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Drylands are pattern-forming systems showing self-
organized vegetation patchiness, multiplicity of stable
states and fronts separating domains of alternative
stable states. Pattern dynamics, induced by droughts
or disturbances, can result in desertification shifts
from patterned vegetation to bare soil. Pattern
formation theory suggests various scenarios for such
dynamics: an abrupt global shift involving a fast
collapse to bare soil, a gradual global shift involving
the expansion and coalescence of bare-soil domains
and an incipient shift to a hybrid state consisting of
stationary bare-soil domains in an otherwise periodic
pattern. Using models of dryland vegetation, we
address the question of which of these scenarios
can be realized. We found that the models can be
split into two groups: models that exhibit multiplicity
of periodic-pattern and bare-soil states, and models
that exhibit, in addition, multiplicity of hybrid states.
Furthermore, in all models, we could not identify
parameter regimes in which bare-soil domains expand
into vegetated domains. The significance of these
findings is that, while models belonging to the
first group can only exhibit abrupt shifts, models
belonging to the second group can also exhibit
gradual and incipient shifts. A discussion of open
problems concludes the paper.

1. Introduction
Water-limited landscapes can generally be described
as mosaics of vegetation and bare-soil patches of
various forms. Increasing empirical evidence supports
the view that this type of vegetation patchiness

2013 The Author(s) Published by the Royal Society. All rights reserved.
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is a self-organization phenomenon that would have occurred even in perfectly homogeneous
physical environments [1,2]. Many insights into the mechanisms that drive self-organized
vegetation patchiness have been achieved using mathematical models of water-limited
landscapes [3–5]. These models first demonstrate that uniform vegetation states can go
through spatial instabilities to periodic vegetation patterns upon increasing environmental stress
parameters. They further highlight two main feedbacks that are capable of producing such
instabilities [6]. The first is also a positive feedback between biomass and water that develops
as a result of an infiltration contrast between bare and vegetated areas (infiltration feedback).
The second is a positive feedback between above-ground and below-ground biomass, related to
the root-to-shoot ratio, a characteristic trait of any plant species (root-augmentation feedback).
Model studies of vegetation pattern formation along a rainfall gradient have revealed five
basic vegetation states [7–10]: uniform vegetation, gap patterns, stripe (labyrinth) patterns, spot
patterns and uniform bare soil. Another significant result is the existence of precipitation ranges
where alternative stable vegetation states coexist. These are generally bistability ranges of any
consecutive pair of basic states: bare soil and spots; spots and stripes; stripes and gaps; and gaps
and uniform vegetation. Within any bistability range, spatial mixtures of the two alternative stable
states can form long transient patterns that culminate in one of the two alternative states, or stable
asymptotic hybrid patterns [6].

The mathematical theory of hybrid patterns is far from being complete. Much progress,
however, has been made for the simpler case of bistability of uniform and periodic-pattern states,
using simple pattern formation models such as the Swift–Hohenberg equation [11]. According
to this theory, a bistability range of uniform and patterned states may contain a subrange (or
an overlapping range) of stable localized patterns, coexisting with the two alternative stable
states. For bistability of bare-soil and vegetation spot patterns, these localized patterns would
correspond to isolated spot-pattern domains in an otherwise bare soil, or, conversely, to isolated
bare-soil domains in an otherwise periodic spot pattern. The appearance of these mixed-pattern or
hybrid states can be understood intuitively by focusing on the dynamics of the transition zones
that separate the two alternative stable states. These zones are fronts that can be stationary or
propagating. In the case of bistability of two uniform states, isolated fronts always propagate,
except for a singular control parameter value, the so-called Maxwell point, at which the direction
of propagation changes [12].1 Bistability of uniform and pattern states, on the other hand, allows
for an additional behaviour: isolated fronts can be stationary or pinned in a range of the control
parameter [14]. Such a range can give rise to many hybrid states, because the fronts that constitute
the boundaries of the alternative-state domains are stationary. In a diagram that shows the
various states as functions of the control parameter, the hybrid states often appear as solution
branches that ‘snake’ down from the periodic-pattern branch towards the uniform (zero) state
as figure 1 illustrates. The control parameter range where these solutions exist is often called the
snaking range, and the appearance of such solutions is described as homoclinic snaking [11].
In the following, we will refer to this range as the ‘hybrid-state range’ to allow for multi-stability
of hybrid states that is not associated with homoclinic snaking.

