
Chapter 21

Linear Systems Description

Amir Karniel and Gideon F. Inbar 

■ Introduction

The systems approach is a widely used practice in modeling artificial as well as natural
phenomena.  Each process or sub-process is viewed as an input-output system, as de-
scribed graphically in Fig.1.

This approach is used extensively in engineering, for example in modeling electronic
and mechanical systems and in chemical process description. In this chapter we de-
scribe this approach and its application to biological systems in general and the nervous
system in particular. The systems approach can be used as a modeling tool to compre-
hend the function of the system and to produce a hypothetical model which can be test-
ed in experiments. It is useful in describing and characterising experimental results, at
times by relating the anatomical and physiological properties to the measured variables
(see for example the muscle spindle transfer function, Houk 1963). Mathematical mod-
eling of part of the neurological system can be used to study that and other parts by sim-
ulation. (See McRuer et al. 1968 for an example of combination of models to the motor
neurons, the muscle and the muscle spindle in a closed loop). The systems approach
modeling is also useful for building interfaces to engineering systems in order to devel-
op measurement devices or artificial organs such as hearing aids, pacemakers and arti-
ficial limbs.

Linear systems are highly popular models due to their simplicity and since they are
very convenient for mathematical analysis. Beyond the above technical advantage,
many systems can be modeled as linear systems at least for a limited range of operation.

Let us begin with a short description of the terminology of this field. Figure 1 de-
scribes the general notion of an input-output system in a block diagram. The input is u
and the output is y.  They usually describe a physical quantity as potential, current force
or position. In this chapter their value may be scalar real numbers, or vectors of real
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Fig. 1. Input-Output system. u is the input and y is the output. They can be scalars or vectors that
represent physical values such as potential, current, force, or position. They can also be functions
of time, that is trajectories. The output is generally a function of the input and possibly of the state
of the system.
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numbers in the case of multiple inputs and outputs.  The inputs and outputs can also be
functions of time, that is trajectories, either discrete or continuous.  We will concentrate
on deterministic mapping systems, which means that for a specific input there is a spe-
cific singular output, i.e., the output is a function of the input, y=f(u). Let us add two
important qualifiers for a system:
– A system is time-invariant, roughly, if the system properties do not change with time.
– A system is linear if it satisfies the property of superposition, that is, for any couple

of inputs and outputs y1=f(u1) and y2=f(u2), the equation ay1+by2=f(au1+bu2) will be
satisfied for any couple of scalars a and b.

A system that satisfies both of these properties is naturally called a linear time-invariant
(LTI) system. All the systems in this chapter are LTI unless otherwise mentioned.

In this chapter we introduce linear systems, static and dynamic, then we move to a
detailed description of each step in describing, modeling and analyzing linear systems,
as is outlined in the next section.

Outline

In this section we combine a short outline of this chapter with a description of the bio-
logical system modeler work. The main stages are illustrated in Fig. 2.

The first step in biological modeling by the systems approach is to choose or define
the inputs and outputs. This can be done by inspection of the anatomical structure of
the system and incorporating prior knowledge about the physiological function of the
modeled system. Such inspection can lead to an electrical or mechanical model, or
sometimes directly to an equation that describes relations between inputs and outputs.
For example, by looking at the physiological structure of a small region in the retina,
one can choose the input to be the light intensity and the output to be the firing rate of
a related axon. Then one can suggest a simple linear model such as , where f is
the firing rate, I is the light intensity, and a is a constant that is sometimes called a “gain”
. Another suggestion may include a more sophisticated electrical model of the nerve
cell, which finally produces a differential equation that relates the output to the inputs.
Part 1 deals with the first suggestion, i.e., static relations, where linear artificial neural
networks are described and an example for an associative memory is given. The major
part of the chapter is about dynamic models, that is, where the inputs and outputs are
functions of time and the output may be a function of previous events and not only of
the current input. Part 2 introduces dynamic linear systems and Part 3 deals with elec-
trical and mechanical models, and how to derive the differential equations from the
graphic description of the systems model; these procedures are based on Kirchhoff ’s
and Newton’s Laws. This part contains various examples for modeling the nervous sys-
tem, synapses and muscles. Once we have a model, that is, a set of equations that de-
scribes the biological system, we can check the behavior of the model in various cases
in order to produce hypotheses that can be later checked on real data from the biological
system. Laplace and Z transforms are powerful tools to analyze and manipulate linear
systems and they are the subjects of Part 4.

A model usually contains some parameters, for example, the parameter a in the sim-
ple model of the retina above. One of the objectives of the modeler is to estimate the val-
ues of these parameters. This estimation is based on measurements of the system’s input
and output. An estimation method for linear systems is described in Part 5. Part 6 de-
scribes how to integrate linear models of subsystems in a block diagram in order to get
a model of the complete system; this method is used extensively in control theory, and
therefore examples from the field of motor control and of temperature regulation are
given.  Models of artificial means can also be incorporated, such as measurement devic-

f a I= ¼
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es, artificial organs or functional neuromuscular stimulation for the paralyzed patient.
Recently it has become a fashion to discuss nonlinear models and chaos, which seems
to appear in many natural systems. This observation is correct; however, in many cases,
the powerful linear system description tools can still be used in order to describe and
analyze nonlinear systems. This is the subject of Part 7. The most common tool to han-
dle nonlinear systems is linearization, which is finding a linear model that is similar to
the nonlinear system in some area of interest. Other options are linear time-varying or
parameter-varying models such as the Hodgkin and Huxley membrane model; two oth-
er options are pre- or post-processing of the linear system which are the terms that are
used in the field of neural computation. One should note that the work of the modeler
usually consists of a few iterations of improving the model, designing new experiments
to obtain new data, estimating the parameters and analyzing the results, as illustrated
graphically in Fig. 2.

Fig. 2. Outline of linear systems description: The first step is to choose or define the inputs and the
outputs and to acquire data about the system from measurements and inspection of the physical
(i.e., anatomical) structure of the system. Then one can move directly to system identification by
trying to fit a linear model to the data, or first draw a physical or electrical model and then esti-
mate its parameters. The given system may be linear or nonlinear; in the case of a linear system
we can describe it with a mechanical or an electrical equivalent model and then write the differ-
ential equations. In the case of a nonlinear system we can use a linear approximation and then
continue as if we had a linear system. The linear time-invariant difference equation can be trans-
formed to the Laplace domain to get the transfer function. These functions can be used for vari-
ous goals, such as system identification, artificial control and modeling in order to anticipate the
system behaviour, and analyzing its properties. Finally, one can use the results of this procedure
to design a new experiment and go back to the measurement step.
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Part 1: Static Linear Systems

In a static system, the output depends on the input only and does not depend on time.
The simplest linear input-output static system is the system  where a is a con-
stant. If we wish to extend this system to multiple inputs and outputs, we can use vector
notation and write  where Y and U are the output and input vectors and A is the
transfer matrix. We restrict our description to homogeneous systems, i.e., those charac-
terized by zero in the input producing zero in the output. However, it is easy to move to
the general case by introducing a new input that is constant and then, for one dimen-
sion, the relation would be . 

A basic element in many neural network models and in artificial neural networks is
such a linear relation as illustrated in Fig. 3. The inputs u can model the activity of neu-
rons that influence the modeled neuron; the constants wi represent the synaptic
strength or position; and the output can represent the neuron potential or firing rate.

