
LETTER Communicated by Laura Dipietro

Minimum Acceleration Criterion with Constraints Implies
Bang-Bang Control as an Underlying Principle for Optimal
Trajectories of Arm Reaching Movements

Shay Ben-Itzhak
bshay100@hotmail.com
Department of Electrical Engineering, Technion-Israel Institute of Technology,
Haifa, Israel

Amir Karniel
akarniel@bgu.ac.il
Department of Biomedical Engineering, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Rapid arm-reaching movements serve as an excellent test bed for any
theory about trajectory formation. How are these movements planned? A
minimum acceleration criterion has been examined in the past, and the
solution obtained, based on the Euler-Poisson equation, failed to predict
that the hand would begin and end the movement at rest (i.e., with zero
acceleration). Therefore, this criterion was rejected in favor of the min-
imum jerk, which was proved to be successful in describing many fea-
tures of human movements. This letter follows an alternative approach
and solves the minimum acceleration problem with constraints using
Pontryagin’s minimum principle. We use the minimum principle to ob-
tain minimum acceleration trajectories and use the jerk as a control signal.
In order to find a solution that does not include nonphysiological im-
pulse functions, constraints on the maximum and minimum jerk values
are assumed. The analytical solution provides a three-phase piecewise
constant jerk signal (bang-bang control) where the magnitude of the jerk
and the two switching times depend on the magnitude of the maximum
and minimum available jerk values. This result fits the observed trajec-
tories of reaching movements and takes into account both the extrinsic
coordinates and the muscle limitations in a single framework. The min-
imum acceleration with constraints principle is discussed as a unifying
approach for many observations about the neural control of movements.

1 Introduction

The fast reaching movement is an elementary motor task mastered by hu-
mans and primates from an early age and is thought to be a primitive for
more complex tasks (Morasso, 1981; Hogan, 1984; Gomi & Kawato, 1996;
Karniel & Inbar, 1997; Smith, Brandt, & Shadmehr, 2000; Shadmehr & Wise,
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2005). Rapid reaching movements are also called ballistic movements, since
delays in the nervous system and in muscle activation prohibit the effec-
tive use of feedback in the first part of the movement, a phenomenon that
was fruitfully employed to study the planning of movement and the ca-
pability of the brain to expect external perturbations (Shadmehr & Mussa-
Ivaldi, 1994; Bhushan & Shadmehr, 1999; Karniel & Mussa-Ivaldi, 2003;
Patton & Mussa-Ivaldi, 2004). Due to redundancy in the motor system,
there are various ways to reach from one point in space to another utiliz-
ing different hand or joint trajectories and muscle activations (Bernstein,
1967). Experimental studies demonstrate that in typical conditions, point-
to-point reaching movements are made using straight-line spatial trajectory
and bell-shaped speed profiles (Morasso, 1981; Abend, Bizzi, & Morasso,
1982). How and why does the brain generate these well-observed invariant
profiles?

The first question (the how) has been addressed by various computa-
tional models. Some of these models elaborate on the neural aspects of
the system (Jordan, 1996; Barto, Fagg, Sitkoff, & Houk, 1999), while oth-
ers focus on the muscle dynamics. Nonlinearities of the muscles and the
spinal reflex loop may play a major role in generating the observed smooth
bell-shaped speed profiles (Karniel & Inbar, 1997, 1999; Krylow & Rymer,
1997; Gribble, Ostry, Sanguineti, & Laboissiere, 1998). In order to answer
the second question (the why), researchers usually assume that the biolog-
ical system evolved to find optimal solutions, and under this approach, the
question is, What is the cost function of the trajectory that is being mini-
mized? A few approaches were proposed to determine this cost function.
One approach is to minimize quantities that depend on the dynamics of
the system. In this category, one can find minimum energy (Nelson, 1983),
minimum torque change (Uno, Kawato, & Suzuki, 1989), and minimum iso-
metric muscle torque change (Kashima & Isurugi, 1998). Another approach
is to minimize quantities that depend on the kinematics of the system,
that is, displacement and its derivatives in task-space coordinates (or an-
gles and their derivatives in joints coordinates). In this category, one can
find minimum acceleration, minimum jerk, minimum snap, and minimum
crackle (Nelson, 1983; Flash & Hogan, 1985; Stein, Oguztoreli, & Capaday,
1986; Richardson & Flash, 2002; Dingwell, Mah, & Mussa-Ivaldi, 2004). A
third approach suggests minimizing the errors caused by noise in the ner-
vous system or environmental disturbances, which inserts noise to both the
control signal and the feedback sensors (Harris & Wolpert, 1998).

The first approach considers physical quantities, such as energy and
torque, directly. The third approach must refer to these physical quantities
indirectly in order to compute the influence of the noise. Both approaches
require complex calculations in order to find the optimal trajectory. With
the second approach, where only the kinematics is considered, the optimal
trajectory can be more easily derived analytically. Beyond this appeal to
modelers, the second approach emphasizes the end point (the hand) as the
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Figure 1: Position, velocity, acceleration, and jerk trajectories given by Euler-
Poisson equation using different optimality criteria: minimum velocity (left
column), minimum acceleration (middle column), and minimum jerk (right col-
umn). Units are normalized to the duration (T) and length (L) of the movement—
speed in L/T, acceleration in L/T2, and jerk in L/T3.

relevant point for the optimization, in contrast to other approaches that
consider joint space or muscle space.

Traditionally solutions to a minimum criterion that involve kinematics
quantities were calculated analytically using the Euler-Poisson equation.
Using an nth order derivative of the hands position as the optimum crite-
rion, the Euler-Poisson equation, an ordinary differential equation, implies
that the optimal trajectory is a (2n − 1)th order polynomial function of time.
The constants can be found by applying the boundary conditions. For ex-
ample, minimum jerk with n = 3 has boundary conditions of zero velocity
and zero acceleration at the start and the end of the movement (Richardson
& Flash, 2002). Figure 1 depicts the speed profile predicted by this method.
The analytical solution of the minimum acceleration criterion (MAC) shows
no zero acceleration at the boundaries. This contradicts the observed hand
rest in reaching movement before and after the movement; therefore, the
MAC was rejected (Stein et al., 1986). The minimum jerk criterion (MJC)
satisfies displacement, velocity, and acceleration boundary conditions, and
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it became the most widespread criterion among the criterions of the second
approach. A substantial body of research has demonstrated that this crite-
rion can be used to explain a wide range of experimental data about human
arm movements (Flash & Sejnowski, 2001; Sosnik, Hauptmann, Karni, &
Flash, 2004).

In this study we propose a remedy to the MAC by adding accelera-
tion boundary conditions and developing an analytical solution instead of
changing the optimization criteria. We propose a new approach based on
the Pontryagin minimum principle (Pontryagin, Boltyanskii, Gamkrelidze,
& Mishchenko, 1962). In order to find a physiologically plausible solution,
we also assumed constraints on the maximum and minimum jerk values,
so we call our criterion a minimum acceleration criterion with constraints
(MACC). The MACC predictions are compared with those of the MJC, and
with experimental results. The derivation and proof of the optimal solu-
tion are difficult in the sense that they require modern analytical tools such
as optimal control theory. However, the actual solution is quite simple—
only two parameters should be determined in order to realize the optimal
solution—and could be easily calculated by the nervous system in real time.

