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A B S T R A C T

The response of dynamical systems to varying conditions and disturbances is a fundamental aspect of

their analysis. In spatially extended systems, particularly in pattern-forming systems, there are many

possible responses, including critical transitions, gradual transitions and locally confined responses.

Here, we use the context of vegetation dynamics in drylands in order to study the response of pattern-

forming ecosystems to oscillating precipitation and local disturbances. We focus on two precipitation

ranges, a bistability range of bare soil with a patterned vegetation state, and a bistability range of uniform

vegetation with a patterned vegetation state. In these ranges, there are many different stable states,

which allow for both abrupt and gradual transitions between the system states to occur. We find that

large amplitude oscillations of the precipitation rate can lead to a collapse of the vegetation in one range,

while in the other range, they result in the convergence to a patterned state with a preferred wavelength.

In addition, we show that a series of local disturbances results in the collapse of the vegetation in one

range, while it drives the system toward fluctuations around a finite average biomass in the other range.

Moreover, it is shown that under certain conditions, local disturbances can actually increase the overall

vegetation density. These significant differences in the system response are attributed to the existence of

localized states in one of the bistability ranges.

� 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamics of ecosystems are often complex and nonlinear.
This nonlinearity, originating from various feedbacks between the
different components of the ecosystem, may result in a multi-
stability of the ecosystem states. Changes in environmental
conditions and disturbances may drive the system from one
stable state to an alternative one. These critical transitions or
‘‘regime shifts’’ may be either abrupt or gradual (Bel et al., 2012).
Abrupt (critical) transitions are of great concern in many fields of
science due to the significant changes and often unexpected
outcomes they entail (Gandhi et al., 1998; Barnosky et al., 2012;
Yun et al., 2013; Rietkerk et al., 2011; Dakos et al., 2012; Kéfi et al.,
2014; Cline et al., 2014). The basic notion of abrupt critical
transitions stems from mean field models, describing the dynamics
of variables that are uniform across the system. The dynamics and
responses of spatially extended systems, however, are more
complicated (Rietkerk et al., 2011; Dakos et al., 2012; Kéfi et al.,
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2014; Cline et al., 2014; Fernández and Fort, 2009; Fort, 2013). In
particular, the regime shifts between alternative stable states may
be gradual, abrupt or even a combination of the two, appearing as a
sequence of local regime shifts that can eventually lead to a
transition of the entire system to another stable state.

An excellent case study for studying regime shifts in spatially
extended systems can be found in dryland landscapes, where
fascinating vegetation patterns have been observed and studied
(Klausmeier, 1999; Von Hardenberg et al., 2001; Rietkerk et al.,
2002, 2004; Sherratt, 2005; Tlidi et al., 2008; Manor and Shnerb,
2008; Lejeune et al., 2002, 2004; HilleRisLambers et al., 2001; Gilad
et al., 2007, 2004; Borgogno et al., 2009). The vegetation patterns
are driven and maintained by positive feedbacks between local
vegetation growth and water transport toward the growth location
(Kinast et al., 2014; Meron, 2015). Several pattern-forming
feedbacks can be distinguished according to the water transport
mechanism: overland water flow, water conduction by laterally
extended root systems, soil water diffusion and fog advection
(Meron, 2015). Models describing the dynamics of dryland
vegetation differ in the pattern-forming feedbacks they capture,
but they all show the same universal sequence of basic vegetation
states along the rainfall gradient: uniform vegetation, gap patterns,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecocom.2015.11.004&domain=pdf
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striped patterns, spotted patterns and uniform bare soil. In
addition, a bistability range of each pair of consecutive basic
states may exist (Meron, 2012; Gowda et al., 2014). The
multiplicity of stable states, however, is much higher. Each type
of basic periodic pattern represents a family of patterns with
different wavelengths, e.g., a family of periodic striped patterns,
ranging from isolated stripes to dense stripes (van der Stelt et al.,
2013; Zelnik et al., 2013). In addition, any bistability range of basic
states may give rise to a multiplicity of hybrid states involving
domains of one state embedded within a larger domain of another
state (Zelnik et al., 2015). This multiplicity of stable states allows
for different types of state transitions and may consequently lead
to a wide array of responses to varying environmental conditions
or disturbances.