Bistability of alternative stable states has been studied extensively in the context of ecosystem
regime shifts, i.e. sudden transitions to a contrasting state in response to gradual changes in
environmental conditions [15,16]. Such shifts have been observed in lakes, coral reefs, oceans,
forests and arid lands. Global shifts from one stable state to another, however, may not necessarily
be abrupt. Ecosystems are continuously subjected to local disturbances whose effects are spatially
limited. Examples of such disturbances in the context of water-limited vegetation include clear
cutting, grazing, infestation and limited fires. These disturbances can induce fast local transitions
to the alternative stable state, but, according to pattern formation theory, the subsequent dynamics
may proceed slowly by the expansion and coalescence of the domains of the alternative stable
state through front propagation and front collisions. Such a succession of processes eventually
leads to a global regime shift, but in a gradual manner [12].

1A pair of fronts propagating towards one another, however, can slow down and become stationary owing to repulsive front
interactions [13].
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Figure 1. A bifurcation diagram showing bistability of a uniform zero state and a periodic-pattern state, and some of themany
hybrid states thatmay exist in such a case. Solid (dashed) lines denote stable (unstable) states. The hybrid states are describedby
solution branches that snake down towards the zero state and correspond to holes of increasing size in periodic patterns, as the
insets on the left show. The horizontal axis represents a control parameter, whereas the vertical axis represents a globalmeasure
of the state variable, such as the L2 norm. The vertical line denotes the Maxwell point λ = λm. The interval λ1 < λ < λ2

is the snaking or hybrid-state range. The diagram was calculated using the Swift–Hohenberg equation, a minimal model for
bistability of uniform and patterned states [11]. (Adapted from [12].) (Online version in colour.)

How slow can gradual shifts be? When the two alternative stable states are spatially uniform,
the pace of a gradual shift depends on the value of the control parameter relative to the Maxwell
point: the larger the distance from that point, the faster the gradual shift. This result often holds
for bistability of uniform and patterned states too, except for one important difference—the value
of the control parameter should be outside the hybrid-state range (but still within the bistability
range) [11,14]. The difference between abrupt and gradual shifts can be dramatic, as figure 2
illustrates. For systems whose spatial extent is much larger than the size of a spot, gradual shifts
can occur on time scales that are orders of magnitude longer than those of abrupt shifts.

Within the hybrid-state range, global regime shifts are not expected to occur in steady
environments. The system rather shows spatial plasticity; any spatial disturbance pattern shifts
the system to the closest hybrid pattern, which is a stable stationary state, and therefore involves
no further dynamics. It is worth noting that transitions from the periodic-pattern state to hybrid
patterns, within the hybrid-state range, can also occur as a result of global uniform environmental
changes, such as a precipitation drop or a uniform disturbance, provided the initial pattern is not
perfectly periodic, e.g. hexagonal spot pattern containing penta–hepta defects [6].

Bistability of uniform and patterned states is most relevant to desertification, a regime shift
involving a transition from a productive vegetation-pattern state to an unproductive uniform
bare-soil state [7,17]. To what extent are the general results of pattern formation theory displayed
in figures 1 and 2 applicable to the specific context of desertification? We address this question by
studying specific models of vegetation pattern formation of various degrees of complexity. The
paper is organized as follows. In §2, we briefly review the models of water-limited vegetation
considered here. In §3, we present numerical results for these models, distinguishing between
models for which we found indications for hybrid states (homoclinic snaking) and models for
which we have not found such indications. These results are discussed and summarized in §4.

2. Models for spatial vegetation dynamics
We chose to study several representative models of increasing complexity. All models are
deterministic and specifically constructed to describe vegetation patchiness in water-limited flat
terrains (unlike the variant of the Swift–Hohenberg equation used to produce figures 1 and 2).
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Figure 2. Illustration of abrupt versus gradual global regime shifts. (a–d) There is an abrupt transition from a disturbed pattern
state (a) to a zero uniform state, occurring globally on a short time scale by decreasing the control parameter below the
bistability range, i.e.λ < λf in figure 1. (e–h) There is a gradual transition from the same initial state to the zero state, within
the bistability range, but outside the hybrid-state range, i.e.λf < λ < λ1 in figure 1. The gradual transition occurs by the local
expansion and coalescence of the disturbed domains on a time scale much longer than that of the abrupt transition (note that
the latter is so fast that no noticeable domain expansion occurs during the whole transition). Both shifts are global in the sense
that they culminate in a zero state encompassing thewhole system ((d, h) are still transients). The transitions were obtained by
solving numerically the Swift–Hohenberg equation [11,12]. (Online version in colour.)