In the case of multiple outputs, that is, multiple neurons, we can construct an artifi-
cial neural network (ANN), as illustrated in Fig. 4. The relation between the output and
the input is . For m outputs and n inputs one can write the input-output
relation as  using the following matrixes notation:

Each single weight represents the relation or association between a specific pair of input
and output. Therefore this network is sometimes called “associative network”. By imple-
menting the rule of Hebb (Hebb 1949), i.e., adding strength to connections between neu-
rons that act simultaneously, one can construct a basic model for associative memory.

y a u= ¼

Y A U= ¼

y a a u= + ¼0 1

Fig. 3. Static linear system: y=
u1w1+ u2w2+ u3w3

Fig. 4. An associative linear arti-
ficial neural network
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The technical definition of memory is a device that can store and recall information,
the input is called an address and the output is the data. Associative memory can recall
the data in face of an inaccurate address, as long as the corrupted address is close
enough to the true address. This property is very similar to the human brain memory.
The next example describes a simple implementation of associative memory with the
linear neural network.

Example 1: Linear Neural Network as an Associative Memory

This example demonstrates the use of a linear neural network as an associative memory.
The input can be referred to as the address and the output as the data. For example we
can think of the problem of face recognition, where the input would represent the face
(maybe a vector of bitmap from a camera, or better a vector of features) and the output
would be an identity number of the person. The structure of the network described in
Figure4 suggests that . Let us choose the domain of the inputs and out-
puts to be the binary range {-1,+1} and denote the items that we wish to insert into the
memory with superscript l=1,2…,L where L is the number of items (these items are
sometimes referred to as the “learning examples”). According to the rule of Hebb, the
weights represent the correlation between two neurons, and in this case the correlation
between the output and the input. This can be done mathematically by the equation

 where the constant  is chosen to be 1/n.
Let us look at a simple numerical example of two memory items.

In this case the indexes are in the range  and the weights ma-
trix will be:

One can verify that the output of each memory item is correct. The next question is re-
lated to the generalization capability, that is, what will be the result of a new input vector
that was not learned?

Associative networks should produce the nearest stored item. Let us check it for the
following vector: . For this vector, the output is 

, which is the result of the first item above, and one can see that the new
item is closer to the first item (only two bits were inverse, compared with four bits in the
second item).

This associative memory has many drawbacks, the stored data should be binary or-
thogonal vectors, there are a lot of connections and the capacity is low. There are other
nonlinear associative memories, but they lack the simplicity and the mathematical trac-
tability of the linear model and they are beyond the scope of this chapter. For more in-
formation about this and other ANN architectures see Chapter 25 and Fausett (1994)

The architecture described above and illustrated in Fig. 4 is the most general static
linear neural network, since adding more layers of neutrons will not change the capa-
bility of this architecture. Note that this is not the case for nonlinear neural networks,
where adding layers can enhance the capabilities of the architecture.
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Part 2: Dynamic Linear Systems

Most of this chapter will deal with dynamic linear systems. In this section we will ex-
plain the notion of dynamic linear systems and the common methods to describe them.
In the following sections specific procedures and examples will be described.

In dynamic linear systems, the inputs and outputs are functions of time, i.e., trajec-
tories. Five common methods to describe such a system are described below:
– Electronic or mechanical diagram. One common way to describe a system is through

graphic description of its physical elements and their connection. This method pro-
vides comprehensive description of the system’s structure and an easy way to get
qualitative understanding of the system by an expert. However, it is not always easy
to predict the exact behavior of the system by examining the graphic diagram; there-
fore it is usually numerically simulated or transformed to a set of equations that can
be mathematically analyzed and manipulated.

– Differential or difference equation. A system can be described by a set of differential
equations relating the input and the output (or difference equation in the discrete
case), the output will be the solution of the equation. A simple way to represent a lin-
ear dynamic system as a differential equation is the following standard differential
equation:  where a
dot over a variable represents the time derivative, i.e., 

etc. or in the discrete time: 
where t is a natural number, i.e., .

– State space description. The notion of state of the system helps us in separating the
dynamic part of the system. One introduces a set of new variables that represent the
state of the system in a way that the output is a static function of the state and possibly
the inputs. The behavior of the variables is dominated by its own differential equa-
tion. The state variables may have a physical interpretation, such as the potential of a
capacitor. In the linear case these equations are linear and can be written with matrix
notation as follows:

where x is the state, u is the input, and y is the output.
– Impulse response. As noted above, the basic property of linear systems is the super-

position property; that is, the response of a linear system to the sum of two inputs is
equal to the sum of the system’s responses to each input. Thus, if we had a simple in-
put, such that any other input could be produced as a linear sum of that input, and if
we knew the system’s response to that simple input, we could calculate its response to
any other input. Such an input function is the impulse (also known as the delta func-
tion, δ(t)), and the system’s response to the impulse is called “impulse response”. So
if we know the impulse response, we practically know everything about the system.
That is one of the major beauties of linear systems. Let us first describe the impulse
function and then see how to calculate any response when the impulse response is
given. Strictly speaking, an impulse is an abstract mathematical concept. To under-
stand this concept, imagine a rectangular pulse lasting from t=0 to t=∆t (duration ∆t)
and amplitude 1/∆t, so that its area equals 1 (unit pulse). Now let ∆t approach zero.
In the limit, the pulse will be of infinitely short duration and infinitely large ampli-
tude and is called unit impulse (because of its unit area) or delta function, δ(t), which
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is a singular function. Impulses of other areas are obtained by appropriate multipli-
cation with a factor. Unless specified otherwise, impulses are assumed to occur at
zero time. For example, δ(t–to) is an impulse that occur at t=to.
The most important property of the impulse is that, for any regular function  that is
continuous at t=0, . That is, the impulse “highlights” the function
at t=0. This function can therefore be thought of as being composed of sequences of
such highlights generated by integrals whose integrands are products of  and succes-
sive, infinitely closely spaced delta functions. Any linear system’s response y(t) to an
input u(t) therefore is the superposition of the system’s impulse response h(t) to all
the successive function highlights. This superposition is called a convolution. The
convolution of h and u is defined as .
In the discrete case, the delta function is much simpler, its value is one at t=0 and zero
otherwise. The convolution in the discrete case is defined as 

 where t and m are natural numbers. More information about
the delta function and the convolution integral can be found in most of the advanced
linear systems textbooks, such as Kwakernaak and Sivan (1991) and Lathi (1974),
which also contains a graphic view of the convolution integral.
Comments: (i) Many other functions can be used as inputs to a linear system and pro-
duce all the information about the system, actually any function that contains all the
frequencies. In many cases the step function and the step response are used, and
sometimes a random noise signal is used. (ii) The impulse response is a very useful
mathematical tool. However, in experiments of the biological system, it is usually not
recommended to try to introduce an impulse. In fact, it is not possible to introduce a
pure impulse but even an approximated high-energy impulse can cause damage to
the system. The biological system is seldom linear in all the frequencies and an im-
pulse can activate nonlinear modes of the system, therefore it is recommended to test
and model the system only in its linear regions.

– Transfer function in the Laplace or Z transform domain. Given the impulse response
and an arbitrary input, one can calculate the output as mentioned in the previous
method, but the calculation involves evaluating the convolution integral, which may
be a hard task. The main idea of the transforms is to move to another space where the
convolution becomes a simple multiplication. The impulse response is transformed
to a function that is called the transfer function, and the output in the Laplace do-
main is the Laplace domain input multiplied by the transfer function. In this way one
can combine subsystems to a complex system in a block diagram, as will be described
later in this chapter.

In the next parts we further describe, explain and demonstrate how to use these math-
ematical description tools.