The rest of this letter is organized as follows. In the next section, we
present the main theorem and analytically derive the trajectory predicted
by the MACC. The solution is described rigorously and concisely, defer-
ring the details to four appendixes. In section 3 we compare the predictions
of the MACC to the predictions of the minimum jerk criterion. In sec-
tion 4 we compare the predictions of the MACC to experimental results,
and in section 5 we discuss the advantages and limitations of the MACC
hypothesis.

2 Minimum Acceleration Criterion with Constraints

We strive to find the movement trajectory of the hand, which begins in a
predefined start point and reaches a predefined end point at a predefined
time. The beginning and end of the movement are defined by zero veloc-
ity and acceleration. Among all possible trajectories, we wish to find the
trajectory that achieves a minimum mean-squared acceleration. In order to
find a general solution, we employ tools from optimal control theory and
formulate our task as a general optimal control problem. (For extended
background on this theory, see one of the textbooks on optimal control
theory: Kirk, 1970; Macki & Strauss, 1982; Lewis, 1992.)

In this formulation, a state vector, a control signal, and a cost function
should be defined, and boundary conditions for the state vector, and an
admissible control (i.e., limitations on the control signal) should be stated.
The state vector is defined as the position of the hand and its first and
second derivatives (velocity and acceleration, respectively). The control
signal is defined as the end point jerk (third derivative). The cost function
is described as the integral of the squared acceleration over the whole
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movement. The limitations on the jerk are considered to be isomorphic (i.e.,
the maximum available jerk cannot exceed a certain amount, which is the
same for each direction).

Hand-reaching movements are performed in the physical world in one,
two, or three dimensions; however, the theorem that we present could also
be applied to joint angles or other problems, and therefore we present
the problem and the theorem in the general case. Then we show that the
solution lies along a straight line (see lemma 1) and then present lemma 2,
which is the one-dimension version of the theorem and could be used for
most applications. Readers who are not interested in the general case and
detailed proof may move to lemma 2, observe Figure 3, skip the proofs,
and move to sections 3 and 4, which address only the particular solution
presented in lemma 2 and Figure 3.

2.1 The Problem. In n-dimensional space, the state vector X is defined
as follows:

x(t) =




x1(t)
...

xn(t)


 ; ẋ(t) =




ẋ1(t)
...

ẋn(t)


 ; ẍ(t) =




ẍ1(t)
...

ẍn(t)


 ;

X =




x(t)

ẋ(t)

ẍ(t)


 ; u(t) =




...x1(t)
...

...xn(t)




the system is described by

Ẋ(t) =




ẋ(t)

ẍ(t)

u(t)


 = f (X, u);

the boundary conditions are

x(0) =




x10

...

xn0


 ; x(T) =




x1 f

...

xn f




where
n∑

i=1

(
xi f − xi0

)2 = L2;

ẋ(0) = ẍ(0) = ẋ(T) = ẍ(T) = 0
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and the cost function is:

J (X, u) = 1
2

∫ T

0

n∑
i=1

ẍ2
i (t) dt = 1

2

∫ T

0
f0(X(t), u(t)) dt.

Here vectors are written in bold and underlined, T is the movement dura-
tion, and L is the movement length, L ≥ 0, T ≥ 0. The constraint on the jerk
value is defined by

∑n
i=1 u2

i (t) ≤ um. Then, among all the trajectories that
satisfy these conditions, we searched for the trajectory that minimizes the
cost function and obtained the following solution.

Theorem 1. The solution to the above problem is a straight line of the following
form,

x(t) = x(0 ) + (1/L)r (t) · (x(T) − x(0 )),

where x(0 ) and x(T) are the initial point and end point of the movement, re-
spectively, and r(t) is a time-dependent function consisting of three segments of
third-order polynomials,

r (t) =




1
6

umt3 0 ≤ t ≤ t1

1
6

c0t3 − 1
2

c1t2 + c2t + c3 t1 ≤ t ≤ t2,

1
6

umt3 − 1
2

umT · t2 + 1
2

umT2 · t − 1
6

umT3 + L t2 ≤ t ≤ T

where

c0 = −24um · L

um · T3 − 24 · L +
√

um · T3(um · T3 − 24 · L)

c1 = −12um · L · T

um · T3 − 24 · L +
√

um · T3(um · T3 − 24 · L)

c2 = (12 · L − um · T3)
√

um · T + um · T2
√

um · T3 − 24 · L

4
√

um · T3 − 24 · L

c3 = (6 · L − um · T3)
√

um · T3 − 24 · L + (um · T3 − 18 · L)
√

um · T3

12
√

um · T3 − 24 · L
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and

t1 = T
2


1 −

√
um · T3 − 24 · L

um · T3




t2 = T
2


1 +

√
um · T3 − 24 · L

um · T3


 .

Note that the position trajectory lies along the straight line that connects
the initial and final hand positions.

Proof of Theorem 1. We first prove that the solution lies along the straight
line (see lemma 1) and thus reduce the problem to a one-dimensional prob-
lem. Then we find the solution to this one-dimensional case (see lemma 2,
which is proved by means of Pontryagin’s theorem and a few additional
lemmas as described below).
Lemma 1. The solution to the above n-dimensional problem is a straight line path
that connects the initial point and end point of the hand movement.
Proof of Lemma 1. Without loss of generality (by translating and rotat-
ing the axes), we can set the movement to begin at the origin and end at
x(T) = [L 0 · · · 0]T . Let us assume any initial solution that is not a straight
line. Then the acceleration vector ẍ(t) = [ẍ1(t), . . . , ẍn(t)]T contains some
nonnegative terms in the second, third, or nth dimensions at least part of the
time. Now we build a new solution in which ¨̃x(t) = [ẍ1(t), 0, , . . . , 0]T .
This solution consists of a straight line trajectory. It is clear that in this so-
lution, the value of J (X̃, ũ) is not greater than the value in the initial (not a
straight line) solution since

J
(
X̃, ũ

) = 1
2

∫ T

0

n∑
i=1

¨̃xi
2(t) dt

= 1
2

∫ T

0
ẍ2

1 (t) dt ≤ 1
2

∫ T

0

n∑
i=1

ẍ2
i (t) dt = J (X, u).

In addition, the boundary conditions are still satisfied, because in the sec-
ond, third, or nth dimensions,

˙̃xi(t) =
∫ t

0
¨̃xi(τ ) dτ =

∫ t

0
0 dτ = 0 i = 2, 3, . . . , n

x̃i (t) =
∫ t

0
˙̃xi(τ ) dτ =

∫ t

0
0 dτ = 0 i = 2, 3, . . . , n,
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and in the first dimension, the straight line solution is the same as the curved
trajectory solution:

˙̃x1(T) =
∫ T

0
¨̃x1(τ ) dτ =

∫ T

0
ẍ1(τ ) dτ = 0

x̃1(T) =
∫ T

0
˙̃x1(τ ) dτ =

∫ T

0
ẋ1(τ ) dτ = L .

The jerk maximum value constraint is also satisfied because

ũ(t) =




...
x̃1(t)

...
...
x̃n(t)


 =




u1(t)

0
...

0




n∑
i=1

ũ2
i (t) = u2

1(t) ≤
n∑

i=1

u2
i (t) ≤ um.

Therefore, for every curved trajectory, we can find a straight line tra-
jectory that satisfies all the boundary conditions and the maximum jerk
value constraint, with a value function that is not greater than that of the
curved trajectory solution. This straight line goes along the path from ini-
tial point to end point of the movement. This is the end of the proof of
lemma 1.

