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Degradation processes in living systems often take place gradually by front propagation. An important
context of such processes is loss of biological productivity in drylands or desertification. Using a dryland-
vegetation model, we analyze the stability and dynamics of desertification fronts, identify linear and
nonlinear front instabilities, and highlight the significance of these instabilities in inducing self-recovery.
The results are based on the derivation and analysis of a universal amplitude equation for pattern-forming
living systems for which nonuniform instabilities cannot emerge from the nonviable (zero) state. The
results may therefore be applicable to other contexts of animate matter where degradation processes occur
by front propagation.
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Front propagation is a driver of state transitions and
functional changes in various contexts of living systems.
Gene-expression fronts drive embryo development [1–3],
fronts of cell proliferation and migration drive cancer [4,5],
species invasion drives community-structure changes and
loss of ecosystem function [6], and fronts of plant mortality
drive desertification [7]. In all contexts, local processes at the
front zone gradually induce global transitions to new
asymptotic states, the nature of which depends on three
main aspects of front dynamics [8,9]. The first pertains to the
dynamics of a single front, and towhether it propagates or is
pinned [10]; front propagation gradually shifts the system
from one stable state to another, while front pinning can
result in a variety of stable hybrid states involving spatial
mixtures of the two alternative states [11,12]. The second
aspect relates to the interactions that develop as two fronts
approach one another. Repulsive front interactions can
prevent the coalescence of growing domains [13,14] and,
thereby render gradual state shifts incomplete [9]. The third
aspect of front dynamics is front instabilities that involve a
reversal in the direction of front propagation [15–17]. These
front instabilities are of particular interest because of the
potential they hold for reversing degradation processes.
Two types of front instabilities can be distinguished:

longitudinal instabilities, involving structural front
changes in the direction of front propagation, and trans-
verse instabilities in which the structural changes are along
the front line [18]. Transverse instabilities have been
studied in models of bacterial growth [19,20] and tumor
growth [4,21], while longitudinal instabilities have been
studied in a model of actin polymerization [17], and
in several ecological contexts, including a three-species

Lotka-Volterra model [22] and a dryland vegetation model
[9]. These studies have mostly been concerned with
unraveling instability mechanisms, paying little attention
to functional aspects of front instabilities, such as reversing
degradation processes.
In this Letter we identify linear and nonlinear transverse

instabilities [23] of desertification fronts, and study their
utilization in inducing self-recovery of degraded land-
scapes. While providing new insights about the challenging
problem of reversing desertification processes, which are of
world-wide concern [7,24], our study also highlights
universal aspects that might be relevant to other contexts
of degrading living systems.
Our starting point is a dryland vegetation model intro-

duced by Gilad et al. [8,25,26], which captures remarkably
well a wide range of vegetation pattern-formation phenom-
ena [27–31]. We consider here a simplified version of the
model, relevant to sandy soil for which overland water flow
is insignificant [30]. The simplified model consists of two
state variables, the areal densities of the above-ground
vegetation biomass bðr; tÞ and of the soil-water content
wðr; tÞ. Expressed in terms of nondimensional state vari-
ables and parameters, the model reads [26,30]

∂tb ¼ bwð1þ ηbÞ2ð1 − bÞ − bþ∇2b;

∂tw ¼ p −
nw

1þ ρb
− γbwð1þ ηbÞ2 þ δ∇2w; ð1Þ

where η is a measure of the root-to-shoot ratio, ∇2b
is a biomass-diffusion term representing seed dispersal,
p is the precipitation rate, n is the evaporation rate, γ
is the water-uptake rate, ρ quantifies reduced evaporation
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due to shading,∇2w describes soil-water diffusion, and δ is
the ratio of soil-water diffusivity to biomass diffusivity
(seed dispersal rate). More details about the model and its
dimensional parameters are described in the Supplemental
Material [32].
The dynamical-system context we consider here is

illustrated in the bifurcation diagram shown in Fig. 1.
A bare-soil (zero biomass) state loses stability to a uniform
vegetation state in a subcritical uniform instability, as the
precipitation exceeds a threshold value, that results in a
bistability range of the two uniform states. Furthermore, a
positive feedback loop between local vegetation growth
and soil-water diffusion towards the growth location can
result in a nonuniform instability of the uniform-vegetation
state [33]. This secondary instability leads to a stationary
periodic vegetation pattern [30], and a possible tristability
range of bare soil, uniform vegetation, and periodic pattern
[34]. Additional periodic solutions that extend to lower
precipitation rates exist but are not shown [35,36]. This
bifurcation structure, which follows from the model equa-
tions (1) as well as from other vegetation models [37–39],
reflects the constraint that the bare-soil state cannot
undergo a nonuniform instability to avoid unphysical
negative biomass values. Periodic vegetation patterns, if
they exist, should appear then from a nonuniform insta-
bility of the uniform-vegetation state.
Within the bistability range of the two uniform states

