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A B S T R A C T

Understanding how desertification takes place in different ecosystems is an important step in attempting to
forecast and prevent such transitions. Dryland ecosystems often exhibit patchy vegetation, which has been
shown to be an important factor on the possible regime shifts that occur in arid regions in several model studies.
In particular, both gradual shifts that occur by front propagation, and abrupt shifts where patches of vegetation
vanish at once, are a possibility in dryland ecosystems due to their emergent spatial heterogeneity. However,
recent theoretical work has suggested that the final step of desertification - the transition from spotted
vegetation to bare soil - occurs only as an abrupt shift, but the generality of this result, and its underlying origin,
remain unclear. We investigate two models that detail the dynamics of dryland vegetation using a markedly
different functional structure, and find that in both models the final step of desertification can only be abrupt.
Using a careful numerical analysis, we show that this behavior is associated with the disappearance of confined
spot-pattern domains as stationary states, and identify the mathematical origin of this behavior. Our findings
show that a gradual desertification to bare soil due to a front propagation process can not occur in these and
similar models, and opens the question of whether these dynamics can take place in nature.

1. Introduction

Desertification is a major concern in water-limited ecosystems or
drylands, which occupy about 40% of the terrestrial earth surface. It is
defined as a transition from a productive state to a less productive state
as a result of climate variability and human-induced disturbances
(Adeel et al., 2005; Meron, 2015). Drylands are prone to such
transitions because they can often assume two alternative stable states
of vegetation. Bistability of vegetation states is induced by positive
feedbacks involving various biotic and abiotic processes (Rietkerk et al.,
2004; Meron, 2012, 2016). A productive vegetation state is stabilized
by enhanced surface-water infiltration, reduced evaporation, litter
decomposition that increases nutrient availability, soil deposition and
mound formation that intercept runoff, etc. Under the same environ-
mental conditions the unproductive bare soil state is stabilized by
enhanced evaporation, water loss by runoff that is generated by soil
crusts, soil erosion, etc.

A significant aspect of dryland ecosystems is that they often self-
organize in regular spatial patterns of vegetation in response to
decreasing rainfall (Valentine et al., 1999; Deblauwe et al., 2008;
Rietkerk and van de Koppel, 2008; Getzin et al., 2016). This is a

landscape-level mechanism to cope with water deficit by providing an
additional source of water through various means of water transport.
The mechanism involves positive feedbacks between local vegetation
growth and water transport towards the growth location (Meron,
2016). While accelerating the growth of a vegetation patch, the water
transport inhibits the growth in the patch surroundings and thereby
favors the formation of spatial patterns (Lejeune et al., 1999; Rietkerk
et al., 2004; Gilad et al., 2004). Among the water transport mechanisms
that have been identified are overland water flow, soil-water diffusion
and water conduction by laterally extended root systems (Meron,
2016). The capability of these and additional feedbacks to destabilize
uniform vegetation and produce patterns as precipitation drops below
a threshold value has been verified in many model studies (Lefever and
Lejeune, 1997; Klausmeier, 1999; Von Hardenberg et al., 2001;
HilleRisLambers et al., 2001; Gilad et al., 2004; Sherratt, 2005; van
der Stelt et al., 2012).

As rainfall further decreases, the water-contributing bare soil areas
need to increase in order to compensate for the lower rainfall the
vegetation patches directly receive. The increase of bare soil area can
occur in three distinct ways: (i) contraction of vegetation patches,
keeping the pattern's wavenumber constant (Yizhaq et al., 2005), (ii)
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transitions to periodic patterns of lower wavenumbers, keeping the
pattern morphology unchanged (Siteur et al., 2014), (iii) morphology
changes from patterns of gaps to stripes to spots (Von Hardenberg
et al., 2001; Rietkerk et al., 2002; Lejeune et al., 2004; Gilad et al.,
2007; Gowda et al., 2014, 2016).

Another spatial aspect of dryland ecosystems that bears on deserti-
fication is the confinement of typical disturbances to relatively small
area. Rather than inducing a global shift to the alternative state, such
disturbances can induce local shifts. The subsequent time behavior
depends on the dynamics of the fronts that connect the two alternative
states, i.e. which state invades the other, on front interactions and
possibly on front instabilities (Hagberg and Meron, 1994b, 1994a). An
unproductive bare soil state invading a productive vegetation state,
uniform or patterned, is a form of desertification taking place gradually
by front propagation (Bel et al., 2012). When one of the alternative
stable states is spatially patterned the front may be pinned in place in a
range of environmental conditions (Pomeau, 1986; Knobloch, 2015)
nested within the bistability range, the so-called “snaking range”. In
this range a multitude of stable hybrid states exist in addition to the
two alternative states. These are spatially-mixed states consisting of
confined domains of one state in a system otherwise occupied by the
other state (Kozyreff and Chapman, 2006; Burke and Knobloch, 2007;
Lloyd et al., 2008). Depending on environmental variability, the effect
of local disturbances in this case can remain local (Bel et al., 2012).