In lemma 1 we reduced the problem to a one-dimensional problem by
showing that the trajectory lies on a straight line. Now we find the solution
to the one-dimensional case, where the initial point of the movement is
given on the origin.
Lemma 2. From all the one-dimensional continuous and differentiable trajectories
x(t) with first and second continuous and differentiable derivatives, and bounded
third derivative −um1 ≤ ẍ(t) ≤ um2 , (um1 , um2 > 0) which satisfy the boundary
conditions x(0) = ẋ(0) = ẍ(0) = ẋ(T) = ẍ(T) = 0, x(T) = L, the trajectory that
minimizes the cost function J = 1

2

∫ T
0 ẍ(t)2dt is a function consisting of three

segments of third-order polynomials:

x(t) =




1
6

um2t3 0 ≤ t ≤ t1

1
6

c0t3 − 1
2

c1t2 + c2t + c3 t1 ≤ t ≤ t2

1
6

um2t3 − 1
2

um2 T · t2 + 1
2

um2 T2 · t + L − 1
6

um2 T3 t2 ≤ t ≤ T,
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where the coefficients of the polynomial in the intermediate segment are

c0 = −24 um2
· L

um2
· T3 − 24 · L +

√
um2

· T3
(
um2

· T3 − 24 · L
)

c1 = −12 um2
· L · T

um2
· T3 − 24 · L +

√
um2

· T3
(
um2

· T3 − 24 · L
)

c2 =
(
12 · L − um2

· T3
)√

um2
· T + um2

· T2
√

um2
· T3 − 24 · L

4
√

um2
· T3 − 24 · L

c3 =
(
6 · L − um2 · T3

)√
um2

· T3−24 · L + (
um2

· T3 − 18 · L
)√

um2
· T3

12
√

um2
· T3 − 24 · L

and the switching times are

t1 = T
2

(
1 −

√
um2

· T3 − 24 · L
um2

· T3

)

t2 = T
2

(
1 +

√
um2

· T3 − 24 · L
um2

· T3

)
.

Note that to obtain real numbers for the switching times, the maximum
admissible jerk must satisfy um2 ≥ 24·L

T3 and since c0 is the jerk of the in-
termediate segment, the minimum admissible jerk must satisfy −um1 ≤ c0;
otherwise, there is no solution to the control problem, that is, the control
signal is not strong enough to bring the hand to the desired final state in
the desired time.
Proof of Lemma 2. The following proof is the main thrust of this study, and
it is based on Pontryagin’s minimum principle, which specifies a condition
that must be obeyed by the optimal solution. (Readers are referred to the
optimal control literature for a more detailed description of this fundamen-
tal principle: Kirk, 1970; Macki & Strauss, 1982; Lewis, 1992.) Pontryagin’s
principle suggests that the optimal control is attained by finding the control
signal, u(t), that minimizes the function H, which is known in the literature
as the Hamiltonian. We consider all the possible trajectories and find the
optimal solution by means of contradiction (reductio ad absurdum) as the
only solution that satisfies Pontryagin’s minimum principle. We first define
the state vector and control signal, cite Pontryagin’s minimum principle,
and formulate our problem in the notations of Pontryagin. Then we de-
scribe the nature of all possible solutions and narrow the space of possible
solutions until we reach the only possible solution. In order to simplify the
presentation of the proof, we divide this procedure into three lemmas and
defer the details of their proof to the appendixes.
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Let us define a state vector as the one-dimensional displacement, velocity,
and acceleration of the trajectory, and the control signal as the jerk (i.e., third
derivative of displacement), and obtain the system dynamics as follows:

X =




x(t)

ẋ(t)

ẍ(t)


 , u(t) = ...

x(t), Ẋ =




ẋ(t)

ẍ(t)

u(t)


 = f (X, u) .

Pontryagin’s minimum principle (Pontryagin et al., 1962).1 Consider the
following system,

Ẋ = f (X, u),

with an admissible control, umin ≤ u ≤ umax, and the constraints x(0) =
x0; x(t f ) = x f , and consider a cost function J = ∫ t f

0 f0(x(t), u(t), t) dt.
In addition let us define a function H of the variables X, u, P, p0 (the

Hamiltonian),

H(X, u, P, p0) = p0f0 + PT f (X, u),

where the parameters vector P satisfy:

Ṗi = − ∂ H
∂Xi

.

Now let u be an admissible control, so that the solution x[0,t f ] provides
the boundary conditions. In order that u(t) yield a solution of the given
optimal problem with fixed time, it is necessary that there exists a nonzero
continuous vector function P(t) corresponding to the function u(t) and X(t)
such that:

1. For all {t : 0 < t < t f }, the function H of the variable u attains its
minimum at the point u = u(t).

2. The function p0(t) is nonnegative (and constant)

Proof. See Pontryagin et al. (1962, Chap. 2).
Following the notation of Pontryagin’s minimum principle, since our

cost function is J = ∫ t f

0 f0(x(t), u(t), t) dt = 1
2

∫ 1
0 ẍ(t)2dt, we can write the

1In this textbook, the principle is described as a maximum principle rather than a
minimum principle. The only difference in this case is that the function p0(t) is nonpositive,
so the value function achieves its maximum.
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Hamiltonian as follows:

H (u) = 1
2

p0 ẍ2 + p1 ẋ + p2 ẍ + p3u,

where p1(t), p2(t), p3(t) are continuous, differentiable, and bounded in t ∈
[0, T], and comply with the time-differential equations:

ṗ1(t) = 0

ṗ2(t) =−p1(t)

ṗ3(t) =−p0 ẍ − p2(t).

p0 is a nonnegative constant and therefore can be considered as 0 or 1 (if
p0 > 0, then any value of p0 only factorizes the function H by a constant, so
without loss of generality, p0 can be set to 1).

Pontryagin’s minimum principle asserts that the optimal control signal
(in our case, the jerk) must minimize the Hamiltonian. One should recall that
according to our problem definition, the control signal is bounded −um1 ≤
u(t) ≤ um2 and therefore our goal is to solve the following minimization
problem:

ẍ(t) = arg min
u∈[−um1,um2]

H (u) .

To minimize the Hamiltonian (H(u) �= 1
2 p0 ẍ2 + p1 ẋ + p2 ẍ + p3u), the

control signal, u(t), must be maximal and with sign opposite to p3(t). As
a result, the control signal depends on the sign of p3(t), where p3(t) might
change its sign over the time interval. In addition, there might be time in-
tervals in whichp3(t) = 0 along the whole interval. In those intervals, the
control signal does not affect the Hamiltonian directly, and other consid-
erations should be taken in order to find the control signal. Therefore, we
can divide the time interval into segments, where in each segment, p3(t) is
positive, negative, or zero. If p3(t) �= 0 along the segment, the trajectory is
called a nonsingular trajectory, and the control signal is maximal and with
sign opposite to p3(t). If p3(t) = 0, the trajectory along the segment is called
a singular trajectory, and the control signal should be found indirectly. Each
time point in which p3(t) changes its sign or changes from nonzero to zero
or vice versa is called a switch. A general solution can include just a singular
trajectory (i.e., p3(t) = 0 all over the interval), just nonsingular trajectories
(i.e., p3(t) �= 0 all over the interval but can change its sign), or a combination
of singular and nonsingular trajectories (see Figure 2 for a demonstration
of a combined solution).