Ecosystem responses to changes in global conditions, such as
global climate change and climate variability, have attracted much
attention in various contexts (Walther et al., 2002; Marshall et al.,
2008; Parmesan, 2006; Walther, 2010; Anderson et al., 2012;
Maclean and Wilson, 2011; Cramer et al., 2001; Brown et al., 1997;
Melillo et al., 1993; Swetnam and Betancourt, 2010; Porporato
et al., 2004; Pounds et al., 1999; McGowan et al., 1998; Yizhaq
et al., 2014). The responses of ecosystems to disturbances, be they
natural, such as fires and bark beetles, or anthropogenic, such as
cattle grazing and clear cutting, have also been the subject of much
research (Turner et al., 2003; Goetz et al., 2007; Abdelnour, 2011;
White and Jentsch, 2001; McMillan et al., 2011). Several recent
model studies of dryland vegetation have addressed the response
of vegetation patterns to such influences, that is, to large-scale
environmental changes that encompass the whole ecosystem
(hereafter ‘‘global’’ changes) and to confined disturbances that
directly affect limited parts of the ecosystem. It was shown that in
the bistability range of bare soil and patterned vegetation, the
system can respond to global changes, such as a gradual
precipitation decrease, by changing the wavelength of the pattern
(Zelnik et al., 2013; van der Stelt et al., 2013; Sherratt, 2013;
Dagbovie and Sherratt, 2014; Siteur et al., 2014). The Busse balloon,
which presents the range of stable wavelengths versus the
bifurcation parameter, provides an insight into this type of
response (van der Stelt et al., 2013). When the bifurcation
parameter is adiabatically changed to values outside the stability
range of the current wavelength, a transition to another
wavelength within the Busse balloon takes place. The new
wavelength that is chosen by the system depends on the rate of
precipitation decrease and the noise level (Siteur et al., 2014). The
effect of system parameters varying periodically or intermittently
in time has also been studied (Guttal and Jayaprakash, 2007;
Kletter et al., 2009; Sheffer et al., 2011; Zhao and Wang, 2014;
Gandhi et al., 2015), but not in the context of global state
transitions or regime shifts.

To the best of our knowledge, a thorough examination of
transitions due to periodic forcing or local disturbances has not
been performed for models describing the dynamics of dryland
vegetation. Furthermore, all of the studies mentioned above have
focused on the bistability range of bare soil with patterned
vegetation, and have not looked at other bistability (or multi-
stability) ranges of the system. Here, we study the response of
pattern-forming systems to local disturbances and temporal
changes in the control parameter using a simple pattern-forming
model that describes vegetation dynamics in dryland ecosystems
and exhibits various patterns in different precipitation regimes.
We focus on the responses of the system in two precipitation
ranges in which there is a bistability between uniform and
patterned states. The responses of the system in the bistability
range of bare soil (uniform zero-biomass state) and patterns, and in
the bistability range of uniform vegetation (uniform nonzero-
biomass state) and patterns are studied and compared.
2. Model and methods