Understanding how a desertification process may occur, taking into
account the possible effects of an alternative state being spatially
patterned and the confined nature of disturbances, is vital for both
finding indicators for an impending desertification, and for efforts to its
prevention. The process of gradual desertification by front propagation
has been first demonstrated using a minimal model (Bel et al., 2012),
equivalent to the Swift-Hohenberg equation for which a snaking range
nested within a bistability range is known to exist (Knobloch, 2008). In
the context of dryland vegetation, this behavior suggests the existence
of confined domains of patchy (patterned) vegetation in a bare soil
state within the snaking range, which are fixed in size, i.e. neither
expanding nor contracting, because of front pinning, and the existence
of a “desertification front” (bare soil invading patchy vegetation), and a
“recovery front” (patchy vegetation invading bare soil) outside that
range, on the lower and higher rainfall sides, respectively.

In a subsequent study Zelnik et al. (Zelnik et al., 2013) have
investigated how these ideas translate when considering more ecolo-
gically motivated models. Looking at different models of dryland
ecosystems which exhibit spatial patterns of vegetation, they were
unable to find localized states describing a confined patchy-vegetation
domain in bare-soil in most models (Zelnik et al., 2013). One model
investigated, herewith referred to as the Lefever-Lejeune (LL) model
(Lejeune et al., 2004), did appear to show localized states, although this
was not definitively shown due to numerical difficulties. Perhaps most
strikingly, in all models considered no bistability range where a bare-
soil domain invades the patchy vegetation was seen.1 This is countered
with the dominant response of the system to different perturbations,
where fronts of patchy vegetation takes over the system, due to
vegetation on the fringe utilizing the resources in the bare-soil domain
to its advantage as it expands into it.

The reason for this asymmetry between desertification and recovery
transitions has not been explained, and it remains unclear how general
these results are. Moreover, since the typical behavior of hybrid states
within a snaking range, and desertification and recovery fronts outside
this range, can be seen in the same models but in a bistability range of
patchy vegetation and uniform-vegetation (rather than bare-soil)
(Zelnik et al., 2015), understanding the unique characteristics of the
bare-soil and patchy-vegetation bistability is an important ecological

question. In this paper we consider two models of dryland ecosystems
focusing on the bistability range of bare-soil and periodic vegetation.
The first is the LL model while the second is a simplified version of a
model introduced by Gilad et al. (Gilad et al., 2004, 2007), hereafter
referred to as the simplified Gilad (SG) model. We will investigate the
existence and structure of localized states in these models, and look at
the dynamics in their vicinity. In particular, we use the flexibility of the
SG model to show how the bifurcation structure of localized states
breaks down with a continuous change in parameter values, give
evidence that this breakdown is related to the spatial eigenvalues of
the bare-soil and low uniform-vegetation states, and that thus is a
generic phenomenon in the class of reaction diffusion models for
drylands.

2. Bistability, fronts and homoclinic snaking

We begin with a brief review of front dynamics in one-dimensional
spatially extended bistable systems, according to pattern formation
theory (Meron, 2015). There are two major types of bistability that are
relevant to dryland vegetation, bistability of two uniform states and
bistability of a uniform state and a periodic-pattern state. The former
can be found in landscapes where positive feedbacks that involve water
transport, and thus are pattern forming, are too weak to destabilize
uniform vegetation, but other positive feedbacks, such as reduced
evaporation in vegetation patches, are sufficiently strong. These con-
ditions can result in bistability of bare soil and uniform vegetation
(Getzin et al., 2016). Bistability of uniform and patterned states can
result when the pattern-forming feedbacks that involve water transport
are strong enough to induce a subcritical instability of uniform
vegetation to periodic patterns. Two bistability precipitation ranges of
uniform and patterned states can be distinguished: a high precipitation
range where the two alternative stable states are uniform vegetation
and periodic patterns, and low precipitation range where the two
alternative states are periodic patterns and bare soil (Meron, 2016).

When different parts of the landscape are occupied by different
states, transition zones appear, where some of the state variables, e.g.
biomass, sharply change. Such zones, often called “fronts”, have
characteristic structures determined by particular spatial profiles of
the state variables across the front, as Fig. 1 illustrates.