The degree of complexity is reflected by the number of dynamical variables and by the number
of pattern-forming feedbacks the model captures. The models consist of partial differential
equations (PDEs) for a continuous biomass variable and possibly for additional water variables,
depending on the model. All models capture an instability of a uniform vegetation state to a
periodic-pattern state and a bistability range of periodic patterns and bare soil.

(a) Lefever–Lejeune model
The simplest model we consider is a single-variable model for a vegetation biomass density,
b(r, t), introduced by Lefever & Lejeune [18,19]. We chose to study a simplified version of this
model [20–22] whose form in terms of non-dimensional variables and parameters is

∂tb = (1 − μ)b + (Λ − 1)b2 − b3 + 1
2

(L2 − b)∇2b − 1
8

b∇4b. (2.1)

In equation (2.1), the parameter μ is the mortality to growth ratio, Λ is the degree of facilitative,
relative to competitive, local interactions experienced by the plants and L is the ratio between the
spatial range of facilitative interactions and the range of competitive interactions. The spatial
derivative terms represent short-range facilitation and long-range competition, a well-known
pattern formation mechanism [23]. The agents responsible for this mechanism in actual dryland
landscapes are non-local feedbacks involving water transport towards growing vegetation
patches. Explicit modelling of these feedbacks requires the addition of water variables. Although
the model does not include a precipitation parameter, water stress can be accounted for by
increasing the mortality parameter μ. In what follows, we will refer to this model as the
Lefever–Lejeune (LL) model.
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(b) Modified Klausmeier model
Next in degree of complexity is a modified version [24] of a model introduced by Klausmeier [25];
hereafter, the K model. In addition to a biomass density variable, b, this model contains a water
variable, w, which we regard as representing soil-water content. The model equations, expressed
in terms of non-dimensional quantities, are

∂tb = G(w, b)b − μb + ∇2b (2.2a)

and
∂tw = p − w − G(w, b)b + Dw∇2w, (2.2b)

where G = wb. According to equation (2.2a), the biomass growth rate, G, increases with the
biomass density, reflecting a positive local facilitation feedback. Natural mortality at a rate μ acts
to reduce the biomass, and local seed dispersal or clonal growth, represented by the diffusion
term ∇2b, acts to distribute the biomass to adjacent areas. The water dynamics (equation (2.2b))
is affected by precipitation with a rate p, evaporation and drainage (−w), the biomass-dependent
water uptake rate (−Gb = −b2w) and by soil-water diffusion. The pattern-forming feedback in this
model is induced by the combined effect of a higher local water uptake rate in denser vegetation
patches and fast water diffusion towards these patches, which inhibits the growth in the patch
surroundings. This mechanism may be applicable to sandy soils, for which Dw is relatively
large. This third type of pattern-forming feedback (besides the infiltration and root-augmentation
feedbacks) has not been stressed in earlier studies.

The original K model [25] does not include a water diffusion term, but rather an advection
term to describe run-off on a slope. While accounting for banded vegetation on a slope, the
original model does not produce stationary vegetation patterns in flat terrains. To capture the
latter, we added the soil-water diffusion term [24]. As we focus on plane terrains, we do not need
an advection term and therefore omitted it.

(c) Rietkerk et al.model
The third model we consider, the Rietkerk et al. (R) model, distinguishes between below-ground
and above-ground water dynamics by introducing two water variables: w, representing soil water,
and h, representing surface water. This three-variable model was introduced by Rietkerk and
co-workers [8,26] and consists of the following non-dimensional equations:2

∂tb = G(w)b − μb + ∇2b, (2.3a)

∂tw = Ih − νw − γ G(w)b + Dw∇2w (2.3b)

and ∂th = p − Ih + Dh∇2h, (2.3c)

where

G = w
w + 1

, I = α
b + f
b + 1

. (2.4)

In equation (2.3a), the biomass growth rate, G = G(w), depends on the soil-water variable only (no
biomass dependence as in the K model); the dependence is linear at small soil-water contents and
approaches a constant value at high contents, representing full plant turgor. Biomass growth is
also affected by mortality (−μb) and by seed dispersal or clonal growth (∇2b). Soil-water content
(equation (2.3b)) is increased by the infiltration of surface water (Ih). The biomass dependence of
the infiltration rate, I = I(b), captures the infiltration contrast that exists between bare soil (low
infiltration rate) and vegetated soil (high infiltration rate) for f < 1. The other terms affecting the
dynamics of the soil water represent loss of water owing to evaporation and drainage (−νw),

