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Abstract. A mathematical model is proposed which describes the dynamics and the spatial distributions
of two population groups, where migration is driven by considerations of socioeconomic status. The
model associates segregation with instabilities of spatially uniform mixed population states. These
instabilities lead to a wide range of segregation forms including: (a) variable (weak) segregation where
the population is everywhere mixed and the spatial variability is controlled by a ‘status-gap’ param-
eter, (b) strong segregation, where nearby neighbourhoods consists of pure (unmixed) population
groups, and (c) intermediate forms involving enclaves of a pure population group in neighbourhoods
of mixed population. The model associates tipping-point phenomena with the existence of an unstable
mixed population state which introduces a threshold for population inversion. The model predicts
that uneven invasions of one population group into another may result from interface instabilities
rather than from urban heterogeneities.

1 Introduction

Residential segregation in urban areas has been studied extensively by scientists from
different fields, including economics, sociology, and population geography (see among
others, Clark, 1986; Lever and Paddison, 1998; Massey and Fischer, 2000; Morrill,
1995; Portugali, 2000; Taylor et al, 2000; van Kempen and Oziickren, 1998; White,
1998). The ongoing interest in this subject is the result, in part, of the common
perception of residential segregation as an undesirable and even dangerous process.
As commonly acknowledged, residential segregation restricts the participation of dis-
advantaged population groups (specifically minorities and new immigrants) in various
aspects of civil society, limits socioeconomic opportunities of weak population strata,
and has negative effects on various aspects of local development, such as provision of
commercial facilities and social services in neighbourhoods with economically weak
populations (van Kempen and Oziiekren, 1998).

A popular approach to explaining intraurban segregation patterns is based on the
ecological theory of the Chicago School (Park et al, 1925; see also Aldrich, 1975; Lee
and Wood, 1991; Schwirian, 1983; Zang, 2000) and related theories (see, for example,
Bassett and Short, 1980; Sarre et al, 1989). According to this approach, city residents
differ with respect to occupation, income, and education, and these differences
increase as the local economy grows. As people of similar ethnic background, income,
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and environmental preferences seek areas with similar social and environmental
characteristics, intraurban segregation develops (Massey, 1985).

The ecological approach has been criticized by ‘behaviourists’ for viewing the
individual as an economic entity (Homo economicus), and thus ignoring personal
preferences and perceptions. Behavioural models emphasize household characteristics
affecting such choices, like the age of the household head and the household size
(Adams and Gilder, 1976; Clark, 1986; White, 1987; White and Sassler, 2000).

Recent studies of urban growth and dynamics borrowed concepts from the physical
sciences such as fractals (Batty and Longley, 1994; Makse et al, 1995; Schweitzer and
Steinbink, 1997; White and Engelen, 1993) and self-organization (Allen, 1997; 1999;
Allen et al, 1985; Clarke et al, 1996; Haken, 1985; Portugali, 2000; Portugali et al,
1994; Straussfogel, 1991; Weidlich, 1991; 1999). More relevant to the present study is
the concept of self-organization, an emergent property (Popper and Eccles, 1977) of a
complex system resulting from the collective behaviour ¥ of the constituents of the
system. The constituents may be the molecules of a physical object or, in the present
context, the individuals who constitute a residential neighbourhood. An important
example of self-organization is pattern formation, a phenomenon which gives rise to
highly correlated nonuniform distributions of the constituents of a system, even when
the system and the forces it is subjected to are homogeneous (Cross and Hohenberg,
1993). Adopting the concept of self-organization in social geography is consistent with
the view of individuals not only as economic entities, but also as social entities ( Homo
socialis) who behave in a collective manner (Sonis, 1991).