Furthermore, the fronts can be stationary or moving at constant
speeds (assuming a homogeneous system). In a bistability range of two
uniform states fronts are generically moving. The speed and direction
of front motion are determined by the values of various parameters that
describe specific biotic and abiotic conditions, or by the specific value of
a control parameter, where all other parameters are held fixed. A
particular control-parameter value for which the front is stationary
may exist, but this is a non-generic behavior as any deviation from this
value results in front motion (Bel et al., 2012). In a bistability
precipitation range of uniform vegetation and bare soil two moving
fronts can be distinguished; a desertification front at low precipitation
that describes the expansion of bare-soil domains into uniform-
vegetation domains, and a recovery front at high precipitation that
describes the expansion of uniform-vegetation domains into bare-soil
domains (Sherratt and Synodinos, 2012). The particular precipitation
value at which the non-generic behavior of a stationary front occurs
(neither domain expands into the other) is commonly called the
“Maxwell point” (Bel et al., 2012).

In contrast to bistability of uniform states, when one of the
alternative states is a periodic pattern, fronts can be stationary or
pinned in a range of the control parameter (Pomeau, 1986; Knobloch,
2008). In this range domains of one state embedded in the alternative
state can remain fixed in size, neither expanding nor contracting. In a
bifurcation diagram that describes the biomass associated with sta-
tionary solutions vs. precipitation, these fixed domains usually appear
as a single or two branches of localized solutions that snake back and
forth as the sizes of the domains they represent change (see e.g. Fig. 4),

1 Note that bare-soil can invade a spatially uniform-vegetation state (Sherratt and
Synodinos, 2012).
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a behavior termed homoclinic snaking. The snaking solution branches
occupy a subrange of the bistability range - the snaking range. Within
this range a multitude of spatially localized and extended stable hybrid
states exist, corresponding to single fixed domains and various
combinations of such domains, respectively. Thus, in a bistability
range of uniform and patterned states three front types can be
distinguished, a stationary pinned front within the snaking range and
two fronts moving in opposite directions on both sides of this range. In
a bistability range of uniform vegetation and periodic vegetation
patterns the two moving fronts represent a desertification front at
precipitation values below the snaking range (a periodic pattern
displacing uniform vegetation) and a recovery front at precipitation
values above the snaking range (uniform vegetation displacing a
periodic pattern).

These front properties become significant in the presence of local
disturbances that induce local shifts to an alternative state, and rainfall
fluctuations that can take the system outside the snaking range (Bel
et al., 2012; Zelnik et al., 2015). Local disturbances can trigger gradual
desertification at precipitation values below the Maxwell point in
bistability of uniform vegetation and bare soil, and below the snaking
range in bistability of uniform vegetation and periodic patterns. Within
the snaking range, local disturbances have little effect as the system
converges to a nearby hybrid state. Droughts that take the system
temporarily out of the snaking range can induce transitions to hybrid
states of lower productivity, but result in no further effects once the
droughts are over. The relevance of these outcomes to the bistability
range of periodic patterns and bare soil, however, is not clear. In most
models homoclinic snaking has not been found, which excludes
stationary pinned fronts and hybrid states. Moreover, only one type
of moving fronts has been found - recovery fronts (Zelnik et al., 2013).
The absence of desertification fronts suggests that desertification
to bare soil occurs abruptly, by global vegetation collapse
(Zelnik et al., 2016).

3. Models

We study the LL and SG models assuming a flat terrain (no slope)
and a homogeneous system (no environmental heterogeneities, such
as rock-soil mosaics), and thus have both translation and reflection
symmetries. For simplicity we limit the results shown here to one-
dimensional systems, but we exemplarily checked that similar
results also hold in two spatial dimensions (2D) (see supplementary

information for more details), and thus believe our findings to be
generally relevant in 2D as well.

The dimensionless LL model (Lefever and Lejeune, 1997; Lejeune
et al., 2002) is given by the single equation

b p b Λ b b L b b b b∂ = ( − 1) + ( − 1) − + 1
2

( − )∇ − 1
8

∇ .t
2 3 2 2 4

(1)

where b is the biomass density, p μ= 2 − where μ is the aridity
parameter, Λ is the facilitation to competition ratio, and L is the ratio
between the spatial ranges of facilitation and competition interactions,
and ∇2 is the Laplacian, i.e., in 1D, ∇ = ∂ x

2 2, and similarly ∇ = ∂x
4 4. We

will look at different values of p, while keeping the other two
parameters constant with the values Λ = 1.2, L=0.2.

