth, according to its inherent
tendencies, of anything that may be compared to a
living organism (e.g. of a political constitution, science,
language, etc.).”

In the proposed hierarchy, evolution is the last resort
as it may take many years and it can potentially generate
the largest change due to the evolution of a new species
or in the engineering term, a new kind of controller.

Evolution: an arbitrary change in the controller that
could include any change in structure, function, con-
nectivity, parameter values, learning algorithms and
adaptation protocols. The best change is chosen by
survival of the fittest and therefore this process may be
extremely long.

An Engineering Example
Consider a controlled system: y = P(x, u) ; _x = g(x, u),
where y is the output, u is the input and x is the state, and
a proportional controller u = k(yd−y), where yd is the
desired reference trajectory.

As long as k is constant, this is a simple feedback
control. The sensed output y is used through the
controller to change the control signal in real time, in
this case immediately. Even if we introduced delay or
dynamics to the controller, as long as the parameters of
the controller are fixed this would still be called a
feedback control system.

Now suppose that this feedback control that worked
fine in the first design does not provide good perfor-
mances due to changes in the control system or in the
environment. We wish to choose k automatically to
generate the best performance under this given struc-
ture. We may design an algorithm that observes the
outputs and possibly also the inputs to the system and
modify k accordingly. This scheme is called adaptive
control and a typical requirement to avoid unstable
behavior is that the time scale for the changes in the
parameter is long compared to the time scale of the
feedback loop. This is required in order to properly
identify the system and adapt the parameters of the
controller accordingly.

With this adaptive control we can face certain type of
changes in the plant or the environment, however, a new
task or severe changes in the plant or the environment
(that would also be called new task) may require
changes in the structure of the controller, e.g., one
may consider adding integration or a lead or other
elements from some given repertoire. In this example
lets consider the repertoire of linear controller, i.e.,
finite number of poles and finite number of zeros in the
transfer function of the controller.
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An algorithm that would observe the inputs and
outputs and would choose the optimal structure of the
controller, i.e., the number of poles and number of
zeroes, would be called a learning algorithm. Again this
process should be slower than the typical time scale of
adaptation in order to obtain enough information from
the operation of the current controller to make a good
decision.

Finally this whole framework of linear control might
be wrong and a new generation could evolve based on
gain scheduling or some neural network based
controller (▶Neural Networks for control).

Then again, after such an evolutionary process, e.g.,
in the case of neural network, the changes in the weights
would be called adaptive control, changes in the
connectivity, size and structure of the net would be
called learning, an finally changes in the time of
activation function or the underlying structure would be
called evolution.

A Neurophysiological Example
Consider a reaching movement from an initial position
to a given target (▶Arm trajectory formation).

The ▶equilibrium-point control [17–19] suggests
that the brain specifies the end point, namely the resting
length of the muscles, and then the arm moves to its
equilibrium according to the law of physics. As long as
the hand is not at the target there is an error signal that
pushes the hand towards the target. This would be a
classical feedback control. Other versions of the
equilibrium control [18,19] are also based on feedback
control and account for equilibrium trajectory.

Suppose that the subject holds a robotic manipulan-
dum that exerts a velocity-dependent force perpendicu-
lar to the direction of movement [20]. In the first
movement the subject generates a curved line and it
seems that the feedback control is insufficient to
generate a straight line. Then after practice the
movement becomes straight and if the force field is
stopped a curved movement in the other direction is
generated, a phenomenon that was called after-effect.
The after-effect is a clear sign that feedback was not the
reason for the improved behavior and some change in
the controller took place during this training period. We
call such a change in parameters adaptation. The adap-
tive controller could be based on▶internal models [16]
or on parametric changes in the Equiliberium-point
(EP) signals or other control signals [21].