To find the optimal solution we show by contradiction that no solution
exists in the case of p0 = 0 and that a singular trajectory must exist.
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+um

-um

u

t

t
t1 t2 T t4t3

p3

Non-singular trajectory Singular trajectory 
Non-singular
trajectory 

Figure 2: Combined solution that contains singular and nonsingular trajecto-
ries. If p3 is nonzero, the control signal exceeds its maximum or minimum. If p3

is zero, other considerations should be taken in order to determine the control
signal.

Lemma 2.1. There is no possible solution to the problem if p0 = 0 (and therefore
p0 > 0).
Proof. See appendix A.
Lemma 2.2. The optimal trajectory must contain an intermediate singular tra-
jectory.
Proof. See appendix B.
Lemma 2.3. The optimal trajectory must contain only two switches.
Proof. See appendix C.

From lemma 2.3 we know that there are only three segments. From
lemma 2.2, the intermediate segment must be singular trajectory; there-
fore, the solution consists of one singular trajectory that lies between two
nonsingular trajectories. The three trajectories must form an overall contin-
uous trajectory, with continuous first and second derivatives. In addition,
the overall trajectory must satisfy the boundary conditions. Putting all these
constraints together forms a system of 12 equations with 12 unknowns (see
appendix D for details). In addition, the jerk in the first nonsingular tra-
jectory and in the last nonsingular trajectory can be positive or negative.
Each one of the four possibilities (positive or negative in the first and last
nonsingular trajectories) gives a different solution, but not all of the so-
lutions are physically acceptable. Solving the equations system four times
with different choices of the jerk sign leads to the conclusion that only in
the case of positive jerk in both the first and the last nonsingular trajectories
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is a solution that satisfies 0 < t1 < t2 < T . All other choices give switching
times that are out of the movement time.

Solving the 12 equations system with the right choice of the sign of the
jerk provides the switching times and the control signal in the singular
trajectory (see appendix D for details):

t1 = T
2

(
1 −

√
um2 · T3 − 24 · L

um2 · T3

)

t2 = T
2

(
1 +

√
um2 · T3 − 24 · L

um2 · T3

)

c0 = −24 um2 · L

um2 · T3 − 24 · L +
√

um2 · T3
(
um2 · T3 − 24 · L

) .

There are two limitations that should be considered in examining this
result. As we mentioned before, the switching times should be real num-
bers, which leads to the requirement that um2 ≥ 24·L

T3 ; if the control signal is
not strong enough, the trajectory cannot satisfy the boundary conditions. A
second limitation is that the control signal in the singular trajectory should
not exceed the boundary c0 ≥ −um1 . This limitation means that if the mag-
nitude of the control signal in the nonsingular trajectories is too low, greater
jerk must be used in the singular trajectory in order to compensate for the
“slowness” of the nonsingular trajectories; otherwise the boundary condi-
tions cannot be met.

The explicit solution of the optimal trajectory x(t) is thus (see appendix
D for details):

x(t) =




1
6

um2 t3 0 ≤ t ≤ t1

1
6

c0t3 − 1
2

c1t2 + c2t + c3 t1 ≤ t ≤ t2

1
6

um2 t3 − 1
2

um2 T · t2 + 1
2

um2 T2 · t + L − 1
6

um2 T3 t2 ≤ t ≤ T

where

c0 = −24 um2 · L

um2 · T3 − 24 · L +
√

um2 · T3
(
um2 · T3 − 24 · L

)
c1 = −12 um2 · L · T

um2 · T3 − 24 · L +
√

um2 · T3
(
um2 · T3 − 24 · L

)
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c2 =
(
12 · L − um2 · T3

)√
um2 · T + um2 · T2

√
um2 · T3 − 24 · L

4
√

um2 · T3 − 24 · L

c3 =
(
6 · L−um2 · T3

)√
um2 · T3 − 24 · L + (

um2 · T3−18 · L
)√

um2 · T3

12
√

um2 · T3 − 24 · L
.

This is the end of the proof of theorem 1.

Note that the solution depends on only the maximum admissible jerk.
The minimum limit of the jerk influences only the limit of c0 and the capabil-
ity (or incapability) of completing the movement. It is also worth noting that
the switching times are symmetrically arranged around the middle of the
time interval, so learning the solution requires learning only the difference
of switching times from the middle of the time interval.

Another observation is that in the limiting case of um2 → ∞, the switch-
ing times approach the initial and final times (t1 → 0, t2 → T), and the
result reduces to x(t) = (−2τ 3 + 3τ 2) · L , τ = t

T , which is identical to the
solution of the minimum acceleration criterion that was previously ob-
tained employing the Euler-Poisson equation with no constraints on the
control signal (see Figure 1).

3 Minimum Jerk Versus Minimum Acceleration with Constraints

The minimum jerk criterion (MJC) successfully predicts many experimental
studies (Flash & Hogan, 1985; Sosnik et al., 2004). Therefore, any proposed
criteria should be able to generate similar predictions under the tested
conditions. According to MJC, knowing the boundary conditions of dis-
placement, velocity, and acceleration is sufficient for finding the trajectory
that satisfies the criterion. The MACC, on the other hand, also needs to
know the maximum and minimum values of the admissible control signal.
These values are important since they affect the shape of the velocity profile
and hence affect the agreement of the theoretical solution with experimental
results. A low value of maximum admissible control causes the switching
times to move toward the middle of the time interval, whereas a high value
pushes the switching times away from the middle toward the boundaries
of the time interval.

Figure 3 depicts some theoretical trajectories for different values of jerk
limitations. As one can see, low values create a bell-shaped velocity profile,
and high values make more of an arched shape. As this value approaches in-
finity, the solution converges to the classical minimum acceleration solution
obtained from the Euler-Poisson equation.

A salient difference between the two models is the shape of the jerk pro-
file. While the MJC attains a second-order polynomial control signal, the
MACC obtains a piecewise constant control signal. The maximum value
of the jerk according to the MJC is 60L/T3 (Flash & Hogan, 1985; Sosnik
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Figure 3: MACC versus MJC profiles. Displacement, speed, acceleration, and
jerk trajectories of MACC solution with various jerk limitations. um is the
maximum admissible jerk. Low admissible jerk (solid gray line) produces a
bell-shaped speed profile. High admissible jerk (dash-dotted line) produces an
arched-shaped speed profile. Medium admissible jerk (dashed line) produces
an intermediate shape. Low admissible jerk speed profile is very close to the
profile produced by MJC. Units are normalized to the duration (T) and length
(L) of the movement: speed in L/T, acceleration in L/T2, and jerk in L/T3.

et al., 2004) whereas by using MACC, the boundary conditions of displace-
ment, velocity, and acceleration can be realized with almost half this value
(32L/T3).

It is also worthwhile to note that the maximum value of acceleration in
the solution of MJC is lower than the maximum values obtained by the
MACC. However, the overall mean squared acceleration is lower in the
MACC than in the MJC when the maximum jerk is similar.

4 Fitting to Experimental Results

In this section we compare the theoretical prediction of the MACC hypoth-
esis to human reaching movements obtained in previous studies (Karniel
& Mussa-Ivaldi, 2002, 2003).