Coherence

Before we start to build models and fit them to our data, we need to validate our assump-
tion that we do have a linear system. A practical method to check the linearity of an un-
known system is by calculating the coherence function between the input and the out-
put signals. The coherence function, Γ, is defined as follows:

where Suv is the cross spectrum of the signals u and v. Most of the mathematical soft-
ware, such as MATLAB, has the toolboxes and command to calculate the coherence

δ φ φ( ) ( ) (0)t t¼ =
-�

�I

y t h t u t h t u d1 6 1 6 1 6 1 6= = - ¼
-�

�I ¼* ( )τ τ τ

y t h t u t1 6 1 6 1 6= =*
h t m u m

m
- ¼

=-�

�Ê 1 6 1 6

G z

S S

S S
S S

S S

xy yx

xx yy
xx yy

xx yy

1 6 =
¼
¼

¼ �

¼ =

%
&K
'K

                              

                                   0  

0

0



596 Amir Karniel and Gideon F. Inbar

function. (See Chapter 18 for more information about the coherence function.) For an
LTI system without noise, the value of the coherence function is one. Therefore, if we
find small values of the coherence function, we cannot be sure whether the system is not
linear or very noisy. In both of these cases there is no point in estimating parameters for
an LTI model. If the coherence function is close to one at the frequencies of interest, one
can go on to estimate the parameters, build an LTI model and expect small errors. See
Cadzo and Solomon (1987) for a thorough description of linear modeling and the co-
herence function, and Inbar (1996) for an example of typical coherence values in EMG
measurements to estimate mechanical transfer function.

Note: One should notice the estimation procedure in order to get an accurate value of
the coherence function, see Benignus (1969) for an estimation procedure.

Part 3: Physical Components of Linear Systems

Dynamic linear systems can be described schematically with simple basic physical com-
ponents, electrical or mechanical. This method is natural for the description and design
of physical systems, and therefore was widely used and developed by mechanical and
electrical engineers. The advantage of this description is in the graphic description that
is more comprehensible then differential equations due to the correspondence between
the graphic elements and the modeled system. There are many simulation programs,
such as SPICE, which provide graphic description as well as numerical simulation of
such models (see Conant 1993, and Nilsson and Riedel 1996). In this section we will in-
troduce the basic elements of electrical and mechanical systems, and the procedure to
get the differential equation from the graphic description, which is based on the well-
known laws of Newton and Kirchhoff. For more information about circuit theory and
about modeling dynamic systems, see for example Charles and Kuh (1969) and Dorny
(1993).

All the examples are from the field of neuromuscular system modeling.

Electrical Models

The basic elements of electrical models are resistor (R), capacitor (C), inductor (L) and
sources of potential (V) or current (I). In some cases it is convenient to use conductance
(g) instead of resistor, but the relation is simple, they are just the inverse of one another,
i.e., g=1/R. From a graphic scheme of the electrical model one can extract the flow of
current and the potential at each place in the model. The following Procedure 3.1 and
Fig. 5 describe the methods and steps required in order to extract the differential equa-
tions out of the schematic description.

Procedure 3.1: Writing the Differential Equation of a Linear Electrical Circuit

1. Using an arrow, mark the current flow direction in each branch of the model.
2. For each node, write the Kirchhoff current law, stating that the sum of incoming cur-

rents equals zero: 
3. Replace each current by its value according to Fig. 5.
4. Solve or simplify the set of equations.

IÊ = 0
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Example 3.1: Linear Neuron Model

The simplest dynamic linear model of a nerve cell is depicted in Fig. 6. The dendritic
tree is represented by the resistors R1, R2 and R3, which transmit the currents generated
by the input voltages V1, V2 and V3 to the cell body. The potentials V1, V2, and V3 are due
to synapses from other neurons. The currents generated in the dendritic tree are inte-
grated by the capacitor C, representing the cell body membrane capacity. This integra-
tor is “leaky”, as represented by the membrane resistance R4, this model therefore being
referred to as “leaky integrator”. Let us write the differential equation of this model ac-
cording to Procedure 3.1.
1. Mark all the currents with an arrow that is going out of the point Vc
2. Due to the Kirchhoff current law we can write:

3. Now replace the currents by their values according to Fig. 5:

4. Finally, some simplification can be made to get a standard first-order differential
equation:

This first-order equation can be solved analytically or numerically, and can also be
transformed to the Laplace domain for further systems modeling and integrating, as
will be described in the next sections. At this stage, let us consider some more examples
for the execution of Procedure 3.1.

Fig. 5. The basic components of linear electrical circuits.
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Example 3.2: Linear Membrane Model

The membrane of nerves and muscles, when the potential is near the resting potential,
can be modeled as the linear electric circuit in Fig. 7. Cm is the membrane capacity, and
each branch represents a current of a single ion type. The potential sources VK , VNa, and
VCl represent the Nernst potentials of potassium, sodium and chloride, respectively. The
resistors RK, RNa, and RCl  represent the resistance of the membrane to currents of po-
tassium, sodium and chloride, respectively.  The resistance is the macroscopic manifes-
tation of the microscopic state of channels within the cell membrane. Note the arrows
beside each voltage variable ( ). Each voltage variable denotes the poten-
tial difference between the arrow’s head and its tail. For example, the membrane poten-
tial is defined as . The direction of the potential sources (the longer line
is positive) represents the typical value of the ion potential, as chloride and potassium
have negative Nernst potentials and sodium has a positive Nernst potential. In writing
the equations of such a model we regard only the arrow’s direction; for a biologically
plausible model the given data or the results of the calculations are expected to be com-
patible with the sources’ directions as represented by the long and short lines.

Let us write the differential equation of this model according to Procedure 3.1:

Let us check what happens in the steady state, i.e., when Vm does not change. In this case
the time derivative of Vm is equal to zero and one can write the value of the membrane
potential as follows:

Notice that this is a weighted average of the Nernst potentials of the ions, where the
weights depend on the membrane resistivity.

This result is similar to the Goldman equation (see Plonsey and Barr, Capter 3):

Fig. 7. The subthreshold membrane model
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where  are the permeability of potassium, sodium and chloride, respectively,
[X] stands for the concentration of ion X in the fluid, index i stands for internal fluid and
e stands for external fluid. KT/q is a constant equal to 26mV at room temperature.

In the extreme case, such as when the membrane is permeable to one ion only, the
results are the same, i.e., the membrane potential equals the ions’ Nernst potential.
However, these two equations are not identical since their development is based on dif-
ferent sets of assumptions.

Example 3.3: Model of the Postsynaptic Membrane

Many chemical synapses in the nervous system can be described as follows:
– The presynaptic neuron releases neurotransmitters that operate on special sites in

the postsynaptic membrane that open channels to specific ions. These ions flow ac-
cording to the electrodiffusion forces and change the postsynaptic potential.

– The following electrical model (Fig. 8) describes the changes in the postsynaptic po-
tential as a result of the change in the number of opened channels. The potential Vs
represents the Nernst potential of the ion, and ∆gsrepresents the change in the mem-
brane admittance as a result of one channel that has been opened.

Let us write the equation of this model according to Procedure 3.1. Note that this is a
static model (without capacitors or inductors), and remember that the admittance is the
inverse of the resistance.

The number of open channels, that is, the number of close switches in Fig. 8, is de-
noted by n, each close switch adding one more branch to the circuit. Therefore, with 
flowing through go and Ig flowing through ∆gs:

This is a linear model with respect to its currents and potential; however, notice that the
relation between the number n of channels and the postsynaptic voltage is nonlinear.

Note: One can add an exponential relation between the presynaptic potential and the
number of channels opened. The result is that the relation between post- and presynap-
tic potential is a sigmoidal function which is very common in ANN models.

P P Pk Na Cl, ,

Fig. 8. A model of the postsyn-
aptic membrane
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Example 3.4: Cable Model of the Passive Nerve Fiber

This example introduces a widely used model for propagation of potentials within ax-
ons and dendrites. This model is valid for the same regime as in Example 3.2, i.e., in the
subthreshold region where the membrane can be viewed as a linear system.