front solutions biasymptotic to the two states exist [9].
These solutions include a desertification front that
describes the expansion of bare soil into uniform vegeta-
tion. The first question we address here is whether such a
front can go through a transverse instability that results in
vegetation fingering and growth patterns that reverse the
desertification process. In order to study a transverse

instability of this kind and the factors that control it, we
reduce Eq. (1) to a universal amplitude equation for the
uniform mode that grows beyond the instability of the bare-
soil state, and analyze front solutions of this equation in one
and two spatial dimensions.
We derive the amplitude equation close to the precipi-

tation threshold, p ¼ pc ¼ n, at which the bare-soil state
loses stability, and close to the threshold value η ¼ ηc ¼
ð1þ γ=nÞ=2, above which a bistability range of bare soil
and uniform vegetation develops. For simplicity we take
ρ ¼ 0. In the vicinity of the critical point ðpc; ηcÞ the
amplitude of the growing uniform mode is small and we
can express solutions of Eq. (1) as

�
b

w

�
¼

�
bc
wc

�
þ λ

�
b1
w1

�
þ λ2

�
b2
w2

�
þ � � � ; ð2Þ

where ðbc; wcÞ ¼ ð0; 1Þ is the bare-soil solution at the
critical point, ðb1; w1Þ ¼ C̃ð1;−γ=nÞ is the growing uni-
form eigenmode with an amplitude C̃, and λ ≪ 1 is a small
auxiliary parameter, quantifying the vicinity to the critical
point as follows:

p − pc ≡ α ¼ α0λ
2; η − ηc ≡ ε ¼ ε0λ; ð3Þ

where α0 and ε0 are of order unity. Using a multiple
timescale analysis we find the amplitude equation

∂tC¼a1Cþa2C2−a3C3þd1ðCÞ∇2C−d2ðCÞ∇4C; ð4Þ

where C ¼ λC̃ ¼ b and

a1 ¼ α=n; a2 ¼ 2ε; a3 ¼ 3η2c;

d1 ¼ 1 − γδC=n2; d2 ¼ γδ2C=n3: ð5Þ

The reader is referred to the Supplemental Material [32] for
a detailed derivation of Eq. (4). Here, we motivate the
structure of this equation, highlighting its universal nature
for pattern-forming living systems in general for which
state variables cannot assume negative values.
The first three terms on the right side of Eq. (4) constitute

the normal form of an imperfect pitchfork bifurcation of a
nonviable state C ¼ 0 to a viable state C ¼ C0 > 0 with a
bistability range of the two uniform states. The last two
terms on the right side of Eq. (4) account for the spatial
nature of the instabilities that the two uniform states go
through subjected to the constraint C ≥ 0, as the state
variable (biomass, population density, concentration of a
biochemical agent, etc.) cannot assume negative values.
The requirement that the nonviable state goes through a
uniform instability (to avoid negative C values), implies
d1ð0Þ ≥ 0 and d2ð0Þ ≥ 0, and the requirement that the
viable state goes through a nonuniform instability (to allow
for patterns), implies d1ðC0Þ < 0 and d2ðC0Þ > 0. To linear

FIG. 1. Bifurcation diagram of stationary solutions of Eqs. (1).
The vertical axis represents the spatial biomass average, while the
horizontal axis represents the precipitation (rainfall) rate. Solid
(dashed) lines represent stable (unstable) solutions. Note the
existence of a wide bistability range of bare soil and uniform
vegetation, and of a tristability range of these states with a
periodic pattern. Parameters: n ¼ 3.2, γ ¼ 0.5, ρ ¼ 1.0, η ¼ 3.5,
and δ ¼ 300. Dimensional precipitation and biomass density are
P ¼ 400p ½mm=year� and B ¼ 0.5b ½kg=m2� (see the Supple-
mental Material [32] for more details).
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order in C this suggests a dependence of the form
d1ðCÞ ¼ d10 − d11C, where d10 and d11 are positive con-
stants. Furthermore, the requirement that front solutions,
connecting the nonviable and viable states, do not have
oscillatory tails about the nonviable state (to avoid
again negative C values) implies the condition d2ð0Þ <
d1ð0Þ2=4ja1j [40]. To linear order in C this suggests a
dependence of the form d2ðCÞ ¼ d20 þ d21C, where d20
and d21 are positive constants, and d20 < d210=4ja1j. We
thus expect the amplitude equation (4) with the above
expressions for d1ðCÞ and d2ðCÞ to apply to pattern-
forming living systems in general, including dryland
ecosystems described by different models. Indeed,
Eq. (4) has been obtained from a different vegetation
model [41,42], and a similar equation has been derived
to describe Lotka-Volterra type dynamics of a species
population distributed along a niche axis [43]. Models of
inanimate systems can also lead to a similar equation but
with no constraints on the coefficients as described
above [44].
In order to study front solutions of Eq. (4) and possible

instabilities thereof we introduce a rescaled amplitude
Aðr; tÞ ¼ 9η2cCðr; tÞ=4ε in terms of which Eq. (4) reads