4.1 The Experiment. We present a brief description of the experiment
and refer readers to Karniel and Mussa-Ivaldi (2002) for further details.
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Figure 4: Experimental setup. One of three targets appeared on a screen at each
moment triggering one of six possible movements of 10 cm.

Five subjects participated in the experiment. Seated subjects held the
handle of a two degrees of freedom robotic manipulandum and looked at a
screen that displayed the location of the hand and the location of the target.
The movements were performed in the horizontal plane.

Subjects were asked to execute fast reaching movements to a target dis-
played on the screen. A small, round cursor represented the position of the
hand, and a rectangular one represented the target. As soon as the cursor
reached the target, the target either exploded (i.e., become gradually bigger
over a period of 200 milliseconds) or changed color, instructing the subject
to move faster or slower in order to achieve movement duration of ap-
proximately one-third of a second (±50 milliseconds). The experiments had
three possible targets, which allowed six possible movements of 10 cm (see
Figure 4). Although the original experiments involved perturbing forces
applied to the subjects’ movements, here we analyze trials only from blocks
in which no forces were applied. (For more details, see Karniel & Mussa-
Ivaldi, 2002.)

4.2 Data Analysis. To analyze the raw data, the starting point and the
stopping point should be found for each movement. This was done by
examining the curvature of the position trajectory and the acceleration zero
crossing. Before the initiation of the movement, the acceleration may be
positive or negative, and the curvature could assume large values; however,
once the movement starts, the acceleration is positive, and the movement
becomes roughly straight. Therefore, we marked the starting at the first
time where both conditions were met and hold until maximum velocity is
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Figure 5: Tangential velocity profile, acceleration profile, and curvature of typ-
ical trajectory. Movement starts where acceleration is positive and curvature is
greater than 0.2 [rad] (∼11.5 [deg]) (left solid bar). Half time is set where the
velocity is maximal (dash-dot bar). Trial duration is set to be twice the time to
reach maximum velocity (right dashed bar).

obtained, specifically (1) the acceleration was no longer negative and (2)
the curvature was less than 0.2 radians. The second condition was chosen
by trial and error and sought to ensure a straight line with a reasonable
tolerance. In order to avoid feedback effects in the last part of the movement,
only the first half of the movement is analyzed. Since the duration of the
movement depends on corrective movements that are not part of our model,
we considered only the data at the beginning of the movement up to the
point of maximum velocity. The time where the maximum velocity has
been reached is considered the middle of the movement duration; thus,
the overall duration of the movement is considered as twice the time to
reach the maximum velocity. Figure 5 shows typical movements’ velocity,
acceleration, and curvature profiles and the starting and stopping points.

The MACC assumes maximum and minimum jerk value, but the exis-
tence of such constraints and their values is not known. In order to test the
MACC, we fit the value of the maximum available jerk (um2 ) to each trial by
minimizing the mean squared error (MSE) of the tangential velocity profile.
The fitting was performed only to the first half of the movement in order
to avoid effects of feedback. Figure 6 shows the fitting to one typical trial.
As one can see, the position and velocity profiles of MJC as well as MACC
qualitatively match the experimental data. Outliers were considered as tri-
als where the calculated um2 was less than 27 L

T3 (in this case um1 > 2um2 ) or
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Figure 6: Trajectories of position, velocity, acceleration and jerk. Experimental
result (solid), MACC (dashed), and MJC (dash-dotted).

greater than 65 L
T3 (twice the median) and were removed from the data set

used in further analysis. (Since the duration and length of movements vary
between directions and subjects, the value of um2 was normalized by length
and time and was expressed by means of L

T3 units.)
After outline removal, we were left with 80, 85, 79, 71, and 77 trials for

subjects 1, 2, 3, 4, and 5, respectively. These trials were used for the data
analysis presented in the next section.

4.3 Comparing the Fitting of MJC and MACC to the Data. We used
two measures to compare the predictions of the MJC and those of the MACC
to the data; the expected maximum velocity and the mean error over the
trajectory profile (see Figure 7).

From the analytical results of MACC (see lemma 2), one can derive the
maximum velocity as a function of um2 :

Vmax = 1
8

(
T2um2 −

√
Tum2 (T3um2 − 24L)

)
.

The maximum velocity estimated by MJC is 1.875 L
T (Richardson & Flash,

2002).
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Figure 7: Average of MSE between experimental results and analytic results
of MACC and MJC. MSE of Vmax (top). MSE of velocity profile (Bottom).
One can see that the MACC can fit the experimental data better than the MJC
can. The differences between the errors in both measures for each subject were
statistically significant (p < 0.01).

The difference between MACC estimation and the data was calculated
and compared with the difference between MJC estimation and the data.
In addition, the sum of squared error in the velocity trajectory between
analytic results and experimental data was calculated in every trial (from the
initiation of movement up to the point of maximum velocity) for both MJC
and MACC. This analysis shows that the MACC can fit the experimental
data better than the MJC (see Figure 7). The differences between the errors
in both measures for each subject were statistically significant (p < 0.01
using Wilcoxon rank sum test).

4.4 The Maximum Jerk at Different Movement Directions. The max-
imum jerk, um2 , was fitted to each movement. Although subjects received
feedback encouraging them to perform movements of the same duration,
the time duration of each trial varied by 12% to 18% of median value. The
changes in time duration play an important role in determining the control
signal, since the jerk depends on time duration by power of three. There-
fore, it is difficult to analyze the properties of um2 , which also changes from
trial to trial. Nevertheless, one can still observe differences in the values
of the maximum jerk that depend on the direction of the movements. We
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Figure 8: Average of um for six directions in five subjects. Movements from
target 1 to target 3 and vice versa have the greatest um. It is interesting to note
that movements between targets 1 and 3 require much less shoulder movement.

have calculated the mean of the maximum jerk for the six directions (see
Figure 4) for each one of the five subjects (see Figure 8). One can see that in
four of five subjects, the maximum jerk value was clearly greater in move-
ments between targets 1 and 3 and targets 3 and 1, movements that do not
include the shoulder; relative to the other movements that involve shoulder
movement. These differences are statistically significant (p < 0.05 using the
Wilcoxon rank sum test) only in subjects 1 and 2. This result indicates that
the maximum available jerk depends on the muscle and joint properties,
and therefore the MACC is not a pure extrinsic criterion.

5 Discussion

We present a new criterion for arm trajectory formation, the minimum accel-
eration with constraints criterion (MACC); analytically derive the expected
hand trajectories; and compare them to the minimum jerk criterion as well
as to measured hand movements of five subjects.

The solution of the MACC dictates a simple three-phase control signal
where the controller should provide only two parameters: the switching
times (due to symmetry, one parameter is sufficient) and the value of the
jerk of the singular trajectory. This control could be easily learned by trial
and error.
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The analytical solution assumes an existence of a maximum available
jerk value. From our experimental results, it is clear that there is no such
unique value, and this value changes from one movement to another. Our
physiological interpretation of the bound on the jerk could be related to the
neural signal integrated before the force is produced and therefore could
be similar to jerk; another interpretation is the desire to minimize wear
and tear that might increase significantly above a certain value of jerk.
We already noticed that the maximum value changes with movement type
consistently, which indicates that the true maximum jerk could be calculated
in the joint coordinates. It is not clear that the maximum available jerk
value stays constant over one movement, and if this is the case, the solution
presented here should be considered as an approximation of the underlying
mechanism, which should be further studied. If the admissible jerk control
does not stay constant over the whole movement, the analytical solution
becomes more complicated, but the policy of finding the optimal control
according to the sign of p3 remains unchanged in the sense that this work
could be extended to consider various policies to determine the maximum
available jerk at each movement.