In this model fibers are idealized as having a cylindrical geometry as described in
Fig. 9 (see Plonsey and Barr 1988, Chapter 6, for a thorough description).

Let us look at the continuous fiber, as if it were constructed from small segments.
With slight abuse of the term dx, we can refer to the length of each segment as dx, and
then when dx approaches zero, it becomes the integral and differential operator. The
electrical model is described in Fig. 10, with the following definitions:
–  is the resistance of the internal liquid of the fiber segment to axial current;
–  is the resistance of the extracellular liquid of the segment;
–  is the resistance of the segment to current through the membrane;
–  is the capacity of the membrane segment;
–  is the current through the membrane in one segment of the fiber;
–  is the current due to an external electrode in one segment of the fiber; it is pos-

itive for current entering the extracellular space via polarising electrodes.
–  is the axial current in the fiber,
–  is the current outside the fiber.

Fig. 9. The nerve fiber as a cylin-
drical fiber and the currents 
related to it.

Fig. 10. The electrical linear model of the passive nerve fiber.
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Now we can use Procedure 3.1 to write the current law and find out the differential
equation that governs the membrane potential in the passive fiber.

From Kirchhoff ’s current law, we can write the following three equations:

From Ohm’s law (or from the definition of the resistive element) we have:

Let us recall the definition of the membrane potential, , apply differentia-
tion with respect to x to both sides, and use the above relations.

With a second differentiation and the three current law equations above we can write
the following differential equation for the membrane potential:

Let us introduce some useful notations, which make that equation more compact:

The last equation is known as the cable differential equation, which can be solved ana-
lytically or numerically.

If we introduce an impulse in q(x,t), with some mathematical manipulation, we get
the following impulse response:

See Fig. 11 for an illustration of this impulse response function.
With the impulse response, one can calculate the response of the system to any given

input, q(x,t), by the convolution operator, which in this two-dimensional case is the fol-
lowing integral:

This integral can be solved analytically for some simple cases and numerically for prac-
tically any input function.
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Results

The passive fiber model above was used extensively to check the conduction velocity of
nervous fibers with and without myelin, to calculate the optimal distance between the
Ranvier nodes, to analyze the propagation of postsynapses potential in the dentritic tree
and the propagation of action potentials in the axon. For further examples see Plonsey
and Barr (1988) and Stein (1980).

Mechanical Models

There is great interest in modeling muscle and joint dynamics. There are two main rea-
sons for this. One is that muscle is the main motor output of the nervous system and
therefore an important window into the operation of the nervous system. Another rea-
son lies in building prostheses and artificial limbs and in external excitation of muscles
in paralyzed patients, which is called “functional neuromuscular stimulation” (FNS)
(see, for example, Allin and Inbar 1986). All these fields require the construction of a
model for the system. Below are two examples for muscle and joint modeling with me-
chanical elements.

The basic elements of mechanical models are:
– Spring (K), also known as elastic element;
– Damper (B), also called friction element;
– Mass (M);
– Force or tension generator (F, P or T).

The position (X) can be fixed to one location or be free to change according to the forces
acting on it.  From a graphic scheme one can extract the position velocities and forces
at each place in the model. The following Procedure 3.2 and Fig. 12 describe the meth-
ods and steps required in order to extract the differential equations from the schematic
description.

Fig. 11. Two-dimensional im-
pulse response of the passive 
fiber. X is in units of  
and t is in units of [1/τ]. The 
sections on the sides of the pic-
ture are at times 0.01, 0.07 and 
0.21[1/τ], and in distances 
0.03, 0.5 and 0.8 [ ].

[ / ]1 D

1/ D
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Procedure 3.2: Writing the Differential Equation of a Linear Mechanical System

1. Using an arrow, mark the force direction at each branch.
2. For each node, apply Newton’s second law, stating that the forces applied to a mass

equal the acceleration multiplied by the mass: 
3. Replace each force with its value according to Fig. 12.
4. Solve or simplify the equations.

Example 3.5: Second-order Mechanical Muscle Model

Figure 13 depicts a linear lumped model, approximating muscle behavior for a small
signal (see McRuer et al. 1968). In this model,
– P represents the internal force in the muscle that is the result of the neural excitation;
– K and B are the elastic and viscous elements that represent the passive mechanical

properties of the muscle tissue;
– M is the mass of the muscles and the joint.

According to Procedure 3.2:
1. Mark all the force directions to the right.
2. Of interest in this model is the position of the mass, so write Newton’s law for that

point: 
3. Replace the forces according to Fig. 12: 
4. The simplification stage is trivial here and leads to the following second-order equa-

tion: 

F M x= ¼Ê &&

Fig. 12. The basic components of a linear mechanical system.

Fig. 13. Second-order mechani-
cal model of muscles and joint

F F F M xp K B+ + = ¼ &&
- + ¼ - + ¼ - = ¼P K x B x M x0 00 5 0 5& &&

P K x B x M x+ ¼ + ¼ + ¼ =& && 0
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Example 3.6: A More Complex Mechanical Muscle Model

This is a slightly more complicated mechanical model of the muscle. This model is a lin-
earized version of the Hill model, which will be discussed later in this chapter. The mod-
el represents one muscle, so it has to be combined with other muscles that act on a spe-
cific joint and with the joint mass in order to get a complete model for specific move-
ments. In this model (see Fig. 14),
– P represents the internal force in the muscle resulting from neural excitation;
– B is the viscous element that represents the relation between force and velocity in the

muscle;
– Ks is a serial elastic element that represents the mechanical property of the tendon;
– Kp and Bp represent the mechanical properties of other tissues around the muscle and

the joint;
– F is the force between the joint and the muscle.

Let us write the equations according to Procedure 3.2.
There are two points of interest, X and X1, the latter being the connection point of B,

P and Ks. Both points are not associated with a mass, leading to the following two equa-
tions:

Extracting x1 from the first equation and inserting it into the second leads to

This final equation is a third-order differential equation that can be solved numerically
or transformed to the Laplace domain for further manipulation or incorporation in a
larger model as will be done in the next section.

The reader has surely noticed the similarity between Procedures 3.1 and 3.2. One can
transform a mechanical model to an electrical model and vice versa according to
Table1. This transform can be useful if one is an expert in one kind of scheme, or if one
has good simulation software for a specific kind of modeling scheme.

This equivalence underscores the major advantage of linear systems modeling. Line-
ar modeling of any kind of system, mechanical, electrical, hydraulic, chemical or other,

Fig. 14. A more complex linear 
mechanical muscle model
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is always reduced to a differential equation that has standard solutions and can be trans-
formed to the Laplace domain and treated with the same tools. This contrasts with non-
linear models that are usually unique to a specific system and therefore require a special
theory to be built for each case.

Part 4: Laplace and Z Transform

Linear systems can be described and analyzed in the frequency domain. For linear sig-
nal analyses the Fourier transform is very popular, and for linear systems description
the Laplace and Z transforms are used for continuous and discrete description, respec-
tively. The main advantage of this description is in finding the transfer function of the
system, which is the Laplace transform of the impulse response, as mentioned briefly in
Part 2. In the Laplace domain, complex operations simplify, such that e.g. differentiation
reduces to multiplication.

Let us begin with the definition of the transform and an introductory example.
The Laplace transform of the continuous signal x(t) and the Z transform of the dis-

crete signal are the following:

The domain of the variables s and z consists of all the complex numbers for which the
integral (or sum) above converges. For example, let us look at a system that executes an
integration of its input, that is, the system . The impulse response of this
system is a step function and the Laplace transform of the impulse response is 1/s.
Therefore, in the Laplace domain the relation between the output and the input is

, which is a much simpler relation than the integration above. Figure 15
describes this idea graphically.