∂tA ¼ −ν2AðA − 1Þ
�
A −

1

2

�
þ∇2A

þ μA −D1A∇2A −D2A∇4A; ð6Þ

where ν2 ¼ 24ε2=33η2c, μ ¼ α=nþ ν2=2,D1 ¼ 4εγδ=9η2cn2

and D2 ¼ D1δ=n. We consider first the special case
μ ¼ δ ¼ 0. In this case Eq. (6) simplifies to the variational
equation At ¼ −δV=δu where V is a double-well potential
with minima of equal depth at A ¼ 0 and A ¼ 1—the two
uniform states that describe bare soil and uniform vegeta-
tion. This case corresponds to the so-called Maxwell point
at which planar front solutions biasymptotic to the two
uniform states are stationary [45–47]. These solutions have
the analytical form [48]

AFðx − x0Þ ¼
1

2

�
1 − tanh

�
νðx − x0Þ
2

ffiffiffi
2

p
��

; ð7Þ

where x is the spatial coordinate normal to the front line and
x0 is the arbitrary position of the front. In the following we
use Eq. (7) to identify a transverse front instability and
obtain an analytical expression for its threshold.
We study the stability of planar fronts to transverse

perturbations by deriving a linear relation between the
normal velocity of the front, i.e., the velocity in a direction
normal to the front line Vn and the front’s curvature,
κ [8,49]. We refer to this instability as a linear front
instability. For simplicity, we consider here a circular front
[50] close to the Maxwell point, of radius r0ðtÞ that is much
larger than the front width, i.e., r0 ≫ ν−1 or κ ¼ 1=r0 ≪ ν.

The Laplacian operator acting on the amplitude A then
simplifies to ∇2 ¼ ∂2

r þ κ∂r, where r is the radial coor-
dinate and we have replaced r−1 by r−10 ¼ κ, since the only
place where the spatial derivatives of the amplitude A are
not negligible is the front zone where r ≈ r0. Expressing the
circular front as a perturbed planar front,

Aðr; tÞ ¼ AF½r − r0ðtÞ� þW½r; r0ðtÞ; t�; ð8Þ
where AF is given by Eq. (7) and W is a small correction,
and employing a solvability condition associated with the
existence of a marginal translational mode in a homo-
geneous system [8], we find the following expression for
the normal front velocity Vn ¼ dr0=dt (see the Supple-
mental Material [32]):

Vn ¼ V0 − Fκ; ð9Þ
where

V0 ¼
ffiffiffi
2

p �
3μ

ν
þ νD1

20
−
ν3D2

56

�
; F ¼ 1 −

D1

2
þ ν2D2

10
:

The onset of a transverse front instability is determined
by the condition F ¼ 0 [18], which defines a threshold
value δc of δ. For ε ≪ 1 this threshold can be approxi-
mated by

δc ≈
9ηc

2n2

2γε
: ð10Þ

The instability occurs as δ is increased past the threshold
δc, that is, when soil-water diffusion is fast enough relative
to biomass diffusion. This result can be understood
as follows. Consider a bulge in the front line, as Fig. 2
illustrates, and the local normal velocity as compared with

(a) (b)

FIG. 2. Schematic illustration of diffusive processes that
stabilize and destabilize a planar front. (a) Biomass diffusion
(seed dispersal) acts to stabilize a planar front against the growth
of an initial vegetation bulge (positive curvature) because of the
smaller diffused biomass per unit area ahead of the bulge as
compared with a planar front segment. (b) Soil-water diffusion
has the opposite effect of destabilizing a planar front by
accelerating the growth of a vegetation bulge and inhibiting
vegetation growth in the bulge surroundings. This is because of
water uptake in the vegetated bulge area, which creates soil-water
gradients and induces soil-water diffusion from the bulge
surroundings toward the bulge.
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that of a planar front segment. When biomass diffusion
dominates (small δ), the front velocity of a bulge will be
lower than that of a planar front because of the more
scattered biomass diffusion ahead of the bulge. As a result
an initial bulge in a planar front will fade away in the course
of time. By contrast, when soil-water diffusion dominates
(large δ), the front velocity of a bulge will be higher than
that of a planar front because of the enhanced water uptake
by the vegetation in the bulge area, and the concomitant
soil-water depletion on both sides of the bulge. The growth
of small, randomly created bulges in a planar front renders
such a front unstable. Note that the threshold δc in Eq. (10)
is inversely proportional to ε ¼ η − ηc > 0, and therefore
has a monotonically decreasing dependence on η. This is
inline with the instability mechanism described above, as
higher values of the root-to-shoot ratio imply stronger
water uptake by the vegetation in the bulge area and sharper
soil-water gradients, which favor the instability at smaller
thresholds δc. The analysis of the amplitude equation has
been useful to get insights into the mechanism that drives
the transverse front instability. This equation, however, is
limited to the close vicinity of the critical point ðpc; ηcÞ.
Below, we extend our study to a wider parameter range
using Eqs. (1).
The development of a transverse front instability is