The SG model (Gilad et al., 2007) has the non-dimensional form

b νwb ηb b κ b b∂ = (1 + ) (1 − / ) − + ∇ ,t
2 2 (2a)
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h p αb qf
b q
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where the three model variables describe the areal densities of
vegetation biomass (b), soil-water (w), and surface water (h) (Kinast
et al., 2014). The parameter ν controls the growth rate of the biomass
as well as the rate of evaporation, η gives the root-to-shoot ratio, and κ
is the maximal standing biomass. The parameter α controls the
infiltration rate, while f and q quantify the biomass dependence of
the infiltration rate. The reduced evaporation in vegetation patches
because of shading is quantified by ρ. Finally, the parameter p is the
precipitation rate and δw and δh are water-transport coefficients
associated with soil water and surface water, respectively. The SG
model is a simplified version of a more general model (Gilad et al.,
2004) that takes into account nonlocal water uptake by laterally
extended root systems. We refer the reader to refs. (Meron, 2015,
2016) for detailed expositions of the general model and its simplified
versions. We will look at different values of two parameters, δw and p,
while keeping the others constant. The values of these parameters are

ν κ η α q f ρ

δ

= 8.0, = 2.0, = 0.6, = 25.0, = 0.70, = 0.9, = 0.15,

= 10000.h (3)

The domain used for the state plots, and for calculating the norms
of the bifurcation diagrams was 100/1000 for the LL/SG models,

Fig. 1. Spatial profiles of two types of fronts in the SG model. (a) A front between uniform-vegetation and bare-soil. (b) A front between periodic patterned vegetation and uniform-
vegetation. Biomass and soil-water profiles are shown in green and blue, respectively. (See the Models section for a description of the SG model. The parameters used were based on (3),
with the addition of: (a) δ = 1200w , p=1.008, (b) δ = 1w , p=0.9, η = 6.) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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respectively. The bifurcation structure for the LL and SG models was
found using the numerical continuation tools of pde2path (Uecker
et al., 2014) and AUTO (Doedel et al., 2002), respectively. The stability
information of these was found using numerical linear stability analysis
on a large domain with periodic boundary conditions (size of approx.
100/1000 for the LL/SG models, in integer number of periods). To
clearly separate the different solution branches in the bifurcation
diagrams of Figs. 4 and 6, the y-axis for these were calculated using
the L2norm of the biomass b across a domain L:

∫b dx b x∥ ∥ = ·( ( ))
L

L1
0

2 . The y-axis for the bifurcation diagrams of

Fig. 2 was calculated using the average biomass b across a domain L:

∫b dx b x| | = · ( )
L

L1
0

.

4. Localized states in the LL model

We begin by looking at the LL model, around the bistability range of
periodic patterns and a uniform bare-soil state. In this model, uniquely
among models of dryland vegetation that exhibit pattern formation,
localized states where the uniform background is of bare-soil can be
found. This may be attributed to the nonlinear degeneracy of the LL
model at the bare-soil, which does not occur for the SG model since
h > 0 even when b=0 (see Fig. S4).

Inside the bistability range there are stable localized states in a
subrange we refer to as the snaking range, as can be seen in Fig. 2.
While the numerics for the uniform and periodic branches in this
bifurcation diagram are straightforward, the branches of localized
states are difficult to generate and incomplete in the following sense.
The states (b), (c) are connected by a continuous branch while (d), (e)
were obtained from restarting the continuation with different initial
guesses, and it is not entirely clear how their branches connect to (b),
(c) and with each other. Nevertheless, we refer to the red branches as
the snaking branches, and the associated p–range as the snaking range.

Outside the snaking range, localized states do not exist, so that a
transition from a localized state will occur if p is changed significantly.
If we increase p slightly, the system is still in a bistability range, so that
a gradual transition by the propagation of a recovery front can occur, as
shown in Fig. 3c. The recovery front propagates by the expansion of the
outermost patch, which experiences reduced competition, and the
subsequent patch splitting, because of increased competition at the
center of the growing patch (Sheffer et al., 2007). However, a change in

the other direction, namely decreasing p even only slightly outside the
snaking range, will take the system out of the bistability range as well.
Since periodic states do not exist for these parameters, a gradual
transition by front propagation cannot occur, and an abrupt one takes
place instead, as seen in Fig. 3a.

To our knowledge, this asymmetry where the snaking range is not
in the middle of the bistability range has not been observed in other
models. While its ramifications for the dynamics in the system are
clear, as shown in Fig. 3, the reason for this asymmetry is not
understood. To explore this question further, we will now use the
flexibility of the SG model, and its somewhat simpler and more
classical mathematical structure as a semi–linear reaction diffusion
system.