Table 1.  The equivalence of electrical and mechanical components

Mechanical F B K M 

Electrical I V 1/R 1/L C

&X

X s x t e dts t X z x n z
n

n1 6 1 6 0 5 0 5= ¼ - ¼

-�

�I = Ê ¼
=-�

�

-

y t u t dt
t1 6 1 6=
-�I

Y s U s s1 6 0 5= /

Fig. 15. Linear input-output system: In the time domain, top, h(t) is the impulse response and * de-
notes the convolution operation. In the Laplace domain, bottom, H(s) is the transfer function.
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Procedure 4.1: Determining Laplace and Z Transforms

The calculation of the transform of a specific function requires some practice. However,
for practical purposes, we can just look up a table of Laplace or Z transforms. A short
table is given below (see Table 2) and detailed tables can be found in Kwakernaak and
Sivan (1991). Another practical approach is to use numerical or symbolic software such
as MATLAB that has built-in functions to these transforms.

The following subprotocols introduce some standard properties of these transforms
that are used for systems description and analysis. The comprehensive theory and prac-
tice of these transforms is beyond the scope of this chapter, and the interested reader is
referred to Kwakernaak and Sivan (1991).

Procedure 4.2: Transfer Function from Differential Equation

This simple procedure is based on the following property of the Laplace transform:

This property is correct when one assumes zero initial conditions, i.e., f(0)=0.
Therefore the transform of the following general differential equation will be:

Table 2.  Laplace and Z transforms: Some useful functions and properties.
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From the last expression one can directly extract the transfer function of the system:

A similar procedure holds for the Z transform, that is, the difference equation

will be transform to the following algebraic equation

Comment: Rational Transfer Functions

The notion of transfer function is illustrated in Fig. 15. We just saw how to transform a
differential equation to a transfer function where the numerator and denominator were
polynomial functions. The transfer function can therefore be described as follows:

where k is called the “gain”, the zi are called “zeros”, and the pi are called “poles”.
This formalization is easy to analyze. There is a vast literature about the influence of

the location of the poles and zeros on system behavior, and there are many names for all
kinds of such systems. If there are only poles, the system is called “auto-recursive” (AR);
if there are only zeros, the system is called “moving average” (MA); and the general case
is called “auto-recursive moving average (ARMA) system”. The case of zeros only is also
called “finite impulse response” (FIR) because the influence of the impulse is gone after
a short period, while adding poles produces an infinite impulse response (IIR).

Another useful property of the Laplace transform enables the calculation of the
steady state of the system in the Laplace domain:

All these properties have their equivalent in the Z transform domain for discrete signals
and systems.

Procedure 4.3: Discretization

Since we usually use a computer and discrete measurements, it is very useful to have a
discrete model. Nevertheless, the physical and biological world is a continuous world.
Discretization is the procedure of converting a continuous model to a discrete one.
There are different procedures for discretization just as there are many ways of numer-
ical integration. The simplest method, the Euler’s forward method, is to move to the Z
transform by replacing each s by (z–1)/T. This method is demonstrated in Example 4.2
(see Santina et al. 1996 for more details about discretization methods).
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Procedure 4.4: Check for Stability

A system is stable if a bounded input produces a bounded output. In the Laplace do-
main, there is a simple procedure to check the stability of a system.
1. Write the transfer function as a rational function.
2. Find the roots of the denominator, that is, the poles.
3. If the real part of all the poles is negative, then the system is stable. Otherwise the sys-

tem is not stable.

Example 4.1: Stability and Step Response

This example serves to practice the linear systems description and the transform tools.
We will show how to find the conditions for a second-order system to be stable, find an
expression for its response to a step input and find the time to reach the maximum in a
response to a step input.

For this purpose, let us first highlight some pertinent properties of first- and second-
order systems. A first-order system is most common in biological modeling. Most of the
examples in this chapter are of a first-order system starting with the leaky integrator of
Example 3.1. The transfer function of a typical first-order system is 1/(s+a), and from
Table2, one can see that the impulse response of such a system is an exponential decay.
The step response of this system is illustrated on the left side of Fig. 16. This function is
characterised by its time constant τ=1/a, which is the time when the response has
reached about 2/3 of its final value.

Second-order systems can also produce oscillatory behavior. The muscle and joint
model in Example 3.5 is a second-order system. A description of the step response of a
typical second-order system is illustrated on the right side of Fig. 16. In order to de-
scribe the parameters of such a system, let us write the transfer function of a second-
order system in a standard form:
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Fig. 16. Step response of a first-order system (left) and of a second-order system (right). The trans-
fer functions of these systems are 1/(1+s) and 1/(s2+s+1), respectively.
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This system has been analyzed extensively, and there are expressions for every possible
feature of it. For example, the overshoot, which is the ratio of the response that is beyond
the steady state response to the latter, is the following function of the parameter 

The frequency of the oscillations is 

the time constant is 

and the settling time, which is the time to reach a region of 2% of the final value and stay
there, is 

Let us now check the stability of the above second-order system according to Procedure
4.4. For that purpose, we have to find the location of the poles, that is, the roots of the
denominator of the transfer function, which are:

For stability, both poles must have a negative real part. Therefore the requirement for
stability is: . Notice that the second-order system has an oscillatory behavior
when the poles have imaginary parts.

Let us now move to the calculation of the step response. We know that in the Laplace
domain the output is the input multiplied by the transfer function. According to Table2,
the Laplace transform of the step function is 1/s, and the output will be the second-order
systems transfer function divided by s:

The inverse transform of this function can be calculated using Table2 and some math-
ematical manipulations, by looking at an extended Laplace transforms table or by using
mathematical software.  The resulting function is the response to a step function, which
is:
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The time of this event is:

Example 4.2: Second-order Mechanical Muscle Model

The second-order mechanical muscle model was introduced in Example 3.5 (see
Fig. 13). With Procedure 4.1we can transform the differential equation to the following
transfer function:

One can derive a similar relation for external force and its relation to the position, or
any other desired relationship. With Procedure 4.3, we can transform the above func-
tion to the Z transform domain:

From the Z transform we can move to discrete time by applying Procedure 4.1 inversely:

This difference equation may be useful for parameter estimation and handling of sam-
pled data from this system, as will be demonstrated in Example 5.2. The last difference
equation can be formalized as follows: ,
where wi are the parameters. If the sample time T is given, it is equivalent to know wi or
M,B,K. Therefore, for each time step, the system can be viewed as a simple static system
with three inputs and one output, as described graphically in Fig. 3.

Example 4.3:  Complex Mechanical Muscle Model

This example demonstrates how to extract the transfer function and the steady-state be-
havior of the Hill-type mechanical muscle model that was introduced in Example 3.6.
From the graphic model in Fig. 14, we derived the following differential equation that
can be further simplified:
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From this equation we can move to the Laplace domain as described above in
Procedure 4.1:

Now we can extract any transfer function we need according to the input and output we
define. In an isometric experiment when the length is held constant, we can subtract the
constant force due to the constant length and find the transfer function between the
force, F, and the neural excitation to the muscle, which is related to P. (In the linear
model we assume a linear relation between the firing rate of the motor neuron and the
hypothetical internal force P.)

This is a first-order system and one can investigate its behavior according to the de-
scription in Example 4.1 above. For example, the force response to a step in the input
will look like the left graph in Fig. 16.

The same manipulation can be done in order to investigate an isotonic experiment,
where the force is held constant.

The steady-state behavior of the model can be calculated by practically replacing
each s with a zero, which brings us to the following relation:

One should notice that the viscous elements have no role in the steady-state behavior,
since they produce forces only at times of change in position.