2The non-dimensional form of the equations was derived from the dimensional model, presented in [8], using the following

transformation (the ∼ denotes the variables in [8]): t = t̃/t0, x = x̃/x0, b = P/k2, w = W/k1, h = O/k1, Dw = D̃wt0/x2
0 = D̃w/D̃P,

Dh = D̃Ot0/x2
0 = D̃O/D̃P, μ = dt0, α = α̃t0, f = W0, γ = k2/(k1c), ν = rWt0, p = Rt0/k1, where t0 = 1/(cgmax), x0 =

√
D̃pt0.
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water uptake by the plants (−γ Gb) and moisture diffusion within the soil. The dynamics of
surface water (equation (2.3c)) are affected by precipitation at a rate p, by water infiltration into
the soil and by overland flow modelled as a diffusion process.

The R model captures an important pattern-forming feedback—the infiltration feedback.
When the infiltration contrast is high ( f � 1), patches with growing vegetation act as sinks
for run-off water. This accelerates the vegetation growth, sharpens the infiltration contrast and
increases even further the soil-water content in the patch areas. The water flow towards vegetation
patches inhibits the growth in the patch surroundings, thereby promoting vegetation pattern
formation. The infiltration feedback allows vegetation pattern formation at lower, more realistic,
values of the soil-water diffusion constant in comparison with the K model.

(d) Gilad et al.model
The fourth model to be studied, the Gilad et al. (G) model, was introduced by Gilad et al. [3,10]
and contains the same three dynamical variables—b, w and h—as the R model, but with the
interpretation of b as representing the above-ground biomass. This is because the G model explicitly
considers the root system and the relation between the root-zone size and the above-ground
biomass. This additional element allows the introduction of another important pattern-forming
feedback besides the infiltration feedback, the root-augmentation feedback. The model equations,
in non-dimensional forms, read

∂tb = Gbb(1 − b) − b + Db∇2b, (2.5a)

∂tw = Ih − ν(1 − ρb)w − Gww + Dw∇2w (2.5b)

and ∂th = p − Ih + Dh∇2(h2). (2.5c)

As in the K model, the biomass growth rate, Gb, depends on both w and b but in a non-local way
that accounts for the contribution of soil-water availability at point x′ to biomass growth at point
x through a biomass-dependent root system that extends from point x to point x′. Similarly, the
water uptake rate, Gw, by the plants’ roots depends on b and w in a non-local manner to account
for the uptake at a point x by a plant located at x′ whose roots extend to x. Specifically,

Gb = ν

∫
Ω

g(x, x′, t)w(x′, t)dx′, (2.6a)

Gw = γ

∫
Ω

g(x′, x, t)b(x′, t)dx′ (2.6b)

and g(x, x′, t) = 1
2π

exp

[
− (x − x′)2

2(1 + ηb(x, t))2

]
. (2.6c)

The root-augmentation feedback is captured by allowing the width of the root kernel g, which
represents the lateral root-zone size, to linearly increase with the above-ground biomass. As a
plant grows, its root zone extends to new soil regions. As a result the amount of water available to
the plant increases and the plant can grow even further. While accelerating the local plant growth,
this process also depletes the soil-water content in the plant surroundings, thereby inhibiting
the growth there and promoting vegetation pattern formation. The proportionality parameter
η appearing in equation (2.6c) controls the strength of the root-augmentation feedback. It is a
measure of the root-to-shoot ratio, a characteristic plant trait. Note that the soil-water dependence
of the biomass growth term in equation (2.5a) and of the water uptake term in equation (2.5b) is
linear. Nonlinear forms, including that used in the R model, have been studied in [27]. As in the R
model, the infiltration feedback appears through the biomass-dependent form of the infiltration
rate I,

I = α
b + qf
b + q

. (2.7)
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Other differences with respect to the R model involve the introduction of (i) the logistic growth
form b(1 − b) in equation (2.5a), which represents genetic growth limitations at high biomass
densities (e.g. stem strength), (ii) the biomass-dependent evaporation rate in the soil-water
equation (2.5b) (second term on the right-hand side), which accounts for reduced evaporation
by canopy shading and introduces a local positive water–biomass feedback, and (iii) the
nonlinear overland flow term in the surface-water equation (2.5c) motivated by shallow water
theory [10,28], rather than a diffusion term as in the R model.