5. Localized states in the SG model

A typical bifurcation structure for the SG model, much like other
similar models (e.g. the Rietkerk model (HilleRisLambers et al.,
2001)), shows a bistability range between periodic patterns and a
bare-soil state, but no localized states are found within this bistability
range, except for a single-peak solution.

However, if we soften the criteria slightly, and look at a bistability
between periodic patterns and low biomass uniform-vegetation, loca-
lized states in a classic bifurcation structure of homoclinic snaking can
be found (Dawes and Williams, 2015). This may occur when the bare-
soil branch goes through a supercritical bifurcation to the uniform-
vegetation branch, on which at some finite distance from this primary
bifurcation there is a subcritical Turing bifurcation. For the SG model,
this can be achieved with a low shading feedback (ρ ≳ 0), a medium
level of root-to-shoot ratio η( ≈ 1), and fast water diffusion δ( ⪢1)w

Using (3) and δ = 1200w , we arrive at the bifurcation diagram
shown in Fig. 4. Emanating near the first subcritical Turing bifurcation
on the supercritical uniform-vegetation branch there is a branch of
localized states in a homoclinic snaking structure, within a larger
bistability range of periodic patterns and uniform-vegetation. The
branch of localized states is initially that of a single peak in a
background of low uniform-vegetation (Fig. 4b). As the branch snakes
up more peaks are attached, forming a domain of semi-periodic
vegetation (Fig. 4c-e).

The dynamics for this system is symmetric, as shown in Fig. 5,
where we take a periodic patch from p=1.008 and instantaneously

Fig. 2. (a) Bifurcation diagram of the LL model, showing the average biomass versus the bifurcation parameter p. The black and green branches are uniform states of bare-soil and
uniform-vegetation, while the blue and cyan branches are of periodic states with different wavelength (many more exist). The red curve shows part of the intricate bifurcation structure of
the localized states. The left-most point of the blue curve defines the edge of the bistability range between periodic states and bare-soil, and it coincides with the edge of the range of the
localized states. Solid (dashed) lines denote stable (unstable) states. (b)-(f): Plots of one periodic state and four localized states, with their location on the bifurcation diagram denoted by
their letters in the main diagram. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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change p to some other values and let the system run. In more realistic
scenarios, a gradual change of p might be more appropriate, and the
system's behavior will then also depend on the rate of change of p
(Siteur et al., 2014). Nevertheless, Fig. 5 shows that under instanta-
neous change of p both a gradual desertification and a gradual recovery
can take place, as a transition from a localized state to either a low
uniform-vegetation, or a periodic pattern, respectively. Note that the
mechanism of gradual recovery from low-biomass uniform vegetation
to periodic pattern that is shown in Fig. 5d is different from the gradual
recovery from bare soil to periodic pattern that is shown in Fig. 3c.
Rather than expanding and splitting, the patch at the fringe remains
unchanged but triggers the formation of a new patch at a distance by
seed dispersal (biomass diffusion). This difference in mechanisms may
be attributed to the lower soil-water content in the uniform low-
biomass areas as compared with bare-soil areas, because of water
uptake, which prevents the expansion of the fringe patch. We may also
compare here the two possibilities of desertification dynamics, namely

abrupt and gradual, by comparing Fig. 5a and b (see also Fig. S2 for
two dimensional systems). In both cases we start with the same stable
localized state, and end up in a uniform-state, but the transition occurs
globally in the abrupt case, and via a propagation of a desertification
front in the gradual case. The abrupt transition is irreversible because
of the bistability of periodic and uniform states since once a threshold
is crossed the collapse is certain, while the gradual transition is
reversible because of monostability of front solutions. It is interesting
to note that the abrupt transition may be expected to be a faster process
both due to the typical physical parameters of ecosystems (Zelnik et al.,
2015), and since in a large enough system front propagation along the
whole system will always take longer than a global response across the
system.