We have clearly found that the MACC better fits the experimental data
than the MJC for all subjects (see Figure 7); nevertheless, one should remem-
ber that the MACC includes an additional free parameter: the maximum
available jerk. As modelers look for simplicity, this could be considered a
disadvantage, but considering the physiological interpretation, this addi-
tional flexibility can indirectly introduce the constraints imposed by the
muscles and joints, and in that sense, the MACC can enjoy the advantages
of the two schools of criteria that concentrate on either the joints or the end
point (see Figure 8). In order to find out whether MACC or MJC is more
compliant with experimental data, more accurate measures of acceleration
and jerk are required. One of the predictions that could be used to distin-
guish between the two criteria is the arch-shaped velocity profile for large,
admissible jerk values. If we assume that the maximum admissible jerk is
constant (does not depend on the length and duration of the movement),
then differences in length of movement or in time duration are expected
to change the normalized maximum admissible jerk and, consequently, the
velocity profile. In our experimental data, all the movements were approx-
imately equal in length and time duration. Additional experiments should
be done with changes in length and duration in order to check whether there
is a change in velocity profile. Another prediction involves the maximum
jerk value, which could be rather low in the MACC and in the extreme case
almost half of the maximum jerk expected from the MJC; accurate mea-
surements of the maximum jerk under various movement directions and
muscle conditions could reveal the potential flexibility of the maximum jerk
parameters facilitated by the MACC.

Further study is required to thoroughly compare the MACC predictions
to the many other alternative criteria partly presented in section 1. In this
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letter, we concentrated on comparison to the minimum jerk criterion due
to its simple analytical solution; the other methods require assumptions
as to the limb dynamics, muscle properties, or noise distributions, and
therefore a simple, objective comparison is quite difficult. Nevertheless, it
worth noting that the free parameter inherent in the MACC (the maximum
jerk) provides a bridge to dynamic related criteria since it accounts for the
different profiles observed in different arm configurations and movement
directions (see Figure 8) as predicted by muscle- and joint-related criteria.
One prominent prediction of many of the other criteria is a gently curved
profile rather than a straight line, which is predicted by both MJC and the
MACC (see, e.g., Harris & Wolpert, 1998; Uno et al., 1989). In this respect,
it is interesting to note our simplifying assumptions about the value of the
maximum jerk being similar in all direction of movements. An interesting
direction for future study is the generalization of the model to the possibility
of different values of the maximum jerk in different movement directions,
which may imply a nonstraight path as observed in some cases, in particular
in 3D and at the edge of the work space.

Dingwell et al. (2004) and recently Svinin, Goncharenko, Zhi-Wei, and
Hosoe (2006) tried to predict the trajectory of a hand holding a spring at-
tached to a mass. Following the tradition of using the Euler-Poisson equa-
tion, which was used to dismiss the minimum acceleration criterion in favor
of the minimum jerk criterion, Dingwell et al. claim that since the solution
of MJC on the mass gives a nonzero acceleration of the hand, a higher
derivative of the mass displacement should be taken as the minimum cri-
terion, and a minimum crackle criterion was suggested. According to our
approach, using the minimum principle can solve the problem of hand
attached to a mass with a spring using MJC or even using the minimum
acceleration, but constraints should be added to the admissible control.
Furthermore, if a jerk of the hand is considered as the control signal, it is
not difficult to show that the control signal is piecewise constant, that is, a
bang-bang control. (However, further study is required in order to find the
number of switches and magnitude of jerk in each segment.)

The bang-bang control method was proposed in the context of mini-
mum time, which predicts maximum velocity and nonsmooth trajectories,
predictions that were rightfully criticized as not physiological. In the origi-
nal minimum acceleration criterion (see Figure 1), the acceleration changes
abruptly, and therefore the predicted trajectories significantly differ from
the observed hand movements. It is important to note that here, the bang-
bang control is in the jerk signal, and under the proposed MACC model,
both position and velocity are smooth, and even the acceleration is con-
tinuous. The predicted acceleration profile is not smooth, however; abrupt
changes in the jerk are also predicted by the MJC and should not be con-
sidered not physiological as they represent neural control signal, which is
being integrated by the musculoskeletal system to generate smooth move-
ment. The neural control signal, measured as a firing rate, does not have
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to be smooth, and burst activities are frequently observed in the nervous
system; see, for example, the bistability recently observed in the cerebellum
in vivo (Loewenstein et al., 2005).

The MACC predicts bang-bang control and suggests that the brain may
control only the transitions rather than sending a continuous command.
This approach is consistent with the notion of hierarchy, in which the brain
sends simple commands that are further translated to movement by the
spinal cord muscles and arm dynamics. This can be traced back to William
Harvey,2 who used the analogy of or army to describe the control of move-
ments. More recent studies use the notion of primitives to describe this
notion (Mussa-Ivaldi & Bizzi, 2000), in one case even suggesting that the
brain minimizes the transitions in its command in order to simplify its ef-
forts for frequently used movements (Karniel, Mussa-Ivaldi, d’Avella, &
Bizzi, 2002). This hypothesis, named the minimum transition hypothesis,
is based on the notion of intermittence control implied by the MACC pre-
sented in this letter.

Woodworth (1899) discussed the distinction between initial adjustment
and current control and inspired many modern studies about intermittence
control and the notion of generating submovements as a result of feedback
about error during the movement (Hanneton, Berthoz, Droulez, & Slotine,
1997; Doeringer & Hogan, 1998; Novak, Miller, & Houk, 2002; Fishbach,
Roy, Bastianen, Miller, & Houk, 2005). Although the MACC do not address
the feedback at all, the control strategy predicted by the MACC, of using
pulses and steps, perfectly fits with this notion of intermittence control and
could serve as the basis for a more general view of the motor control system.
Such simple motor commands of pulses and steps were used in a few mod-
els that describe neural control of movement (Karniel & Inbar, 1997; Barto
et al., 1999). It is also interesting to note that recent measurements in the
cerebellum found clear evidence for an intermittence control strategy
(Loewenstein et al., 2005). Whether the brain employs continuous or
discrete control strategy remains fascinating open question. In this study,
we show that a discrete control strategy could be consistent with the
observed smooth movements that were previously explained by mean of
continuous control strategies.

An analytical solution for the optimal hand trajectory under MACC was
derived. This new criterion predicts a simple trajectory of the three-phase
bang-bang control strategy. The bang-bang control strategy is the optimal
result of many control problems, as described in any textbook on optimal
control ( Kirk, 1970; Macki & Strauss, 1982; Lewis, 1992), and it is fruitfully
used in many systems, from missile control to domestic thermostat. Further

2Harvey (1578–1657) wrote, “Nature sets in motion by signs and watchwords, which
are made with little momentum. . . . Just as in the army the soldiers are set in motion by one
word as if by a given signal and continue to move until they receive another signal to stop,
so the muscles move in order and harmony from established custom” (Harvey, W. 1959).
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studies are required to derive predictions for other types of movements,
such as reaching through via points, and to test the predictions of this
model by accurately measuring jerk during reaching movements.

All in all, it appears that the rumors about the death of the minimum
acceleration criterion were premature.