We studied a relatively simple model that describes the
spatio-temporal distributions of soil water and aboveground
biomass. However, the results are not limited to this specific
model, as detailed in the supplementary materials. The model is
a simplified version (Zelnik et al., 2013) of the model that was
introduced by Gilad et al. (2004, 2007). It applies to plants that
have confined root zones in the lateral directions and to
landscapes in which there is no infiltration contrast between
vegetated domains and bare-soil domains, e.g., soils without
significant crust. This simplified model captures a single
pattern-forming feedback, the ‘‘uptake-diffusion’’ feedback
(Kinast et al., 2014). This feedback represents the increased
water uptake rate by denser vegetation, thereby reducing the
soil water density in its neighborhood, and the fast transport of
soil water from domains with sparse vegetation (and therefore,
higher soil water density) toward domains with denser
vegetation (and therefore, lower soil water density). This
mechanism is relevant to dryland ecosystems with large soil
water diffusivity, such as landscapes with sandy soil, and plants
whose water uptake rate has a nonlinear dependence on the
biomass density. For example, the ecosystem of fairy circles in
Namibia has been shown to be a system where this mechanism
is prominent (Zelnik et al., 2015). Other pattern-forming
feedbacks exist, such as the infiltration feedback (Rietkerk
et al., 2011; Meron, 2012; Kinast et al., 2014), which occurs in
regions with a high infiltration contrast so that denser
vegetation patches act as water sinks, and the root-augmenta-
tion feedback, which describes the lateral growth of the plants’
root systems as biomass density grows (Gilad et al., 2007;
Meron, 2012). For the purpose of this study, the simplified
model is detailed enough to capture the distinct ranges of
bistability of bare-soil and patterned states and of uniform
vegetation and patterned states. The equations describing the
dynamics of the aboveground biomass (B) and the soil water (W)
areal densities are:

@T B ¼ LWBð1 þ EBÞ2 1� B

K

� �
�MB þ DBr2B ; (1)

@T W ¼ P�NW 1�R
B

K

� �
�GWBð1 þ EBÞ2 þ DWr2W : (2)

In Eq. (1), L is the biomass growth rate coefficient, E is a measure
for the root-to-shoot ratio, which characterizes the positive
feedback of the biomass on the soil water uptake rate, K is the
maximum standing biomass, M is the mortality rate, and DB

represents the rate of seed dispersal or clonal growth. In Eq. (2), P is
the precipitation rate, N is the evaporation rate, R is a dimensionless
factor representing a reduction of the evaporation rate due to
shading, G is the water uptake rate coefficient, and DW is the effective
soil water diffusivity in the lateral (X, Y) directions. The ‘‘uptake-
diffusion’’ feedback is characterized by the parameters E (charac-
terizing the growth of the water uptake rate with the biomass
density) and DW (the soil water diffusivity) (Kinast et al., 2014). A
dimensionless form of the model is obtained by rescaling the
state variables B, W and the space and time coordinates as follows:

b ¼ B

K
; w ¼WL

KG
; t ¼ MT; x ¼ X

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=DB

p
: (3)

In terms of these dimensionless quantities, the model reads:

@tb ¼ lwbð1 þ hbÞ2ð1�bÞ�b þ r2b ; (4)

@tw ¼ p�nwð1�rbÞ�lwbð1 þ hbÞ2 þ dwr2w : (5)
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The dimensionless parameters are related to their dimensional
counterparts by the following relations:

n ¼ N

M
; h ¼ EK; l ¼ KG

M
; p ¼ LP

KGM
; r ¼ R;

dw ¼
DW

DB
:

(6)

In what follows, all the quantities presented will be dimen-
sionless. The bifurcation parameter is set to be the precipitation
rate, p. The other parameters of the model were set to the following
values: n = 2; h = 6; l = 2; r = 0.2; and dw ¼ 1000. These param-
eters were chosen to have realistic values in dryland ecosystems
(Zelnik et al., 2015). For simplicity, we focused on the case of one
spatial dimension. The different states of the system, used to create
the bifurcation diagrams, were calculated using numerical
continuation with the AUTO software (Doedel, 1981). The stability
of these solutions was tested numerically using a linear stability
analysis with periodic boundary conditions in a system of size
�250 (the exact size was set to be an integer number of
wavelengths in order to allow for periodic boundary conditions).
The numerical integration in time was done using a pseudo-
spectral method, with periodic boundary conditions. We note that
the size of the periodic patterns, in a dimensional form, is in the
range of 0.1–20 m. This range corresponds to the dryland
vegetation patterns in different ecosystems in the world
(Deblauwe et al., 2008).