A good example for the application of these mathematical procedures to the physio-
logical neuromuscular system is the study of eye movements. The time constant of the
mechanical model of the system is of the order of seconds while we know that the eye
can move from one position to the other in tenths of a second. Therefore, a simple step
in neural excitation will not satisfy the observations of eye movement. An alternative
hypothesis is that the neural excitation signal contains an initial pulse added to the step
to accelerate the movement. This was found to be consistent both with the model and
the measurements. This control strategy of pulse plus step neural excitation is also used
in limb movement control models.

Comment: Notice that when a step neural excitation is mentioned, we relate to the fir-
ing rate and not to the nerve cell potential, that is, a unit step at time zero means that
the cell starts to fire an action potential once a second from time zero and thereafter.

Part 5: System Identification and Parameter Estimation

In many disciplines of science and technology we frequently face data from an unknown
system and our aim is to find a model of this system. A parametric model belongs to a
family of models characterized by a finite number of parameters. The modeler’s task is
first to choose a proper model family and then to estimate the parameter values. In this
section we will first describe the estimation problem in general and then concentrate on
linear models.

The general problem of parameter estimation can be formalized as follows: Let
Θ(u,a) be a family of parametric functions, that is, for each parameter vector a0, y=
Θ(u,a0) is a static input/output function or a transfer function in the Laplace domain,
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where u is the input and y is the output. Suppose that we have an unknown system F(u)
that is assumed to belong to the above function family, that is, F(u)= Θ(u,a0) for a spe-
cific but unknown parameter vector a0. As a result of an experiment on this unknown
system, we collect a group of measurements of input/output pairs {ui,yi} that naturally
satisfy yi=F(ui). (In the presence of measurement noise or uncertainty in the generating
function, that is, if we are not positive about the assumption that the unknown system
belongs to the selected family of parametric functions, we can relax the requirements
from the data to |yi–F(ui)|<n, where n represents the noise or the uncertainty in the fit-
ness of the model to the system). The problem is to find the vector of parameters a that
will best fit the measurement pairs according to a given criterion. If one uses the least-
squares criterion, the problem is to solve the following minimization:

There are many methods to solve this problem and to formalize parametric groups of
functions (see for example Sjoberg et al. 1995). In this chapter we concentrate on the lin-
ear group of functions, implying that the function can be transformed to the Laplace
domain, resulting in a transfer function. In the discrete case the same can be done with
a difference equation and the Z transform.

Procedure 5.1:  Estimation Scheme

The basic way to estimate the parameters of a linear model is the following:
The linear model is  or in matrix notation y=WTU.  The real system may
not be linear and the data we have may be noisy; however, the optimal linear model ac-
cording to the least-squares criterion is the following:

where E stands for expectation. For the origin and proof, see any textbook on linear pa-
rameter estimation (e.g., Porat 1994).

In practice we estimate the expectation as a numerical average over the measure-
ments, that is,

Example 5.1: Two Inputs-One Output System

This is a simple synthetic numerical example to demonstrate the use of Procedure 5.1.
Assume that we have a static system with two inputs and one output and we wish to find
an optimal linear model for this system. The model will be , the input
vector will be  and the parameter vector will be . In order to
estimate the parameters of the model, an experiment was conducted and the following
four measurements were obtained:
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Let us calculate the estimation of P and Φ according to procedure 5.1.

Now we can calculate the optimal parameters:

and with these parameters we can calculate the model’s output to the measurement data
and check the fitness of the model to the data: One can see that the model outputs are

similar to the actual data.
Comment: In practice, the measurements may be random and there may be more

noise, therefore more examples are needed in order to get a good estimation of the pa-
rameters.

Example 5.2: Estimation of Muscle Model

In Example 4.2we found the following relation for the linear muscle model that was in-
troduced in Example 3.5:

In this example we demonstrate the parameter estimation procedure for this dynamic
model. We can combine our input components X(n–2), X(n–1), P(n–2) to form an input
vector U, and denote the output vector, which in this case has just one element, X(n), by
the letter Y. Now we can use the optimal solution of procedure 5.1.

Let us illustrate this estimation scheme by a simulation example. A random sequence
of P was chosen (normally distributed noise with standard deviation (STD) equal to
one, and zero mean). The length X was calculated according to the model with the fol-
lowing nominal value of the parameters: M=5, B=3, K=2, T=0.1, that is, W1=–0.002,
W2=1.94, W3=–0.944.

Figure17 shows the results of the simulation. The first graph is the random input P,
the second is the calculated X. An additional random noise was added to simulate meas-
urement noise or uncertainties in the model (normally distributed noise with STD=0.01
and zero mean); this sequence appears in the third graph. Then the optimal parameters
were calculated according to Procedure 5.1, and the results were W1= –0.0016, W2=
1.744, W3= –0.739, which is close to the nominal parameters, as expected. Finally, the
output of the estimated model for each time step was calculated, and it appears in the
fourth graph being similar to the second graph, which is the actual model output.
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Comments: The above example is a straightforward implementation of Procedure 5.1.
There are various pitfalls that are listed below:
– This example regards the discrete data as a set of independent examples of a static

model and the optimal model is checked for each couple of input-output independ-
ently. In practice, the error combines from one time step to the other, since the model
may use its own output to estimate the next time step, and not the real system out-
puts. This problem can be severe when the system has some unstable poles, then the
error might grow very fast.

– The calculated model, that is, the estimated parameters, should be checked on a new
data set and not only on the data that was used for parameter estimation. This check
is called “generalization check” and can assist in avoiding over-fitting of the data. We
discuss this method of validation in the following subsection.

– One should remember that the biological system is generally a time-varying system.
For example, muscles can change their properties due to fatigue. Therefore the dura-
tion of the experiment must be short in order to justify the assumption that the sys-
tem is time-invariant.

– Finally, we must mention here that the simple optimal parameter calculation in Pro-
cedure 5.1 is not always stable numerically. There are many improvements and prac-
tical methods that can be found in modern numerical software, such as MATLAB (see
Ljung 1986).

The Output with noise (X+n)

-5

0

5
The input (Excitation P)

-0.2

0

0.2
The synthesized ideal output (Length X)

-0.2

0

0.2

0 50 100
-0.2

0

0.2
The output of the estimated model (Ym)

Fig. 17. An example of parame-
ter estimation of the linear 
(ARMA) muscle model. The 
simulation is discrete, there-
fore the abscissa consists of 
time steps. The length of each 
time step in this simulation is 
0.1second.
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Problem: Choosing the Right Model Order

In the last example the structure of the model was known and the only problem was es-
timating the parameters, but in most biological cases the model is unknown.

In order to estimate the parameters, we first need to establish the order of the model,
which means, for example in the ARMA case, choosing N and M in the following dis-
crete model:

At first glance, one might suppose that the more parameters the model has, the better it
will fit the actual system, but this is not the case (see Paiss and Inbar 1987 for an exten-
sive treatment of the model order selection problem for the case of surface electromy-
ography). Too many parameters are not only a computational burden but they may
cause errors in the model. One can be wrong by either choosing too many or too few pa-
rameters. See Fig. 25 for a description of the pitfalls in choosing the wrong number of
parameters.

Many approaches have been suggested for choosing the proper order. For linear
models a commonly used approach is the Akaike information criterion (AIC) which is
based on a discrepancy measure. For the ARMA model it will take the following form:

where N and M are the model size, see the discrete ARMA model above, NT is the total
number of samples and  is the estimation of the error.

Since the first term, the estimation of the error, , monotonically decreases with in-
creasing model size and the second term increases, one can find an optimal model size
by finding the minimal value of the AIC. Another method to choose the order of the
model is validation. This method is commonly used in pattern recognition and classifi-
cation where part of the data is kept from the learning phase (in our case this will be the
fitting phase), and then the model is chosen for its generalization capabilities checked
on the kept data. For more information about parameter estimation and systems iden-
tification see Porat (1994), Sjoberg et al. (1995) and Ljung (1986).