The concept of self-organization has been applied to spatial segregation by several
research groups using discrete and continuum mathematical modelling. Discrete mod-
els, mostly in the form of cellular automata (Gaylord and D’Andria, 1998; Portugali,
2000; Schelling, 1978), represent the urban space as a uniform grid of cells to which
‘occupation states’ are assigned. The state of a given cell at a given (discrete) time is
determined by a uniform set of rules applied to the states of this cell and its neighbours
at the previous time step. The rules reflect individuals’ behaviours that are easy to
formulate, and this makes the discrete modelling approach attractive. Further develop-
ments of these models have led to the rather sophisticated ‘free agent on a cellular
space’ models (Benenson, 1998; 1999; Portugali, 2000; Portugali and Benenson, 1995;
Portugali et al, 1997) which distinguish between an infrastructure layer and a super-
structure layer of individual free agents. The main disadvantage of these approaches,
from our point of view, is that the models are often too complicated to analyze
mathematically. They become ‘black boxes’ that are useful for simulating urban realities
but hardly help in applying concepts of dynamical systems theory (Guckenheimer and
Holmes, 1983) to the urban environment, such as attractors, instabilities, and so on
(Jen, 1990).

Continuum models represent an alternative approach to modelling residential seg-
regation. They represent space and time by continuous variables and describe averaged
behaviours over scales that are large relative to a single house but small with respect to
the system size. Continuum models are more amenable to mathematical analysis than
discrete models and, as a result, allow precise applications of concepts of dynamical
systems theory to urban phenomena. A few continuum models of neighbourhood
change and intraurban segregation have been proposed (Beckmann and Puu, 1990;
Gurtin, 1974; Ishikawa, 1980; O’Neill, 1981; Zhang, 1998; 1989; 1990). One disadvantage

@ From a dynamical system point of view a collective behaviour is achieved when the dynamics of
the system are dictated by a small set of order parameters, which all other variables follow after
short transients (Haken, 1985).
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of these models, however, is the absence of variable segregation, that is, an element in
the model that parametrizes the segregation strength. The importance of this element
arises from the fact that urban neighbourhoods are rarely totally segregated; more often
they have ethnically mixed populations, and the degree of mixing varies from case to
case. In a recent work Yizhaq and Meron (2002) introduced a new continuum model of
residential segregation involving two population groups. In contrast to earlier models,
it includes a socioeconomic status variable, in addition to the population density
variables. The introduction of a status variable makes it possible to model different
segregation states, spanning the whole range from weak to strong segregation.

In the present paper we extend the work of Yizhaq and Meron (2002) in several
respects. In addition to indirect interactions between the population groups, mediated
through a socioeconomic status variable, we include direct population interactions and
examine their effects. Direct interactions, or ‘identity interactions’ as we shall call
them, may be relevant, for instance, to segregation phenomena involving different
ethnic groups. We also extend the analysis to a two-dimensional space, addressing
neighbourhood-change processes. We study the merging of population-group enclaves
and find an instability leading to an uneven expansion of one population group into the
area occupied by another one. We study two-dimensional effects of tipping phenomena
and find that the success of tipping depends on the size of the minority enclave
that invades a majority-populated area. Finally, we elaborate in greater depth on
the relationships between sociospatial phenomena, such as tipping and invasion, and
concepts of dynamical systems theory.

We wish to stress that the proposed model is not a simulation model per se, at least
in the sense in which such a model is commonly defined in urban studies (see, among
others, Clarke et al, 1996; Portugali, 2000; Webster and Wu, 1999; Wu and Webster,
1998). Whereas urban simulation models attempt to imitate real-world processes (such
as population change, land use, and urban expansion) by setting various empirical
growth rules and constraints, the proposed modelling approach is contrastingly
different. It abstracts out key segregation mechanisms from specific urban contexts and
uses mathematical equations to study the general effects these mechanisms have on
segregation and neighbourhood-change phenomena. The approach helps to eliminate
factors of secondary importance in determining the causes of these phenomena, and
has a considerable degree of generality as compared with ad hoc urban simulation
models that are tailored to specific urban conditions (such as urban growth bounda-
ries, the location of individual land parcels, and site-specific urban morphology).
Furthermore, the model equations can be subjected to in-depth mathematical analysis,
making it possible to determine basic features of segregation (for instance, the different
forms of segregation caused by socioeconomic considerations versus ‘identity’ ones).
On the other hand, although the proposed model can be used to simulate various
segregation phenomena in residential neighbourhoods (invasion, succession, the crea-
tion and disappearance of ethnic enclaves), as demonstrated further in the paper, the
simulation capabilities of the proposed model are rather limited, compared with
urban simulation models.