(e) Simplified Gilad et al.model
The fifth model is a simplified version of the G model, in which the root kernel g is assumed to
vary sharply in comparison with b and w, and therefore can be approximated by a Dirac delta
function. This approximation is suitable for plant species that grow deep roots with small lateral
dimensions. The simplified model, denoted simplified Gilad (SG), reads

∂tb = νwb(1 − b)(1 + ηb)2 − b + Db∇2b, (2.8a)

∂tw = Ih − ν(1 − ρb)w − γ (1 + ηb)2wb + Dw∇2w (2.8b)

and ∂th = p − Ih + Dh∇2(h2). (2.8c)

This version of the model includes the same pattern-forming infiltration feedback as the original
model (I is defined in the same way it was defined in the G model), but the root-augmentation
feedback is modified; water transport towards growing vegetation patches is no longer a result of
uptake by the laterally spread roots, but rather a result of soil-water diffusion.

3. Results of numerical model studies
The ecological context we consider is water-limited ecosystems in flat terrains exhibiting
bistability of a periodic vegetation pattern and bare soil. We will mostly be concerned with
initial states consisting of periodic patterns that are locally disturbed to form bare-soil domains.
The numerical studies described below are based on numerical continuation methods, used to
identify spatially periodic solutions, and on PDE solvers, used to identify stable branches of
localized patterns and to follow the dynamics of bare-soil domains. As we will shortly argue,
these dynamics crucially depend on the additional stable pattern states, periodic or localized,
that the system supports.

There are several properties that all models appear to share: (i) the coexistence of a family of
stable periodic solutions, describing vegetation patterns of different wavelengths (WLs), with a
stable uniform solution that describes the bare-soil state; (ii) bare-soil domains do not expand
into patterned domains; and (iii) the existence of a stable localized solution describing a single
vegetation spot in an otherwise bare-soil state. An additional property that is most significant for
regime shifts is not shared by all models—multiplicity of stable hybrid states. We use this property
to divide the models into two groups: models that do not show multiplicity of stable hybrid states
and models that do show such a multiplicity of states. The two groups display different forms of
regime shifts as described below.

(a) Models lacking multiplicity of hybrid states
The models that belong to this group are the K model (§2b), the R model (§2c) and the SG
model (§2e). These models have wide bands of periodic solutions with stable branches that
coexist with the stable branch of the bare-soil solution [24,29]. Figure 3 shows bifurcation
diagrams for the R and SG models in one dimension, computed by a numerical continuation
method [30]. The bifurcation parameter was chosen to be the precipitation rate p. The diagrams
show overlapping periodic solutions whose WLs increase as p decreases. The last periodic
solution to exist corresponds to a single hump. We have not been able to identify (by numerical
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Figure 3. Bifurcation diagrams for the (a) R model and the (b) SG model in one dimension. The diagrams show existence
and stability information for uniform vegetation and bare-soil solutions, and for periodic-pattern solutions that differ in their
wavelengths (WLs) as indicated in the legends; solutions with longerWLs extend to lower precipitation values. The vertical axis
represents the spatial average of b2, whereas the horizontal axis represents the precipitation rate. Solid (dashed) lines denote
stable (unstable) states. The left-most line in both panels corresponds to a single hump (spot). The large overlap ranges of the
periodic-pattern solutions allows the system to respond to local disturbances or precipitation changes by changing the pattern’s
WL (figure 4). Hybrid states resulting from front pinningwerenot observed in thesemodels. Thediagram for the SGmodel shows
period-doubling bifurcations which were not found in the R model (e.g. the point where the line WL= 30 emanates from the
lineWL= 15). The instability of a solution that goes throughperioddoubling is not captured (as the solid line indicates) because
of the small system considered in the numerical stability analysis. The parameters used for the Rmodel areμ = 0.5,α = 0.4,
f = 0.2, γ = 0.1, ν = 0.4, Dw = 1 and Dh = 1 000. Those for the SG model are q= 0.05, ν = 3.33, α = 33.33, η = 3.5,
γ = 16.66, Dw = 100 and Dh = 10 000. (Online version in colour.)

continuation) solution branches that describe hybrid patterns, either groups of humps in an
otherwise bare-soil state or holes in an otherwise periodic pattern. To further test whether such
solutions can exist in these models or, if they exist, whether they are stable, we solved the models’
equations numerically using initial conditions that describe fronts separating the patterned and
the bare-soil states. Convergence to front solutions that are stationary over a range of p values
would indicate the possible existence of hybrid solutions [11,14]. Such front pinning, however,
has not been observed; in all simulations, the patterned state propagated into the bare-soil state.
We conclude that stable hybrid solutions, apart from a single-hump solution, do not exist in these
models, or, if they do, their existence range is extremely small.