By changing the model parameters, the Turing bifurcation, together
with the associated branch of localized states, can be pushed close to
the bifurcation between the two uniform states of bare-soil and
uniform-vegetation. In this manner, the periodic branches which were

Fig. 3. Space-time plot showing the dynamics of the LL model, starting with an initial condition of a stable localized state with six peaks. Darker green colors show denser vegetation,
with the y-axis for time (going down) and the x-axis for space. (a) The value p is decreased, so that the system is taken out of the snaking range (p=0.976). Since this is also outside the
bistability range, no gradual transition is possible, and an abrupt desertification shift occurs. (b) The value of p is not changed, so that the system is still inside the snaking range
(p=0.990), and therefore no change occurs. (c) By increasing the value of p so it is outside the snaking range (p=0.998), but still within the bistability range, a gradual rehabilitation
process takes place. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. (a) Bifurcation diagram of the SG model with parameters (3) and δ = 1200w , showing the L2norm of the biomass versus the precipitation rate p. The green branch represents

states of uniform-vegetation, while the blue and cyan branches are for periodic states with different wavelengths. The red curve shows part of the bifurcation structure of the localized
states, termed homoclinic snaking. The wavelength of the blue curve was chosen so that its left-most point defines the edge of the bistability range between periodic states and low
uniform-vegetation (see Fig. S1), and it is well away from the edge of the range of the localized states (thus fronts of low vegetation invading the periodic states are possible, cf. Fig. 5b.).
Solid (dashed) lines denote stable (unstable) states. (b)-(f): Plots of one periodic state and four localized states, with their location on the bifurcation diagram denoted by their letters in
the main diagram. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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previously bistable with the uniform-vegetation state, are now bistable
with either the uniform-vegetation or bare-soil states, for different
values of p. This is achieved by increasing the value of δw, the result of
which is shown in the bifurcation diagram in Fig. 6a. As shown by the
red curve in the bifurcation diagram, and the corresponding system
states shown in Fig. 6b-f, a branch of localized states emanates from
the vicinity of the Turing bifurcation similarly to the previous case
shown in Fig. 4. However, in our numerics the branch does not
continue to snake up, but it rather stops abruptly after two folds
around p=1, creating a Z shape. Moreover, the edge of the new snaking
range now coincides with the bistability range, similarly to the case of
the LL model seen in Fig. 2.

Before and after the first fold point (Fig. 6b,c) the system is
comprised of a single peak with either a low-biomass vegetation (panel

b) or a bare-soil (panel c) background. This type of state often occurs
for a bistability of periodic patterns and uniform states, which typically
leads to either a localized states with more than one peak (Bel et al.,
2012; Zelnik et al., 2015), or stays with a single peak, forming an isola-
like curve (Zelnik et al., 2013; Siteur et al., 2014). As the second fold is
reached (Fig. 6d) two small peaks are formed, one on either side of
main peak, and these peaks slowly get larger (Fig. 6e) as we pass the
second fold point. All this takes place far from the bistability with the
bare-soil, and the behavior of this branch changes when this bistability
is reached at p=1. As can be seen in Fig. 6 between (e) and (f), the two
smaller peaks slowly move away from the main peak, and unlike the
case of a typical homoclinic snaking curve, they do not stop their
movement away from the center. Shortly after (f) the numerical
continuation fails, and at this point we may conclude that this is due

Fig. 5. Space-time plot showing the dynamics of the SG model with parameters (3) and δ = 1200w , starting with an initial condition of a stable localized state of seven peaks. Darker

green colors show denser vegetation, with the y-axis for time (going down) and the x-axis for space. (a) The value p is decreased, so that the system is taken out of the bistability range
(p=1.006). Thus, no gradual transition is possible, and an abrupt desertification shift occurs. (b) The value of p is decreased slightly, so that the system is outside the snaking range
(p=1.0069), but still inside the bistability range. Therefore a gradual desertification process takes place. (c) The value of p is not changed, illustrating the dynamic stability of this
localized state (d). By increasing the value of p so it is outside the snaking range (p=1.009), but still within the bistability range, a gradual rehabilitation process takes place. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. (a) Bifurcation diagram of the SG model with parameters (3) and δ = 1500w , showing the L2norm of the biomass versus the precipitation rate p. The black and green branches are

for uniform states of bare-soil and uniform-vegetation, while the blue and cyan branches are for periodic states with different wavelengths. The red curve shows part of the bifurcation
structure of the localized states, that fails to form a homoclinic snaking structure. The wavelength of the blue curve was chosen so that its left-most point is approximately at the edge of
the bistability range between periodic states and bare-soil (see Fig. S1). Solid (dashed) lines denote stable (unstable) states. (b)-(f): plots of different localized states, as marked on the
bifurcation diagram. The numerical continuation breaks down when the curve comes back to the parameter value of p=1 from (e) to (f), as discussed in more detail in Section 6. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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to the translational symmetry of the system and the lack of significant
interaction between the peaks, which brings about a certain degeneracy
in the solution branch: depending on fine details of the chosen
algorithm (spatial discretization, numerical tolerances and continua-
tion step size), different situations arise such as further growth and
motion of the lateral peaks, or of just one of them, with the center peak
staying fixed or shrinking.