The responses of the system to two types of environmental
changes were studied. The first type, periodic changes in the
precipitation rate, was implemented by modulating the precipita-
tion parameter, p, sinusoidally over time, with pðtÞ ¼ p0 þ A tð Þ,
where A tð Þ ¼ Asinð2pt=T0Þ. This perturbation form is general
enough to capture the phenomenon we wish to demonstrate,
while other more intricate forms may involve unnecessary
complications. The baseline precipitation value, p0, is the original
value of p for which a steady state was reached. The modulation
period was fixed at T0 = 120, and the modulation amplitude was
varied within the range 0.04 � A � 0.16. This period amounts to
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Fig. 1. (a) A bifurcation diagram of the model in one spatial dimension, showing the two
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roughly 5–100 years in dimensional units (depending on the
specific choice of dimensionalization), a timescale consistent with
observed droughts (Currie, 1981). For the purpose of time
integration, the modulation period, T0, was divided into 50 parts,
and for each time segment, an integration over a time of t = T0/50
was performed with a constant value of p, corresponding to the
relevant phase in the beginning of the segment. We verified that
this choice of discretization of the periodic signal was sufficient;
namely, the results of a finer discretization were the same. The
second type of environmental change that we studied represented
local disturbances, which was implemented by removing the
vegetation (setting b = 0) in small domains, each of a size
L0 = 50. The position of each disturbance was chosen from a
random uniform distribution, and between sequential distur-
bances, the system was integrated forward in time for a period of
T1 = 100, which is long enough for the system to converge to a new
steady state (i.e., a state that shows no significant dynamics over a
long period). We confirmed that integrating for a longer period
after each disturbance did not affect the results. For clarity, we
point out that in studying the response to local disturbances, the
precipitation rate was constant.

3. Bifurcation diagram for constant conditions

We began our analysis by looking at the different states of the
system under a constant precipitation rate and in the absence of
disturbances. The various possible states of the system for different
values of the precipitation rate, p, are shown in the bifurcation
diagram in Fig. 1. The system has two uniform states, the bare-soil
state (b = 0) that exists for all values of p, and a uniform-vegetation
state (b > 0) that exists for high enough values of p. The bare-soil
state is stable for low values of p, and loses its stability at p = pU in a
uniform (zero wavenumber) stationary instability (Meron, 2015).
At this point, it crosses an unstable branch that describes uniform
vegetation. This solution branch merges with another branch,
representing denser uniform vegetation, at a fold bifurcation
occurring at a lower value of p. The latter still describes an unstable
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state, but the instability is due to the growth of non-uniform
perturbations. The uniform-vegetation state becomes stable only
for precipitation rates higher than pT, which designates a non-
uniform stationary (Turing) instability.

The periodic solutions represent periodic vegetation patterns.
Many solutions of this kind exist, with two representative
examples shown in Fig. 1. The first (shown in green in Fig. 1a
and e) is the periodic-solution branch that emanates from the
Turing bifurcation point, pT, and continues all the way down to the
unstable uniform-vegetation solution. The second (shown in
magenta in Fig. 1a and d) is a single-peak solution, that is, a
periodic solution with a wavelength equal to the system size and
thus much larger than the wavelength of the first solution. It
emanates from and terminates in the small-amplitude uniform-
vegetation solution close to the bifurcation point at p = pU, and
describes an isolated vegetation spot in otherwise bare soil. In
addition to periodic solutions, non-periodic solutions also exist
(shown in red in Fig. 1a–c) that describe hybrid states, i.e., confined
domains of a periodic pattern in an otherwise uniform vegetation
domain. The first solution of this kind emanates from the uniform-
vegetation solution at the Turing bifurcation point (the first
periodic solution described above emanates from the same point),
and describes a single gap in uniform vegetation. The hybrid-
solution branch snakes down and terminates in a different
periodic-solution branch (the blue curve in Fig. 2b). The hybrid
solutions differ in the size of the patterned domain, which
increases through the appearance of a new pair of gaps (one gap on
each side of the domain) at each step in the descent toward the
periodic-solution branch. The hybrid solutions shown in Fig. 1
describe confined domains with odd numbers of gaps. A
corresponding set of hybrid solutions with even numbers of gaps
also exist (not shown). The stability range of an isolated vegetation
spot (single-peak solution) lies within a larger bistability range of
bare soil and periodic patterns, shown in detail in Fig. 2a, while the
stability range of the different hybrid states lies within a larger
bistability range of uniform vegetation and periodic patterns,
shown in detail in Fig. 2b.