In order to study regime shifts in the K, R and SG models we simulated the model equations
within the bistability range of periodic patterns and bare soil, starting with periodic patterns
that contain bare-soil domains. As the patterned state was always found to propagate into the
bare-soil state, such initial bare-soil domains contract and disappear. This behaviour rules out the
occurrence of a gradual regime shift to the bare-soil state (similar to that shown in figure 2f –h). The
final pattern, however, can differ from the initial one in its WL as the one-dimensional simulations
of the R model displayed in figure 4 show. The system can respond by mere readjustment of the
spacings between individual humps without a change in their number, which leads to an increase
in the pattern’s WL (a), or, at higher precipitation, by hump splitting, which results in a decrease in
the pattern’s WL (b). Similar responses to local disturbances were found in the K and SG models.
Figure 5 displays the results of two-dimensional simulations of the SG model showing that the
two response forms, spacing readjustments and spot splitting, can occur at the same precipitation
by changing the size of the initial bare-soil domain. Reducing the precipitation rate to values
below the bistability range of periodic patterns and bare soil leads to an abrupt global transition
to the bare-soil state as figure 6 shows.
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Figure 4. The response of periodic one-dimensional patterns to local disturbances at different precipitation values in the
R model. Shown are space–time plots for (a) p= 0.260 and (b) p= 0.264. At the lower precipitation value, the removal of
a hump leads to a pattern with a longer WL (the number of humps after the disturbance remains the same and the distance
between them is adjusted to fill the whole space). At the higher precipitation, the removal of a hump leads to a pattern with a
smaller WL (the two humps adjacent to the disturbed location split and the number of humps in the final pattern is larger than
in the initial pattern); after the splitting the distance between the humps is adjusted to fill the whole space with evenly spaced
humps. Parameters are as in figure 3. (Online version in colour.)
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Figure5. The responseof periodic spotpatterns todisturbances of different sizes in theSGmodel under the sameenvironmental
conditions. A small-size disturbance (snapshots in row (a)) leads to a pattern with a longer WL through space filling by inter-
spot distance adjustments with no change in the total spot number. A large-size disturbance (snapshots in row (b)) is followed
by space filling through spot splitting and inter-spot distance adjustments, which generally will result in a change in the total
spot number. Both processes can be viewed as a front propagation problem involving a wavenumber change in the pattern
left behind the front. The parameters used are: p= 0.9, q= 0.05, ν = 3.33,α = 33.33,η = 3.5,γ = 16.66, Dw = 100 and
Dh = 500. (Online version in colour.)

(b) Models exhibiting multiplicity of hybrid states
Numerical solutions of the LL and G models (§§2a, d) using PDE solvers point towards the
existence of stable hybrid states in addition to periodic-pattern states.3 Figure 7 shows a

3The application of numerical continuation methods for these models is harder than in the K, R and SG models and has not
been pursued in this study.
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Figure 6. An abrupt transition from a spot pattern to bare soil in the SG model following a precipitation decrease below the
bistability range of periodic spot patterns and bare soil. All parameters are as in figure 5 except for the precipitation which is
p= 0.45. (Online version in colour.)
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Figure 7. A bifurcation diagram showing hybrid states in the LL model. The vertical axis represents the spatial average of b2,
whereas the horizontal axis represents the mortality rate. The top line represents a periodic-pattern state, whereas the bottom
(black) line represents the bare-soil state. The lines in between correspond to localized hybrid patterns with odd and even
numbers of humps as the examples in the panels on the right-hand side show. Note that all hybrid-state branches terminate
at the same parameter value, μf , as the periodic-pattern branch. This feature has repeatedly been found for other sets of
parameter values and implies an abrupt shift to the bare-soil state upon increasingμ. The parameters we used areΛ = 1.2
and L= 0.2. (Online version in colour.)

bifurcation diagram for the LL model, using the mortality rate μ as the bifurcation parameter.
The upper solution branch corresponds to a periodic-pattern state, whereas the lowest branch
corresponds to the bare-soil state. The branches in between correspond to stable hybrid states
describing localized patterns, a few examples of which are shown in the right-hand panels.
Solutions of this kind in one dimension and two dimensions have been found previously [20].
Figure 8 shows a partial bifurcation diagram for the G model in two dimensions. The upper
line corresponds to a spot-pattern state,4 whereas the lower lines correspond to hybrid patterns
with decreasing numbers of spots as the right-hand panels show. Note the difference between the