Now suppose that we introduce a completely new type
of force field, which subjects are unable to adapt to
within tens of trials, i.e. a force field, which is not within
the natural repertoire of the adaptive control system. Two
examples for such a force field are time-dependent forces
and force fields that switch according to some sequence
[22]. The natural adaptive control scheme is insufficient
in order to compensate for such force fields, however,

some individuals after prolonged practice in a proper
training plan with proper cues and motivation may be
able to learn this task, probably by employing new neural
circuits or generating a major structural change of the
control strategy. This would be a learning process.
Finally the force field might be stronger than the

physiological limitations of the muscles, much stronger
than the one that could be learned by increasing the
muscles mass through training. In such cases, only
evolution of a new species might solve this task if this
task was essential for the survival of the subject for a
large number of generations.
The adaptive nature of the biological system addressed

in this essay is indeed the core of computational motor
control, however, one should note that many other
computational models and control methods are being
employed in the study of the biological motor control
including optimal control (see ▶arm trajectory forma-
tion), optimal feedback control, stochastic control,
▶information theory, ▶nonlinear control systems, etc.
As new engineering and computational techniques

are being developed by engineers and mathematicians
they are quickly employed to describe the nervous
system, and on the other hand as new behavioral and
physiological phenomena are being observed they
quickly inspire engineers to incorporate them into
artificial systems – this is the essence of cybernetics and
computational motor control and therefore the specific
definition and list of related topics are ever growing.
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Computerized Stabilometry

▶Stabilometry

Computer-Neural Hybrids

VITTORIO SANGUINETI

Dipartimento di Informatica, Sistemistica e Telematica,
Università di Genova, Genova, Italy

Synonyms
Dynamic clamp; Neurally controlled animats; Hybrots;
Embodied neural systems; Brain-machine interfaces;
Brain-computer interfaces; Neuroprostheses

Definition
Device or experimental apparatus in which living
neurons exchange information in a bi-directional way
with an artificial system – a computer simulation or a
physical device.

Exchange may involve intra-cellular signals and
occur within a single neuron, or between pairs of
neurons. Alternatively, the neural component may be
made of multiple neurons, an entire neural population
or even a whole organism, with its own intact sensory
and motor systems. In this latter case, signals are
exchanged extra-cellularly, with multiple stimulation
and recording sites.

The artificial part may consist of simulated neurons,
thus resulting in a hybrid neural circuit. It may include
artificial sensor or actuator systems, as in ▶neuro-
prostheses and ▶brain-computer interfaces, or even
consist of a whole physical or simulated body.

Description of the Theory
Description of the Structure
In computer-neural hybrids at single neuron level, an
▶intra-cellular recording of the ▶membrane potential
of a neuron is used to calculate a current, which is
then injected into the same or another neuron. In this
way, it is possible to simulate artificial voltage-gated
(Fig. 1) and/or ▶synaptic conductances (Fig. 2). Both
voltage measurement and current injection are made
with glass micropipette electrodes. This technique is
known as dynamic clamp [1].

The artificial part of the dynamic clamp may consist
of one or more simulated neurons. This would result in a
hybrid neural circuit, made of both biological and
artificial neurons. Dynamic clamp can be, and has been,
implemented in various ways, ranging from analog
circuits, to dedicated computer systems (e.g., digital
signal processing boards), to software applications that
exploit the computational power of modern computers.

In computer-neural hybrids that involve multi-
ple neurons, both recording and stimulation usually
occur extra-cellularly, through multiple electrodes or
▶microelectrode arrays. Like in dynamic clamp, the
multi-site neural signals are processed in real-time,
but here the signal recorded from each electrode reflects
the activity (population spikes and/or field potentials)
of a small population of neurons. For this reason, the
processing of the recorded neural signals often includes
▶spike sorting modules, which result in multiple spike
trains – one for each identified neuron in the population.
Microelectrode arrays are also used to deliver electrical
stimuli that excite the neural system by initiating action
potentials in the neurons nearby (see Fig. 3).

As both recording and stimulation occur extra-
cellularly, in these hybrids the computer-neural interac-
tion is less direct than in dynamic clamp. Nevertheless,
the collective activity of the neural population can be
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