The bistability range of the bare-soil solution and the periodic
solutions, partly shown in Fig. 2a, lies between the fold bifurcation
Fig. 2. Close up of two bistability ranges in the bifurcation diagram shown in Fig. 1. (a) Bi
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at p = pL, below which the single-peak solution ceases to exist, and
p = pU above which the bare-soil solution loses stability. The fold
bifurcation at p = p1, which designates the upper limit of the single-
peak existence range, separates the bistability range into two
regimes, where distinct dynamical behaviors were found. For
p > p1, isolated peaks of biomass were found to split into two or
more peaks, while for pL < p < p1, isolated peaks remained stable.
This peak-splitting or ‘‘self-replication’’ behavior has been found in
chemical reactions (Lee and Swinney, 1995), and in studies of the
Gray-Scott model (Doelman et al., 2000), which is closely related to
the vegetation model introduced by Klausmeier (1999). The
significance of this finding to our study is that in the range
pL < p < p1, the system tends to conserve the number of peaks in
the system, since peak splitting does not occur.

The second bistability range of uniform vegetation and periodic
patterns, shown in Fig. 2b, lies between p = pT, the Turing
instability point of the uniform-vegetation solution, and p = pS,
where the periodic solution that extends to the highest p values
(shown in blue in Fig. 2b) disappears in a fold bifurcation. Within
this range lies the snaking range, p2 � p � p3, where the hybrid
solutions are stable.

4. Responses to oscillating precipitation

Following the analysis of uniform, periodic and hybrid solutions
at constant precipitation, as depicted by the bifurcation diagram in
Fig. 1, we turned to study the possible responses of the system to
time-periodic precipitation (as described in Section 2). Beginning
with the bistability range of the patterned states with the bare-soil
state, we used as an initial condition a periodic solution with
wavelength WL = 25. The initial condition is typical in the sense
that starting from a random initial condition and allowing the
system to evolve under constant precipitation (equal to the mean
value, p0, of the oscillating precipitation that we used) will cause it
to converge into a patterned state with that wavelength. The mean
precipitation rate was set to p0 = 0.4, and the responses to different
modulation amplitudes were studied numerically. As expected,
small-amplitude modulations of p (A = 0.04) have no significant
effect on the system, as seen in Fig. 3a. Increasing the modulation
stability of the bare-soil solution (black solid line) and of periodic solutions (colored

d cyan curves show patterned states with wavelengths 25 and 50, respectively, and

size (corresponding to a single peak and wavelength 250). (b) Bistability range of the

ves), pT < p < pS. The green curve shows the periodic solution emanating from the

hat extends to the boundary, p = pS, of the bistability range. Also shown are hybrid

ecipitation rate spanned by the sinusoidal modulations (A = 0.04, 0.08 and 0.16,

e modulations. (For interpretation of the references to color in this figure legend, the



Fig. 3. The response of the system to periodic modulations of the precipitation rate in the bistability range of bare-soil and patterned states. Shown are space-time plots of the

biomass variable (darker shades denote higher biomass density) for three modulation amplitudes: small, A = 0.04 (panel a), moderate, A = 0.08 (panel b), and large, A = 0.16

(panel c). In all three cases, the initial state of the system is the same – a stable periodic pattern solution (WL = 25). The weak modulation leaves the initial pattern unchanged

apart from amplitude oscillations that follow the modulations of the precipitation rate. The moderate modulation induces a transition to a periodic pattern with a wavelength

about twice as large as the initial one. The transition largely occurs within the first few periods of the modulated precipitation, as can be inferred from the leftmost panel that

shows a plot of [p(t) � p0]/A = sin(2pt/T0). The strong modulation induces an abrupt transition to the bare-soil state within the first periods of the modulated precipitation.
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amplitude (A = 0.08), so that a significant period of time is spent
outside the stability range of the initial periodic solution, induces a
transition to another state with a larger wavelength, shown in
Fig. 3b. Since the stability range of this new state is fully within the
range spanned by the modulated precipitation, the wavelength
does not change further (although the amplitude of the vegetation
pattern does change in time according to the value of p). Increasing
the modulation amplitude further (A = 0.16), such that over long
enough periods, p lies outside the bistability range, p < pL, can
result in a quick collapse to the bare-soil state through an abrupt
critical transition, as shown in Fig. 3c.