Appendix A: Proof of Lemma 2

In this appendix, we prove lemma 2.1 by contradiction, that is, we show
that there is no possible solution to the problem if p0 = 0.

Assume p0 = 0. Then the Hamiltonian is

H = p1 ẋ + p2 ẍ + p3u,

and

ṗ1(t) = 0 ⇒ p1(t) = c0

ṗ2(t) =−p1(t) ⇒ p2(t) = −c0t + c1

ṗ3(t) =−p2(t) ⇒ p3(t) = 1
2

c0t2 − c1t + c2.

First, let us consider the case where p3 ≡ 0 in a segment (subinterval)
[t1, t2] ∈ [0, T]. (If p3 = 0 only in a finite number of time points (singular
time points), it does not affect the system dynamics.) Since p1(t), p2(t), p3(t)
do not depend on x(t) or its derivatives, c0, c1, c2 stay constant over the
whole time interval t ∈ [0, T]. Because p3 ≡ 0 over a segment [t1, t2] ∈ [0, T],
all its derivatives in the segment are also equal to zero:

p3 = 1
2

c0t2 − c1t + c2 = 0 ⇒ c2 = 0

⇑
ṗ3 = −p2 = c0t − c1 = 0 ⇒ c1 = 0

⇑
p̈3 = − ṗ2 = p1 = c0 = 0 ⇒ c0 = 0.

But this leads to the fact that the vector P �= [p0, p1(t), p2(t), p3(t)]T is
identically zero, which contradicts the requirement in theorem 1 that P is
a nonzero vector. Therefore, there is no segment [t1, t2] ∈ [0, T], in which
p3 ≡ 0.

Now, let us consider the case in which p3(t) �= 0 on any segment in
t ∈ [0, T]. The function H is linear by u, so its minimum is attained at the
boundaries of u(t), that is,

u(t) = arg min
−um1 ≤u≤um2

H(u) = −sgn(p3(t)).

umax, where umax =
{

um2 sgn(p3(t)) < 0
um1 sgn(p3(t)) > 0 , and um1 , um2 limit the admissible

control (jerk of x(t)).
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Since the control signal depends on p3(t) and p3(t) might change its sign
over the time interval, one can divide the time interval into segments, where
in each segment, p3(t) is positive or negative along the whole segment (see
Figure 2).

In each segment, the solution is of the form

ui =−sgn(p3(t)) umax

ẍ =−sgn(p3(t)) umaxt + i d0

ẋ =−1
2

sgn(p3(t)) umaxt2 + i d0t + i d1

x =−1
6

sgn(p3(t)) umaxt3 + 1
2

i d0t2 + i d1t + i d2,

where i is the index of the segments and is defined as the number of
switches in the control signal before that segment (i.e., i is zero in the
first segment). The continuity of x(t) and its first and second derivatives
dictates the number of the segments. The boundary conditions, as well as
the continuity of x(t) and its first and second derivatives, give the following
constraints:

x(0) = 0 x(T) = L x(t−
i ) = x(t+

i )

ẋ(0) = 0 ẋ(T) = 0 ẋ(t−
i ) = ẋ(t+

i )

ẍ(0) = 0 ẍ(T) = 0 ẍ(t−
i ) = ẍ(t+

i ),

where ti , i = 1..k are the switching times and k is the number of switches.
The total number of equations is 6 + 3k.
The variables to be found are:

i d0,
i d1,

i d2 i = 0..k

ti i = 1..k.

The total number of variables to be found is 3(k + 1) + k. A general solution
might exist only if the total number of variables to be found is equal to or
greater than the total number of equations. This gives us a lower boundary
to the number of switches:

6 + 3k ≤ 3(k + 1) + k

6 + 3k ≤ 4k + 3

k ≥ 3.

One can see that the number of switches cannot be less than three.
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In addition, other constraints should be considered. The Lagrangian
multiplier p3(t) must be zero in all switching times:

p3(ti ) = 1
2

c0t2
i − c1ti + c2 = 0 i = 1..k

But p3(t) is a second-order polynomial, so it can equal zero at most twice;
therefore, it is not possible to have three (or more) switching times. We
conclude that no possible solution is applicable when p0 = 0.

Appendix B: Proof of Lemma 2.2

In this appendix we prove lemma 2.2; we continue based on appendix A
and show that the optimal trajectory must contain an intermediate singular
trajectory.

The conclusion of lemma 2.1 is that p0 = 1. The problem is now the same
as defined in appendix A, except that the Hamiltonian is defined as

H(u) �= 1
2

ẍ2 + p1 ẋ + p2 ẍ + p3u,

and the third element of the vector P is defined by

ṗ3(t) = −ẍ − p2(t).

By integration, the Lagrangian multipliers are

p1(t) = c0

p2(t) =−c0t + c1

p3(t) =−ẋ + 1
2

c0t2 − c1t + c2.

Notice that p1(t), p2(t) are independent in x(t), so c0, c1 are constants over
the whole interval t ∈ [0, T]. In addition, the first derivative of x(t) is con-
tinuous, and p3(t) is continuous too, which requires that c2 is also constant
over the whole interval t ∈ [0, T].

As in appendix A, one can see that since the control signal depends on
the sign of p3(t) and p3(t) might change its sign over the time interval, the
time interval can be divided into segments, where in each segment p3(t) is
positive, negative, or zero along the whole segment (see Figure 2).

Assume (by contradiction) that there are no singular trajectories along
the whole interval t ∈ [0, T]. Then the whole interval contains only nonsin-
gular trajectories, and p3(t) �= 0, which yields ẍ(t) = −sgnp3(t) · umax, where
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umax = { um2 sgn(p3(t)) < 0
um1 sgn(p3(t)) > 0 and um1 , um2 limit the admissible control (jerk

of x(t)).
The form of x(t) and its first and second derivatives in a single segment

is as follows:

ẍ(t) = −sgn(p3(t)) umax

ẍ(t) = −sgn(p3(t)) umaxt + i d0

ẋ(t) = −1
2

sgn(p3(t)) umaxt2 + i d0t + i d1

x(t) = −1
6

sgn(p3(t)) umaxt3 + 1
2

i d0t2 + i d1t + i d2,

where i indicates the index of the segment (starting from 0), {i d j }2
j=0 are

constants, and umax as above. The continuity constraints on x(t) and its
first and second derivatives dictate the number of segments. Adding the
boundary conditions, gives the following constraints:

x(0) = 0 x(T) = L x(t−
i ) = x(t+

i )

ẋ(0) = 0 ẋ(T) = 0 ẋ(t−
i ) = ẋ(t+

i )

ẍ(0) = 0 ẍ(T) = 0 ẍ(t−
i ) = ẍ(t+

i ),

where ti , i = 1..k are the switching times and k is the number of switches.
The total number of equations equals 6 + 3k.

The variables to be found are:
i d0,

i d1,
i d2 i = 0..k

ti i = 1..k.

The total number of variables to be found is 3(k + 1) + k. A general solution
might exist only if the total number of variables to be found is equal to or
greater than the total number of equations. This gives us a lower boundary
to the number of switches:

6 + 3k ≤ 3(k + 1) + k

6 + 3k ≤ 4k + 3

k ≥ 3.