demonstrated numerically in Fig. 3. The initial condition
corresponds to a desertification front, subjected to small
transverse biomass modulations. The instability results in
vegetation fingers growing into bare soil, as the normal
velocity at the tip of a finger can be positive even
though the velocity of the planar front is negative,
Vn ¼ −jV0j þ jFjκ > 0. Thus, a transverse front instability
can reverse gradual desertification by gradually shifting an

unproductive bare-soil state to a productive labyrinthine
vegetation pattern that prevents further irreversible degrada-
tion processes, such as soil erosion.
Among the parameters that affect the transverse-front

instability—soil-water diffusion, precipitation and evapo-
ration rates, water uptake rate, and root-to-shoot ratio—
only the latter two can be controlled in practice by the
introduction of a new plant species at the front zone.
Desertification processes may possibly be reversed by
introducing species with sufficiently high root-to-shoot
ratio or water-uptake rate so as to lower δc below the
soil-water diffusion rate δ of the given environment, and
thereby induce a transverse instability. However, there is an
additional dynamical property of Eq. (1) that bears on the
question of controlling desertification, namely, the trist-
ability range of bare soil, uniform vegetation, and periodic
pattern. In this range, linearly stable desertification fronts
may still be unstable to finite-amplitude transverse mod-
ulations that drive the system to the periodic-pattern state
through finger growth [23] as Fig. 4(a) and 4(b) demon-
strate. This nonlinear front instability defines a range,
δc > δ > δn, where local manipulations at the front zone
to induce finite-amplitude transverse modulations can
reverse desertification. These manipulations may consist
of periodic clearcutting, grazing, or irrigation along the

FIG. 3. Linear front instability. Numerical solutions of Eqs. (1)
showing a desertification front that is unstable to a transverse
sinusoidal modulation. Following a short phase in which the bare-
soil domain expands into the uniform-vegetation domain, veg-
etation fingers develop and grow back into the bare-soil domain,
as the snapshots show. Parameters: n ¼ 3.2, γ ¼ 0.5, ρ ¼ 1.0,
η ¼ 3.5, p ¼ 1.17, and δ ¼ 300. The time indicated in every
snapshot is in units of years.

(a)

(b)

FIG. 4. Nonlinear front instability in a tristability range of
Eqs. (1). (a) Snapshots showing the stability of a planar
desertification front to small transverse modulation. (b) Snapshots
showing the instability of the planar front to sufficiently large
transverse modulations and the development of vegetation fingers
that grow back into bare soil. In all simulations the same
parameters were used: n ¼ 3.2, γ ¼ 0.5, ρ ¼ 1.0, η ¼ 3.5,
p ¼ 1.15, and δ ¼ 150. The time indicated in every snapshot
is in units of years.
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front line. The possible existence of a nonlinear front
instability of a desertification front can be inferred from
observations of domains of periodic patterns in the same
region. The reversal of desertification can be accelerated
by diluting the number of vegetation fingers in order to
reduce the competition for water, as we demonstrate in the
Supplemental Material [32]. Although a highly diluted
state may be far less productive than the nondiluted state,
it is still significant in maintaining the ecosystem in a
reversible state. Once vast soil areas become bare, further
degradation takes place, such as soil erosion and loss
of soil fertility, making the desertification process
highly irreversible. The recovery in a patterned state, even
sparse and less productive, can prevent this additional
degradation.
We focused here on dryland vegetation and desertifica-

tion, but the context is more general—pattern-forming
living systems having nonviable states that go through
subcritical instabilities to viable states. The constraint of
non-negative state variables results in an amplitude equa-
tion [Eq. (4)], which is somewhat similar to the well-
studied Swift-Hohenberg equation [8,12,52], but contains
nonlinear spatial-derivative terms. The universal nature of
the amplitude equation derived here makes it relevant to
various contexts of animate matter where typical state
variables, such as population densities of organisms and
concentrations of biochemical reagents, cannot assume
negative values.
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