In studying the possible responses of the system in the second
bistability range of patterned and uniform-vegetation states, we
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used a hybrid state as an initial condition. In this bistability range,
we set the mean precipitation rate to p0 = 1.3. Small-amplitude
modulations of the precipitation rate (A = 0.04) have no discernible
effect, and the system stays much the same, as can be seen in
Fig. 4a. For a larger amplitude (A = 0.08), where p assumes values
outside the snaking range for sufficiently long periods, a gradual
transition from the hybrid state to a patterned state, as shown in
Fig. 4b, occurs. With each period of the oscillations, a new pair of
gaps appears, with one new gap on each side of the patterned
domain. The sequential appearance of new gaps results in the
expansion of the patterned domain across the whole system and
the convergence to a periodic patterned state. Since the range of
the modulated precipitation rate lies entirely within the stability
x/100
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x/100
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 bistability range of uniform-vegetation and patterned states. Shown are space–time
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s a faster yet gradual transition that involves the appearance of several pairs of gaps
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range of the periodic patterned state, only oscillations of the
pattern amplitude occur after the convergence. Using an even
larger amplitude (A = 0.16) that takes p outside the stability range
of the uniform-vegetation state speeds up the convergence to the
patterned state, by allowing for several new pairs of gaps to appear
with every cycle of the modulated precipitation. This transition,
shown in Fig. 4c, is still gradual and converges to the same final
state (with the only difference being the magnitude of the
patterned state’s amplitude oscillations).

The response of the system in the bistability range of uniform-
vegetation and pattern solutions is quite different from the
response in the bistability range of bare-soil and pattern solutions.
In the former, the transitions are gradual and, in large systems, may
take a very long time to complete. Moreover, the final state is
independent of the amplitude of the precipitation modulation,
provided it is large enough to initiate a transition. By contrast, in
the latter bistability range, the transitions occur over short time
scales and do not necessarily result in the same final state;
moderate amplitudes drive the system from the initial periodic
patterned state to various other periodic patterned states, whereas
large amplitudes induce transitions to the bare-soil state.

The changes in the average biomass for the scenarios presented
in Figs. 3 and 4 are shown in Fig. 5a and b, respectively. The average
biomass changes periodically, following the modulation of the
precipitation, and in both precipitation ranges, modulations that
are strong enough bring the system to lower biomass levels. In the
bistability range of bare soil and periodic patterns, the biomass
changes occur quickly, within the first few modulation periods,
and can be abrupt for sufficiently large modulations. On the other
hand, in the bistability range of uniform vegetation and periodic
patterns, the changes are much more gradual, and the final
biomass oscillates around a similar mean value. The duration of the
transition to the final state, however, may strongly depend on the
modulation strength.

5. Responses to random local disturbances

The response of the system to local disturbances is noticeably
different than the response to changes in the global conditions (i.e.,
changes in p). We looked at the system’s response to a regime of
local disturbances in three distinct precipitation ranges, the two
bistability ranges previously described, and the intermediate
precipitation range between them. Here, p remains constant
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Fig. 5. The spatial average of the biomass vs. time for the scenario shown in Fig. 3 (panel a)

weak, moderate, and strong modulations of the precipitation rate, respectively. While in 

short time scales and can be abrupt (panel a), in the bistability range of uniform-veg

interpretation of the references to color in this figure legend, the reader is referred to 
during the simulation (A = 0). For low precipitation values
(pL < p < p1), the single-peak solution is stable and no splitting
occurs. In this range, we found that the removal of vegetation spots
by local disturbances leads to a redistribution of the remaining
spots, with no change in their total number. If the system is no
longer disturbed, it will asymptotically converge to a patterned
state with a longer wavelength. However, under continuous
repetitions of such local disturbances, the system converges to the
bare-soil state, as Fig. 6a shows (for p = 0.4). This result does not
depend on the initial conditions, as can be seen in Fig. 7a; the
biomass decreases monotonically to zero irrespective of the initial
condition, provided that the system is repeatedly disturbed.