One can see that the number of switches cannot be fewer than three, so
the number of segments in the total interval cannot be fewer than four. In
addition, other constraints should be considered. The Lagrangian multiplier
p3(t) must be zero in all switching times:

p3(ti ) = 1
2

(c0 + sgn(p3(t−
i )) · umax)t2

i − (c1 + i−1d0)ti + (c2 − i−1d1) = 0

i = 1..k.
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Some of the i d j variables were found by the continuity and boundary con-
straints. The number of yet undetermined variables equals the difference
between the number of variables (4k + 3) and the number of equations
(6 + 3k), that is, (k − 3).

Adding the three variables c0, c1, c2, brings the total number of yet un-
determined variables to k. The number of equations derived from the con-
straints on p3(t) is also k. This concludes that if k is equal to or greater than
three, the number of equations equals the number of variables, and thus
finite number of solutions to the problem may exist.

Let us take a close look on one intermediate segment in t ∈ [t1, tk] (i.e.,
any segment except for the first one or the last one). p3(t) is a second-order
polynomial, with roots on ti , ti+1. If p3(t) is negative, its second derivative
is positive, which leads to the following result:

p3(t) < 0

⇓
1
2

(c0 + sgn(p3(t)) · um2) > 0

c0 − um2 > 0

um2 < c0.

If p3(t) is negative, its second derivative is positive, and hence

p3(t) > 0

⇓
1
2

(c0 + sgn(p3(t)) · um1) < 0

c0 + um1 < 0

−um1 > c0.

Since we assume that none of the segments contains singular trajectories,
any two adjacent internal segments must have an opposite sign of p3(t).
This imposes that um2 < c0 and um1 < −c0, which means that either um1 < 0
or um2 < 0, but um1, um2 are both positive by definition. The only way that
avoids the contradiction is when all the internal nonsingular trajectories
have the same sign, and singular trajectories separate them. This eliminates
the possibility of a solution with no singular trajectory segment.

Appendix C: Proof of Lemma 2.3

In this appendix we prove lemma 2.3, that is, we show that the optimal
trajectory contains only two switches.
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In appendix B we saw that the optimal trajectory must contain at least
one singular trajectory. In a singular trajectory, p3(t) = 0 along a segment.
This yields that all of its derivatives in the segment become zero, which
results in

p̈3(t) =−...x − ṗ2(t) = −...x + p1(t) = −...x + c0 = 0
...x(t) = c0.

Hence, the control signal, u(t) = ẍ(t), has constant values along segments in
the time interval, and its form is of switching between these constant values.
This implies also that p3(t) switches between second-order polynomials.

Integrating three times gives the form of x(t) in a singular trajectory:

x(t) = 1
6

c0t3 − 1
2

c1t2 + c2t + i c3.

In the presence of singular trajectories, the continuity constraints are as
follows:

x(0) = 0 x(T) = L x(t−
i ) = x(t+

i )

ẋ(0) = 0 ẋ(T) = 0 ẋ(t−
i ) = ẋ(t+

i )

ẍ(0) = 0 ẍ(T) = 0 ẍ(t−
i ) = ẍ(t+

i ).

This yields 6 + 3k equations, where k is the number of switches, but there are
fewer variables, since c0, c1, c2 are the same in all the singular trajectories.
The variables are:

i d0,
i d1,

i d2 i = 0..k and segment i is not a singular one

c0, c1, c2,
i c3 i = 0..k and segment i is a singular one

ti i = 1..k

The number of parameters to be determined is 4k − 2m + 6, where m is
the number of singular trajectories. Here, the lower boundary of number of
switches is defined by

6 + 3k ≤ 4k − 2m + 6

k ≥ 2m.

From the above inequality, one can see that the number of switches has to
be equal to or greater than two (since m ≥ 1), and the number of segments
must be equal to or greater than three.

Now assume (by contradiction) that there are more than three segments.
If so, there exists at least one internal nonsingular trajectory. If p3(t) is
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negative in that segment, then

p3(t) < 0

⇓
1
2

(c0 + sgn(p3(t)) · um2) > 0

c0 − um2 > 0

um2 < c0.

Since c0 is the third derivative of x(t) in the singular trajectory, this contra-
dicts the control problem definition, which bounds the jerk by um2 .

If p3(t) is positive in that segment, then

p3(t) > 0

⇓
1
2

(c0 + sgn(p3(t)) · um1) < 0

c0 + um1 < 0

−um1 > c0,

but this contradicts the lower bound of the jerk in the control problem
definition. This implies that no nonsingular trajectories can be present in an
internal segment, and as a consequence the number of switches is two.

Appendix D: System Equations and Boundary and Continuity
Constraints Equations

In this appendix we provide the system equations and the boundary and
continuity constraints equations in detail.

In appendix C we concluded that the trajectory consists of three seg-
ments. This yields two switch times in which continuity constraints on the
displacement, velocity, and acceleration should be satisfied.

The control signal in the first and last segments can be um2 or −um1 , so
there are four possibilities. In order to find the solution(s), we have to solve
four equation systems. Only solutions with switching times in the interval
t ∈ [0, T] can be accepted. It is not difficult to find out that the only system
that gives an acceptable solution is the one with positive control signal in
the first and last segments.

The continuity constraints on displacement are

1
6

um2 t3
1 + 1

2
0d0t2

1 + 0d1t1 + 0d2 = 1
6

c0t3
1 + 1

2
c1t2

1 + c2t1 + c3

1
6

c0t3
2 + 1

2
c1t2

2 + c2t2 + c3 = 1
6

um2 t3
2 + 1

2
2d0t2

2 + 2d1t2 + 2d2,



Minimum Acceleration Criterion with Constraints 809

the continuity constraints on velocity are

1
2

um2 t2
1 + 0d0t1 + 0d1 = 1

2
c0t2

1 + c1t1 + c2

1
2

c0t2
2 + c1t2 + c2 = 1

2
um2 t2

2 + 2d0t2 + 2d1,

and the continuity constraints on acceleration are

um2 t1 + 0d0 = c0t2
1 + c1

c0t2 + c1 = um2 t2 + 2d0.

In addition, the boundary conditions should also be satisfied:

x(0) = 0 x(T) = L

ẋ(0) = 0 ẋ(T) = 0

ẍ(0) = 0 ẍ(T) = 0,

where um1 , um2 , L , T are part of the problem definition, and 0d0,
0d1,

0d2,

c0, c1, c2, c3,
2d0,

2d1,
2d2, t1, t2 are the unknown parameters.

A system with 12 equations and 12 unknown parameters is obtained.
Solving this system yields the following results:

t1 = T
2

(
1 −

√
um2 · T3 − 24 · L

um2 · T3

)
; t2 = T

2

(
1 +

√
um2 · T3 − 24 · L

um2 · T3

)

c0 = −24um2 · L

um2 · T3 − 24 · L + √
um2 · T3(um2 · T3 − 24 · L)

c1 = −12um2 · L · T

um2 · T3 − 24 · L + √
um2 · T3(um2 · T3 − 24 · L)

c2 = (12 · L − um2 · T3)
√

um2 · T + um2 · T2
√

um2 · T3 − 24 · L

4
√

um2 · T3 − 24 · L

c3 = (6 · L − um2 · T3)
√

um2 · T3 − 24 · L + (um2 · T3 − 18 · L)
√

um2 · T3

12
√

um2 · T3 − 24 · L

0d0 = 0d1 = 0d2 = 0

2d0 =−um2 · T; 2d1 = um2 · T2

2
; 2d2 = L − um2 · T3

6
.
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