4The spot pattern is rhombic rather than hexagonal. Such patterns apparently exist in the G model, as in other pattern
formation models [31]. In the present case, the system converged to the rhombic pattern following a disturbance of a
hexagonal pattern. As it contains a direction of denser spots (vertical) along which the water stress is higher, transitions
to hybrid states can be induced upon decreasing p in the absence of local disturbances.
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Figure 8. A bifurcation diagram showing a few hybrid states in the Gmodel. The vertical axis represents the spatial average of
the biomass while the horizontal axis represents the precipitation rate. The upper branch (a) represents a rhombic spot pattern
shown in the corresponding panel on the right. Incremental precipitation decrease leads to the local disappearance of spots and
the convergence to a stable hybrid state (solution branch and (b)). Further incremental decreases lead to hybrid states of lower
bioproductivity (solution branches and (c,d)). Gradual shifts of this kind towards the bare-soil state are possible because of the
slanted structure of the branch edges. The inset shows the full precipitation range in which hybrid states exist or are stable and
that the high-precipitation edge of the hybrid-state range is also slanted. The backward slanting implies abrupt recovery. The
model parameters used here correspond to strong infiltration contrast, f = 0.1, and a moderate ‘root-to-shoot’ ratio, η = 3.
The other parameters are Db = 0.02, Dw = 2, Dh = 200, ν = 4,ρ = 1, γ = 5,α = 160 and q= 0.05.

hybrid solution branches in the two models: whereas, in the LL model, they all terminate at the
same control parameter value μf , which coincides with the fold–bifurcation point of the periodic-
pattern solution, in the G model the hybrid solution branches are slanted [32]—solutions with
smaller numbers of spots terminate at lower p values.

The multitude of stable hybrid patterns, i.e. patterns consisting of groups of spots in an
otherwise bare soil, groups of holes in otherwise periodic patterns and various combinations
thereof, suggests a form of spatial plasticity. That is, any pattern of local disturbances shifts the
system to the closest hybrid pattern with no further dynamics. This behaviour rules out the
occurrence of a gradual regime shift as a result of initial local disturbances, but unlike the K,
R and SG models the system does not recover from the disturbances. This suggests the possible
occurrence of a gradual regime shift in a continuously disturbed system.

While the two models share spatial plasticity in response to local disturbances, they differ
in the response to gradual parameter changes (p or μ). In the LL model, all localized pattern
solutions terminate at the fold–bifurcation point μf (figure 7). Above that point the only stable
state is bare soil and, therefore, any hybrid state must collapse to this state. Note the difference
between the bifurcation diagram in figure 7 and the diagram obtained with the Swift–Hohenberg
equation in figure 1. In the latter, there is a subrange (λf < λ < λ1) outside the hybrid-state range
which is still within the bistability range, where disturbed patterns go through gradual shifts. No
such subrange has been found in the LL model. Contrary to the LL model, the slanted structure of
localized pattern solutions in the G model allows for a gradual response. In fact, the hybrid state
(b) in figure 8 was obtained from the periodic state (a) by an incremental decrease in p. Likewise,
the hybrid states (c) and (d) were obtained from the states (b) and (c) by further incremental
decreases of p. The degree of slanting increases as the root-to-shoot parameter η is increased.
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4. Discussion
All models considered in this study predict the same basic vegetation states and stability
properties along a rainfall gradient, including a bistability range of bare-soil and periodic spot
patterns. We may therefore expect these models to depict similar scenarios for desertification
shifts, i.e. transitions from productive spot patterns to the unproductive bare-soil state. Pattern
formation theory, represented here by results obtained with the Swift–Hohenberg equation,5

suggests various possible forms for such scenarios: abrupt, gradual or incipient, induced by
environmental changes, by disturbances or both. Underlying these forms are several nonlinear
behaviours. The first and simplest is a global transition from the spot-pattern state to the bare-soil
state, induced by a slow change of a control parameter past a fold–bifurcation, or by a disturbance
that shifts the system as a whole to the attraction basin of the bare-soil state. Such processes induce
global abrupt shifts to the bare-soil state as figure 2a–d illustrates. Local disturbances, on the other
hand, can lead to partial shifts that result in spatially limited domains of the bare-soil state in an
otherwise periodic-pattern state. The subsequent course of events depends on the dynamics of
the fronts that bound these domains. When the fronts propagate, a slow process of expansion and
coalescence of bare-soil domains can eventually culminate in a global gradual shift, as figure 2e–
h illustrates. When the fronts are pinned, the domains remain fixed in size, after some small
adjustments, in which case the shift is incomplete or incipient—the system converges to one of
the many hybrid states it supports. To our surprise the models we studied do not capture all the
possible scenarios that pattern formation theory allows. Moreover, scenarios that are captured by
some models are not captured by others.