In the intermediate precipitation levels (p1 < p < pT), the single-
peak solution does not exist and isolated peaks tend to split. In this
range, a sequence of local disturbances initially modifies the
density of the peaks to correspond to the preferred wavelength.
Each consecutive disturbance is followed by a quick response,
involving the splitting of peaks, and convergence of the system
back to a similar patterned state. These dynamics are shown in
Fig. 6b for p = 0.9. Graphs of the average biomass versus time for
different initial conditions are shown in Fig. 7b. The only noticeable
effect of the the local disturbances is a slight decrease in the overall
biomass.

For higher precipitation rates (pT < p < pS), the system is highly
plastic due to the existence of stable hybrid states. The hybrid
states allow for a multiplicity of stable states, some of which differ
only locally. This allows the system to respond to a local
disturbance by changing its state in the immediate vicinity of
the disturbed region, without affecting the whole system. This type
of dynamics is shown in Fig. 6c (for p = 1.3), where a new hole in
the uniform vegetation is created after each disturbance. The local
response results in a different spatial distribution of the vegetation
after each disturbance, but gradually the system reaches a hole
(vegetation) density in which, on average, for each new hole that is
formed, an old one disappears (due to the expansion of vegetated
domains), so that the total biomass no longer changes significantly.
Furthermore, the local nature of the response has an additional
interesting effect; the initial conditions are completely lost over
time, and the state of the system is controlled entirely by the
disturbance regime.

In Fig. 7c, we show the average biomass versus time under a
regime of local disturbances. The three lines correspond to
different initial conditions subjected to the same series of local
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Fig. 6. The response of the system to periodic local biomass-removal disturbances. Shown are space–time plots of the biomass variable in three distinct precipitation ranges in

which different initial conditions were used. (a) pL < p = 0.4 < p1: starting with an initial condition of a periodic solution with a wavelength of WL = 50, the number of spots

(peaks) drops over time, with no new spots being formed. Finally, a bare-soil state is reached. (b) p1 < p = 0.9 < pT: starting with an initial condition of a periodic solution with

a wavelength of WL = 25, the system reacts quickly to each disturbance, refilling the bare space by spot splitting. (c) pT < p = 1.3 < pS; starting with an initial condition of a

hybrid solution, each disturbance results in a single hole of a certain length. If previously the area had several holes, then the overall number of holes is lowered, while if the

disturbed domain was vegetated, the number of holes increases. Therefore, after a long enough time, the average number of holes, which determines the overall biomass due

to the regular size of the holes, no longer changes significantly.
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disturbances. It is noticeable that after a large enough number of
local disturbances (i.e., a sufficiently long time), all biomass
changes are exactly the same for all three different initial
conditions shown. This also means that if the initial conditions
are of low overall vegetation, as in a stable periodic solution with a
long wavelength or a hybrid state with many gaps, then the local
disturbances actually increase the overall vegetation over time
(blue and green curves in Fig. 7c).

6. Discussion

In this paper, we used a simple model describing the spatio-
temporal dynamics of water-limited vegetation to study the
possible responses of a pattern-forming ecosystem to periodically
changing environmental conditions (the precipitation rate) and to
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Fig. 7. Average biomass vs. time, in a system under the influence of periodic local distu

regardless of the initial condition, the number of peaks and, consequently, the average bi

soil state is reached. (b) For an intermediate precipitation level, p = 0.9, the only noticeab

followed by temporary fluctuations. (c) For the second bistability range (of nonzero un

dynamics. The system converges to a certain hole density and, with it, to a certain biom