Part 6: Modeling The Nervous System Control

We have seen that linear systems can be described in the Laplace domain by their trans-
fer functions.  These transfer functions make it easy to analyze complex systems that in-
clude many modules. This section describes how to use block diagrams in modeling the
nervous system.

Procedure 6.1: Block Diagrams

There are only two basic elements in linear block diagrams: summer and transfer func-
tion block. The summation element is usually symbolized by a circle and a sign at each
one of its inputs that determines whether is should be added or subtracted. The transfer
function is represented as a block with the transfer function or an impulse response
function in it. A special case of transfer function is a mere gain that is sometimes sym-
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bolized by a triangle. Each block is connected to other blocks by arrows that symbolize
the direction of information flow.

The procedure of writing the transfer function between two points in a block dia-
gram is as follows:
1. Name each arrow that has no name with a unique variable.
2. Write an equation for each variable. For example, if the variable is y and the input(s)

to the block before it is u, then write the following:
For an output of a summation element, write .
For an output of a transfer function H, write y=Hu (in the Laplace domain).

3. Simplify the set of equations in order to get a transfer function between the input and
the output or any other relation needed.

Example 6.1:  Feedback Control

Feedback control is based on using the outcome of the process or the controlled system,
which is usually called the “Plant”, in order to control it, in other words, using the error
between the desired output, yd, and the actual output, y, in order to reduce it. This
scheme is widely used to describe the nervous system control of the musculoskeletal
system.

The analogy of the feedback scheme, Fig. 18, to motor control is the following: The
plant corresponds to the muscles, the bones and the dynamics of the environment; the
feedback corresponds to the output of the sensory systems, and the controller corre-
sponds to the nervous system. Let us follow Procedure 6.1 in order to find the transfer
function of the complete system in Fig. 18. (The Laplace variable s is omitted for sim-
plicity.)
1. Let us call the output of the feedback x1, and the output of the sum x2.
2. There are four elements and therefore four equations:

3. From the above equations one can extract the following transfer function:

One major advantage of the feedback control scheme is the reduced sensitivity to chang-
es in the parameters of the plant, and to changes in the environment. The sensitivity of
system H to changes in the parameter k is defined as follows:

y uii=Ê

Fig. 18. Feedback control
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When the value of the sensitivity function is zero, the system is insensitive to changes in
the parameter.  Let us look at the system without feedback, where H is the transfer func-
tion, and k is a gain parameter. The system in an open loop is . The sensitivity
of the system would be:

However, in closed-loop mode, the system is  and the sensitivity will be:

So when the loop gain, k, is high, the sensitivity to changes is low.
There is a vast literature on the stability of such systems and on methods to choose a

controller when the specifications of the desired performances are given (see for exam-
ple Kwakernaak and Sivan 1991 and section III in Levine 1996).

Comments: The first problem in using this simple feedback scheme to model biolog-
ical systems occurs when one tries to measure the loop gain. In biological systems, one
often finds very low loop gains in the order of one. Therefore reduced sensitivity to
changes in the parameters frequently does not occur in biological systems. Another
problem results from delays in biological systems that can cause instability and oscilla-
tion. See Karniel and Inbar (in press) for a review of these and other problems in bio-
logical motor control.

Example 6.2: Multiple Feedback Loops 

The importance of the loop gain in reducing the sensitivity to parameter changes was
mentioned in the previous example. The loop gain can also be a major factor in deter-
mining the stability of the system.  In order to measure the loop gain, one should open
the loop, introduce a test input at one end and measure the output at the other. However,
in biological systems there are typically multiple parallel feedbacks (see, e.g., Milgram
and Inbar 1976; Windhorst 1996). For example, in the temperature regulation system,
there are sensors in the skin, in the core of the body and in the hypothalamus, and they
all influence the temperature regulation mechanisms (see Brown and Brengelmann
1970). In movement control, there are feedback loops from sensors in the muscles,
joints and skin (i.e., muscle spindles, Golgi tendon organs, pressure transducers etc.),
and furthermore there are many sensors of each type operating in parallel. The primary
advantage of such multiple loops, and of any redundancy, is robustness. That is, if one
subsystem fails, there are other options to operate the system. There is a great danger in
trying to estimate the loop gain in such a system because there may be loops that we
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cannot open or are unaware of. In such a case we may underestimate the loop gain. For
example, if we open the first two loops in Fig. 19 and leave F3 connected, the transfer
function from Yd to Y will be  instead of  when there is no addi-
tional loop. So one should be aware of these multiple loops.

Part 7:  Modeling Nonlinear Systems with Linear Systems Description Tools

Many physical and virtually all biological systems are not linear, and many are time-var-
ying systems. Still, we may wish to use the powerful linear systems description tools that
were described in this chapter. In this section we will broaden our scope to illustrate the
application of linear systems description tools to nonlinear systems. Linearization is a
method to find a linear system that is similar to the modeled nonlinear system, at least
for a small-signal region and a short time. We will show how nonlinear systems can be
described as time-varying or parameter-varying systems, and then we will discuss non-
linear systems as a linear sum of nonlinear functions or as a nonlinear function of a lin-
ear system.

Linearization

Linearization is the procedure of finding a linear system that is similar to the modeled
nonlinear system in some domain near a point that is called the “working point”.
Graphically one can imagine the linearized model as a tangent of the nonlinear func-
tion. Mathematically the linearization represents the first two terms in the Taylor ex-
pansion of the function.

Procedure 7.1: Static Systems Linearization

Static systems linearization simply means to take the first two components in the Taylor
expansion. For a single input and single output system, this means taking the following
linear estimation FL(u) of the nonlinear system F(u) near the point  which is called the
working point.

This estimation is good for smooth functions, near the working point, and it may be
very poor for distant points. The same estimation can be implemented for multiple in-
put static systems.

Procedure 7.2: Dynamic Systems Linearization

Dynamic systems can be represented as a set of differential equations in the state space.
If we assume continuity of the function, we can write the first two parts of the Taylor’s
expansion of  near the point of interest , which is:
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The Jacobean matrix is:

And by defining a new variable , we can get the following linear state function:

The solution of this differential equation is an exponential function. It is interesting
to know whether the solution decays, that is, whether the system is stable. We can an-
swer this question by checking the eigenvalues λi of the Jacobean matrix A: The system
is stable if and only if the real part of all the eigenvalues λi is negative. The eigenvalues
can be calculated by finding the roots of the equation , or by just writing the
proper command in MATLAB or in any other mathematical software.

Example 7.1:  Relation between Force and Length of the Muscle

Striated muscles consist of actin and myosin filaments that slide one over the other. As
a result of this infrastructure, there is an optimal length, Lo, at which the muscle can
produce maximum force. Therefore, the relation between the length of a muscle and its
force is nonlinear and can be approximated by the following nonlinear equation:

Suppose that we want a linear model of this muscle near a working point ; we
can then linearize the above relation according to Procedure 7.1 as follows:

Comments1. The model in Example 3.5 is actually a linearized model of the muscle (see McRuer
et al. 1968).

2. The membrane model in Example 3.2 can be seen as linearization of the membrane
properties near equilibrium points.

3. One should notice that the linearized model is close to the modeled function only for
small perturbations near the working point.

Nonlinear Systems as Linear Time- or Parameter-varying Systems

In Procedures 3.1 and 3.2we considered electrical and mechanical models of linear sys-
tems. These procedures can be used to describe nonlinear systems if one allows change
in the values of the elements as a function of time or of other values in the system. We
give here two examples for such a modeling approach: the membrane electric model
and the muscle mechanical model.
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Example 7.2: Hodgkin-Huxley Model

This model was introduced in Example 3.2, where the values of the resistive elements
were fixed.  However, the membrane is not linear and resistance to each ion current is
not a constant (see Hodgkin and Huxley (1952) for a comprehensive description of this
nonlinear model).