Thus, by pushing the Turing bifurcation closer to the bare-soil
branch, we now have a similar behavior as in the LL model, with the
same type of asymmetric dynamics (see Fig. S3): If we take a
localized state of a few patches and increase p, there is a finite range
of p where we obtain fronts of periodic vegetation domains invading
the low uniform-vegetation as in Fig. 5d. On the other hand, if we
decrease p outside of the snaking range, for p p< f we have an abrupt
transition to bare-soil, while for p p< < 1f a slow rearrangement of
the patches to a long wavelength periodic state will occur (Zelnik
et al., 2013). In both cases we will not see a bare-soil domain
invading the periodic vegetation one. This contrasts with the result
shown in Fig. 5, where both abrupt and gradual transitions to low
uniform b are possible. While the distinction between very low
uniform b and bare-soil b=0 might at first appear overly subtle, in
the remainder of this paper we discuss it from a mathematical point
of view, and explain that the impossibility of fronts of bare-soil
invading a periodic-vegetation domain is a general result for models
of reaction diffusion type.

6. Snaking collapse

We have seen two distinct types of bifurcation structures in Fig. 4
and Fig. 6, which bring about different dynamical behaviors of the
system, abrupt vs. gradual desertification shifts, as seen in Fig. 3a and
Fig. 5b, respectively. The transformation between these two types of
behavior occurs as a continuous transition in the SG model following a
change in parameters. For the parameter values considered here, we
find that this transition occurs for an intermediate value of water
diffusion δ1200 < < 1500w (see Supplementary information for more
details).

At this intermediate value of δw the fold of the single peak solution
is around p=1, so that the fold is just about to create a bistability with

the bare-soil state. If we look more closely at the states shown in
Fig. 6b-f, we can see that in the range of the stable uniform-vegetation
state the tails of the peaks are oscillatory, while they become
exponential in the range of the stable bare-soil state. Once the localized
states branch has more than a single peak (Fig. 6c), it ends abruptly
around p=1. This signifies that with more than one peak, oscillatory
tails play an important role in keeping the peaks in place, and not move
away from each other. A more thorough understanding of the tails of
the localized solutions can be gained by looking at the spatial dynamics
representation of the model. For this we define
u b b w w h h= ( , ∂ , , ∂ , , ∂ )x x x

T and transform the steady state problem
written as

b f b w δ w f b w h δ h f b h0 = ∂ + ( , ), 0 = ∂ + ( , , ), 0 = ∂ ( ) + ( , ),x w x h x
2

1
2

2
2 2

3

which, as a second order system is reversible under x x↦ − , into
the (reversible under x x u u u u u u u↦ − , ↦ ( , − , , − , , − )1 2 3 4 5 6 ) set of
first order differential equations

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

u G u

u
f u u

u

f u u u
u

f u u δ u

∂ = ( )≔

− ( , )

− ( , , )

− ( ( , ) + 2 )

.x δ

δ u h

2

1 1 3

4
1

2 1 3 5

6
1

2 3 1 5 6
2

w

h 5 (4)

If we now treat space as time, then the uniform solutions correspond to
fixed points u* of Eq. (4), and the eigenvalues μj of the linearization

G u∂ ( *)u are called their spatial eigenvalues. Note that

u h= = > 0p
α

b q
b qf5

+
+ for all steady states, so that G u( *) never diverges.

Fig. 7 shows the bifurcation diagram of the two uniform states,
together with their spatial eigenvalues. Beyond the Turing point
p p( > )T we have eigenvalues on the imaginary axis that relate to the
periodic states in the system, but for lower values of p the four complex
eigenvalues imply oscillatory tails that connect the periodic domain to
the uniform-vegetation. However, just before the uniform-vegetation
branch connects with the bare-soil one all eigenvalues become real,
signifying exponential tails. For even lower values of p, only the bare-
soil state is relevant, and it has only real-eigenvalues. This is a
prerequisite of all reaction-diffusion like models of drylands, since
negative biomass values are not physical, and therefore oscillations
around zero should be ruled out.