Our studies first suggest that in all five vegetation models (K, R, SG, LL, G) the bare-soil
state never grows at the expense of the periodic-pattern state (unlike the behaviour shown in
figure 2e–h) through the entire bistability range; bare-soil domains either stay fixed in size or
contract and disappear. Furthermore, the K, R and SG models do not show hybrid states at all,
while the models that do show hybrid states, LL and G, differ in the existence ranges of these
states. In the LL model, the branches of all hybrid states terminate at the same threshold which
coincides with that of the periodic-pattern state, whereas, in the G model, the termination points
are aligned on a slanted line. The results for the K, R and SG models suggest that shifts to the bare-
soil state can only occur outside the bistability range of vegetation patterns and bare soil, and are
therefore abrupt. Within the bistability range, bare-soil domains induced by local disturbances
contract and disappear, thus restoring the vegetation-pattern state, although a WL change is
likely to occur. Both the LL and G models predict the possible occurrence of incipient regime
shifts within the bistability range of periodic vegetation patterns and bare soil. These shifts can
be induced by local disturbance regimes and culminate in one of the stable hybrid states when
the disturbance regimes are over. Complete shifts to the bare-soil state, owing to increased stress,
are abrupt in the LL model but can be gradual in the G model because of the slanted structure
of the hybrid solution branches; incremental precipitation decrease in the G model can result in
step-like transitions to hybrid states of lower bioproductivity as figure 8 shows.

These results raise several open questions. The first is related to the finding that bare-soil
domains do not expand into patterned domains in the entire bistability range. This behaviour can
be attributed to the positive pattern-forming infiltration and root-augmentation feedbacks. Both
give advantage to plants at the rim of a patterned domain as compared with inner plants; the rim
plants receive more run-off from the surrounding bare soil and experience weaker competition for
soil water. These factors act against the retreat of vegetated domains. Processes that may favour
such a retreat include soil erosion and roots exposure in sandy soils under conditions of high
wind power [33], or insect outbreak [34]. Whether bare-soil expansion can be explained by water–
biomass interactions alone, or additional processes must be considered, is still an open question
that calls for both empirical and further model studies. From the perspective of pattern formation

5We refer here to the Swift–Hohenberg equation as a prototype of pattern formation behaviours in systems showing bistability
of uniform and patterned states, and to reference [12] for the implications of these general behaviours to the context of regime
shifts. Similar pattern formation behaviours have been found with many other pattern formation models [11].
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theory, the finding that the bare-soil state never expands into vegetation-pattern states questions
the utility of the Maxwell point concept far from the instability of uniform vegetation to periodic
patterns and calls for further mathematical analysis.

Another open question is what elements in the LL and G models, and correspondingly what
ecological and physical processes, are responsible for the multitude of stable hybrid states. The
results for the LL model clearly show that reducing local facilitation, by decreasing the parameter
Λ, narrows down the hybrid-state range and can eliminate the hybrid states altogether. However,
it also narrows down the bistability range of periodic patterns and bare soil, and therefore does
not resolve processes that favour the formation of localized patterns alone. The results for the
G model and its simplified version (SG) hint towards the possible role of the non-local water
uptake by laterally extended root systems in inducing hybrid states. This non-local competition
mechanism is absent in the SG model and may possibly be responsible for the absence of hybrid
states in this model. Further studies are needed, first to substantiate the existence of stable hybrid
states, particularly in the G model, and second to clarify the roles of local and non-local facilitation
and competition processes in inducing them.

Finally, the models we have studied are all deterministic. Real ecosystems, however, are
generally subjected to stochastic fluctuations in time and space, which may affect the bifurcation
structure of spatial states. Additive temporal noise, for example, can induce the propagation of
pinned fronts [35], and thereby affect the hybrid-state range. The effect of noise on abrupt, gradual
and incipient regime shifts is yet another open problem that calls for further studies.

Studying these questions is significant for identifying the nature of desertification shifts,
i.e. whether they are abrupt, gradual or incipient, in various environments and for different
plant species, and for assessing the applicability of early warning signals for imminent
desertification [36].
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