solution with many gaps, or a periodic solution with a long wavelength, the overall bioma

to color in this figure legend, the reader is referred to the web version of this article.)
random local disturbances (biomass removal). Despite its simplic-
ity, the model offers a complex bifurcation diagram with multi-
stability of patterned states, hybrid states and, in particular, two
bistability ranges of patterned states and uniform states. For low
precipitation rates, we identified a bistability of bare-soil and
patterned states, while for higher precipitation rates, we identified
a bistability of uniform-vegetation and patterned states. In the
bistability range of bare-soil and patterned states, we found that
there exists a wide range of periodic solutions – from a dense
short-wavelength pattern to a sparse long-wavelength pattern
(a single biomass peak in the domain studied). The bistability range
of uniform-vegetation and patterned states shows a smaller range
of wavelengths, but compensates for the narrow band of periodic
solutions with the existence of multiple stable hybrid states. The
wide set of hybrid states allows a local response of the system to
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disturbances and changes in the environmental conditions, and
strongly affects the dynamics of the system in this bistability
range.These differences between the two bistability ranges lead to
substantial differences in the system’s response to both environ-
mental changes and disturbances. We note that the results
discussed are not limited to a specific model or a specific pattern-
forming mechanism. We expect the behavior to be general and
relevant to systems with a bistability of patterns and uniform
states, and more specifically, to systems in which localized states
exist inside the bistability range As shown in the supplementary
materials, a qualitatively similar bifurcation structure exists for
the Rietkerk et al. model (Rietkerk et al., 2002), with localized
states inside a bistability range of patterns and uniform vegetation
(while the bistability between patterns and bare-soil shows no
such localized states). The similar bifurcation structure implies
similar responses of the system to the disturbances and
precipitation modulations considered here.

In both bistability ranges, we found that small-amplitudemo-
dulations of the precipitation parameter did not result in
significant changes in the system’s state (red curves in Fig. 5),
but large-amplitude modulations can result in state transitions
that involve a significant biomass reduction (green and blue
curves in Fig. 5). The manner in which the average biomass is
reduced differs between the two bistability ranges. In the
bistability range of bare-soil and patterned states, large-ampli-
tude precipitation modulations lead to an abrupt collapse to the
bare-soil state, while moderate amplitude modulations result in a
fast but moderate biomass decrease that results from a transition
to a sparser periodic pattern. By contrast, in the bistability range of
uniform-vegetation and patterned states, the asymptotic state is
always similar – a periodic pattern with a preferred wavelength
(provided the modulation is strong enough). The approach to this
state is typically slower, albeit dependent on the modulation
amplitude.

The system’s response to repeated local disturbances is also
quite different in the two bistability ranges. In the bistability range
of bare-soil and patterned states, the biomass decreases to zero
monotonically in time, irrespective of the initial condition (the red,
green and blue curves in Fig. 7), whereas in the bistability range of
uniform-vegetation and patterned states, the biomass dynamics
strongly depend on the initial condition. In particular, the average
(and total) biomass may increase if the initial state comprised a
relatively low total biomass.

These differences between the two bistability ranges reveal an
aspect of the complex nature of possible transitions in pattern-
forming ecosystems. The model for water-limited vegetation
dynamics suggests that the process of desertification may be
gradual for higher precipitation rates, but tends to be more abrupt
as the system approaches the bare-soil state. This asymmetry
stems from the existence of localized states in the bistability range
of uniform vegetation with a patterned vegetation state, which do
not occur in the other range. The response of similar dryland
ecosystems to varying conditions may be more symmetric if
localized states occur in both bistability ranges. This situation can
be expected if both uniform states correspond to nonzero
biomass.

Our findings call for further research into systems of higher
dimensions in which bistability and multistability regions of
patterned states, with different spatial symmetries, may exist.
Furthermore, the response of dryland ecosystems to local
disturbances has been less explored than their response to changes
in the global conditions. Comparisons of model predictions with
field observations of ecosystem dynamics under different regimes
of local disturbances can enhance our understanding of these
ecosystems and improve the mathematical models describing
them.
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