Thus, if there is a bifurcation from bare-soil to a branch of low
uniform-vegetation, in a consistent model this branch generically
(co–dimension one) must initially also have only real spatial
eigenvalues. In the SG model, although this initial range is small, a
careful numerical analysis shows that snaking fails around the point
where the eigenvalues change, and not where the uniform branches
meet. We therefore conclude that the breaking of the snaking
structure occurs since without oscillatory tails the peaks can not be
held in place, and instead slowly drift away. This appears to be a case
of a Belyakov–Devaney transition, see Homburg and Sandstede
(2010), Section 5.3.3 for rigorous mathematical results in generic
reversible ODE systems, which essentially mean that N–homoclinic
orbits in the ODE system (4) can only be guaranteed to exist in the
parameter range where the spatial eigenvalues μj closest to the
imaginary axis are complex, and, moreover, their period scales like
1/Im(μj). Note that here we refrain from analyzing the nonlinear
terms, but the basic phenomena of the Belyakov–Devaney transition
holds for generic reversible ODE systems, and in this sense only
depend on the linearization around the uniform steady-state. This
gives a mathematical explanation to why snaking between localized
states and bare-soil does not occur in SG and related models, even if
there is a large bistability range of the periodic solutions and bare-
soil, as in Fig. 6.

Fig. 7. Bifurcation diagram of the uniform branches, with information on the eigenva-
lues of the spatial-dynamics form of the model. The black and green branches are for
bare-soil and uniform-vegetation states respectively. A solid line signifies that all six
eigenvalues are real, a dotted line that there are four complex eigenvalues, while dashed
lines signify that there are pure-imaginary eigenvalues. The square boxes show
eigenvalues plotted on the complex plane, at different points along the uniform branches.
An example of exponential and oscillatory tails is shown in the purple and cyan insets
respectively, with the complementary real and complex eigenvalues in the square boxes
with the same color. Note that the green branch is stable up to p p= T where the branch

of periodic states bifurcates. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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7. Discussion

Our results illuminate the complex nature of desertification in
patchy ecosystems, and the important role that localized states may
play in the dynamics of desertification. Transitions (regime shifts) from
uniform high-biomass vegetation to periodic vegetation, or from
periodic vegetation to low-biomass vegetation, or from uniform-
vegetation into bare-soil (in an ecosystem without a stable patchy
state), can occur gradually via moving fronts. However, the transition
from periodic vegetation to bare-soil is found to be an abrupt global
collapse, since the absence of bare-soil fronts invading periodic
patterns implies no gradual shifts to bare soil, or gradual
desertification.

The absence of gradual desertification to bare-soil can be under-
stood by its physical mechanisms as follows. The existence of a bare-
soil front invading a domain of periodic vegetation would imply a better
micro environment within the domain as compared with the domain's
fringe where the vegetation is dying out. Such a front would require
strong facilitation within the vegetation domain, which in the SG model
can be accounted for by reduced evaporation due to shading.
Additional facilitation factors, such as enriched nutrients by litter
decomposition, limited access of grazers, and reduced wind and soil
erosion, are not included in the SG model nor in other related models.
Counteracting the reduced facilitation by shading in the domain's
fringe (as compared with the inner part of the domain) is the larger
water-contributing bare-soil area that the vegetation at the domain's
fringe benefits from. That effect is strong in ecosystems showing
vegetation pattern formation and wins out over the facilitation by
shading (facilitation that is too strong results in uniform rather than
patterned vegetation). As a result bare-soil fronts invading periodic
vegetation are not found. For the same reason a localized single-peak
solution ceases to exist in a fold bifurcation at a lower p value,
compared to any periodic pattern, as seen in Fig. 6.

We are not aware of empirical observations of bare-soil fronts
invading vegetation patterns in flat terrains. However, there are
observations of consumer fronts, where consumers aggregate at front
positions and affect their dynamics (Silliman et al., 2013). Further
model and empirical studies are needed to clarify the conditions under
which bare-soil fronts invading periodic vegetation, and therefore
gradual desertification to bare-soil, are possible.

The breakup of the snaking structure due to real eigenvalues of the
spatial problem appears to be a generic behavior expected to be shared
by other vegetation models. Its occurrence due to a bare-soil state may
be only one case out of many, although possibly the most interesting
one from an ecological perspective. Moreover, one may wonder if the
snaking breakup has further repercussions than those described herein.
For example, in many models the wavelength of the localized states
appears to change significantly within the snaking range. In particular,
models where the eigenvalues change into real values appear to have a
stronger change in wavelength, implying that the eigenvalues may play
a role in wavelength selection.

Since the behavior of the localized states in the SG model can be
explained using spatial dynamics, it brings up the question of applying
the same methodology to the LL model. This is problematic, as
rewriting the LL model into first order equations results in a term of

b1/ in one of the equations. Since the localized states occur in the
background of bare-soil state, namely b=0, this term diverges, and the
eigenvalues cannot be calculated. It remains an open question how to
proceed with the analysis in this case. It is interesting to note however,
that it might be this term exactly that leads to this unique situation
where the whole bifurcation structure of localized states occurs in a
bistability with the bare-soil state.
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