This model is illustrated in Fig. 20, where the arrows on the resistors mean that the
resistance is not a constant. The membrane resistance to sodium and its resistance to
potassium change as a function of the membrane potential and as a function of time.

The equations that describe this model are the following set of nonlinear differential
equations:

The first equation can be written according to Procedure 3.1, it is the differential equa-
tion of the electrical model in Fig. 20, which is similar to the equation in Example 3.2,
where resistance, R, was used instead of conductance, g. We will not go into the details
of the change in membrane resistivity, but one can notice in the equations above that
this change is also described by linear systems description tools, in fact by a simple first-
order differential equation.

Example 7.3:  Hill-Type Muscle Model

Let us consider the Hill-type mechanical muscle model in Fig. 21. This model is taken
from Zangemeister et al. (1981), with minor changes (see Karniel and Inbar 1997). Note
that this model combines a mechanical description with a block diagram in the Laplace
domain. It is similar to the model in Example 3.6, but shows three differences: The par-
allel spring was omitted, a first-order filter was added to describe the excitation-con-

Fig. 20. The Hodgkin-Huxley electrical model of the membrane.
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traction coupling and the recruitment of the motor units, and the main difference is the
viscous element which is not a constant.

Following are the differential equations of this mechanical model:

This model was derived from the Hill model where the value of the viscous element, B,
depends on the internal force and on the contraction velocity:

The value of B was taken as a constant in several models, for the sake of simplicity, in
order to get a linear model of the muscle. This linear model is under-damped and there-
fore overshoots, and oscillations are most likely to appear in the controlled movement.
This problem is avoided by the use of the more realistic nonlinear model, as demon-
strated in Fig. 22 for a very basic movement, the reaching movement.

This example demonstrates how nonlinearity might be exploited advantageously by
nature. However, in order to simulate and analyze this phenomenon, we exploited the
linear systems description tools.

Fig. 21. Mechanical muscle 
model. ni is the neural input. 
The first-order filter represents 
the excitation-contraction 
coupling. To is the hypothetical 
force in the muscle. B repre-
sents the relation between 
force and velocity from Hill’s 
model. The other elements 
represent the mechanical 
properties of the tendon and 
other connective tissues 
around the joint.
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Fig. 22. A comparison of the 
speed profile of the end point 
of a two-degrees-of-freedom 
anthropomorphic arm with a 
linear muscle model (left) and 
with a nonlinear muscle model 
(right) in response to typical 
rectangular pulse activation of 
the muscles. Only the nonline-
ar muscle model yields a bell-
shaped speed profile with a 
smooth stop (for more details, 
see Karniel and Inbar 1997)
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Comment Another useful model is the second-order muscle model which was introduced in Ex-
ample 3.5. In this model, in order to get a more realistic behavior, the stiffness must
change as a function of the activation, the length and the velocity of the muscle (see for
example Inbar 1996).

Pre-processing or Post-processing

In this subsection we describe two simple ways of combining linear systems in nonlin-
ear modeling. The first one is to describe a linear combination of nonlinear fixed func-
tions, which is called a pre-processing, since the inputs are processed prior to their en-
trance to the linear model, see Fig. 23.  The second way is to describe a nonlinear func-
tion of a linear combination, which is called “post-processing” since the output of the
linear model is nonlinearly processed, see Fig. 24. Both models can take advantage of
the linear parameter estimation tools in order to estimate the parameters of the linear
part of the model.

Example 7.3: Artificial Neural Networks 

The growing field of neural computation is based on combinations of linear and nonlin-
ear elements. The perceptron which is the basic threshold element of neural networks is
built as in Fig. 24, where the function F(x) is a step function or any other sigmoidal func-
tion.

It is well known that any function can be approximated with the Taylor expansion as
a polynomial function. So one can choose the functions Fi(ui) in Fig. 23 to be: 1, u, u2,
u3, etc. and then this model can estimate any continuous function.  The field of neural
computation contains numerous examples for these kinds of models, see Chapter 25.

Comment: Overfit and Underfit

The problem of choosing the order of the model raised in the previous section on linear
systems is a major problem in the field of neural computation. Both too many or too few
parameters should be avoided. Under-fit is the situation where the model is less complex

Fig. 23. Linear combination of 
nonlinear functions

Fig. 24. Nonlinear function of a 
linear sum
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than the actual system. In this case, the model is unable to fit the data. See Fig. 25on the
left.

Over-fit is the situation where the model is more complex than the actual system. In
this case, the model will fit the observations. However, if there is noise or insufficient
observations (that is, the number of independent observations is smaller then the
number of parameters), then the model will not fit the actual system, and in the valida-
tion process it may fail to predict the outcome of the system. (In the validation process
we check the generalization, that is, the ability of the identified model to deal with ex-
amples that were not used for the fitting). See Fig. 25on the right.

Example 7.5: Single-sign Integrated Pulse Frequency Modulation

The transformation of graded membrane potentials into sequences of action potentials
in nerve cells is often modeled by single-sign integrated pulse frequency modulation
(IPFM), as illustrated in Fig. 26. The input (membrane potential) is integrated (the
block 1/s), and when the value of the integrator reaches a threshold A, the pulse shaper
(P.S.), which can be anatomically related to the axon hillock, produces an action poten-
tial that resets the integrator and is the output of the system. This model has a linear part
which is the integration, and a nonlinear part which is the threshold.

This model can also be combined with the model in Example 3.1 in order to account
for multiple inputs from different synapses that influence the value of the integrator.

Let us analyze this nonlinear model and perform linearization in order to find a sim-
ilar linear model.

Fig. 25. Fitting a model to data. 
In this illustration, the three 
stars are the data taken from an 
underlying unknown function. 
On the left, a linear function 
was fitted to the data. In the 
middle, a quadratic function 
was fitted; and on the right, a 
third-order polynomial func-
tion was fitted.  After the fitting 
was completed, two more ex-
amples were taken from the 
same underlying function (the 
two circles). One can see that 
the left model is too simple, 
i.e., under-fits the data, and the 
right model is too complex, 
i.e., over-fits the data, but un-
fortunately does not fit the un-
derlying system.

Fig. 26. The integrated pulse frequency modulation (IPFM) model for neural coding
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The output is a series of pulses, and we are interested only in the time of each pulse.
We also know that the integrator is reset exactly when a new pulse is generated, there-
fore we know that the integral of the input between two pulses is equal to the threshold,
that is:

Let us write the first elements of the Taylor expansion for X(tk+1) near tk:

Let us define the frequency of the output as one over the interval between two pulses and
combine the above equations to get

Therefore we can conclude that the relation between the frequency of the output and the
input signal is 

We have arrived at the simplest linear system there is. We can take this IPFM as a model
of a piece of the retina, the input x as the intensity of light and the output as the firing
rate of the optic nerve, and therefore we can close this chapter with the very first exam-
ple that opened it.

Conclusions

Linear systems description is a very powerful tool used extensively in all branches of sci-
ence and technology. Biological systems are generally not linear, and a purely linear
model is thus seldom satisfactory. Nevertheless, linear systems description tools have
important advantages due to their simplicity, analyzability and tractability. They can
also be used in one or more of the following model types: locally linear, short-term lin-
ear, linear time-varying, linear parameter-varying, linear combinations of nonlinear
functions and nonlinear functions of linear combinations. Therefore linear systems de-
scription tools are not expected to become obsolete in the near future.
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