The paper begins with a brief review of studies of residential segregation which
are relevant to the present work (section 2). The proposed mathematical model of
residential segregation is then introduced (section 3). Section 4 presents stationary
homogeneous solutions of the model equations and their stability. Section 5 presents
time-dependent and nonhomogeneous solutions and relates them to segregation
and neighbourhood-change processes from the point of view of a dynamical system.
The significance and possible extensions of this study are discussed in section 6.
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2 Background studies

In an important paper dealing with the causes and consequences of residential
segregation, Massey (1985) suggests that differences between urban neighbourhoods
are characterized by three main variables—socioeocnomic status, family status, and
ethnicity. In respect to these variables, residential segregation is caused by the interplay
between two ‘offsetting ecological processes” residential succession and spatial assim-
ilation. According to his argument, residential succession is fed by chain migration (the
accumulation of immigrant or migrant groups in a particular urban area) and institu-
tionalization (the establishment of cultural and economic institutions by ethnic groups).
In response to these factors, “ethnic neighbourhoods form in such a way that the
extent of segregation between groups reflects the social, cultural, and economic dis-
tance between them” (Massey, 1985, page 321). The opposing force to segregation is,
according to Massey, spatial assimilation: “segregation dissipates over time through a
process ... driven by acculturation and socio-economic mobility” (page 321).

Poulsen et al (2002) also argue that the fragmentation of cities into ethnic enclaves
results from two interrelated processes: assimilation and ghettoization. Whereas assim-
ilation leads to reduction in segregation as the economic status of a group improves,
ghettoization has the opposite effect: it enhances spatial segregation because of the
economic disadvantage of a group’s members or because of overt discrimination.

Housing affordability and kinship relationships may also be driving forces behind
residential segregation. As new immigrants and ethnic minorities move to areas of
affordable housing, and to residential areas populated by their fellow immigrants
(where they can count on information and help from friends and relatives), intra-
urban enclaves of ethnic neighbourhoods are formed (Owusu, 1999). Out-migration
of the young and educated from low-status neighbourhoods further strengthens
segregation trends (Lloyd, 1998). In some cases, residential segregation is driven by
considerations of ethnic affinity, and is voluntary, rather than economically enforced.
Thus, Glebe’s (1986) study of Japanese migration in Dusseldorf, Germany indicates
that the well-to-do Japanese avoid both German-populated neighbourhoods and
neighbourhoods populated by low-status guest workers, preferring to settle in mostly
Japanese-populated residential areas.

In his study of segregation patterns in King County, Morrill (1995) also argues that
segregation is one of the geographic expressions of inequality, which is, most often, a
result of social discrimination in the housing market, possibly politically and econom-
ically enforced. One of the most interesting observations made by Morrill is that there
are to be no ‘pure’ cases of residential segregation. As his analysis shows, only 14.5%
of blacks and only 7.5% of Asians resided in residential areas in which they constitute
the majority of population. Concurrently, in most black areas included in the study,
population tended to be ethnically heterogeneous.

This conclusion reinforces the results of an earlier survey of residential segregation
in US cities, carried out by Clark (1986). According to this study, black households
clearly prefer mixed neighbourhoods involving comparable portions of black and
white residents. Another important conclusion of this survey is that economic status
is the strongest factor affecting segregation in residential areas; this factor, although
not acting alone, accounts for 30%—70% of the cases of racial separation. Similar
conclusions on the overpowering effect of economic factors as driving forces behind
residential segregation are mentioned by authors of other empirical studies (see, for
example, Phillips, 1998; Portnov, 2002; White, 1998).
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3 Proposed model

The studies described in section 2 point toward two conclusions. The first is that
segregation is affected by counteracting forces—residential succession and spatial
assimilation (Massey, 1985)—and therefore is variable; it can be strong, involving
enclaves of pure populations, but very often it assumes weaker, mixed populations
forms (Morrill, 1995). The second conclusion is that socioeconomic status is one of
the major considerations affecting segregation (Clark, 1986). In modelling residential
segregation we take these conclusions into account by introducing a socioeconomic
status variable.

For simplicity we restrict ourselves to segregation patterns involving two popula-
tion groups only. The approach we pursue here, however, can be used to include a third
population group as well. This will make the model more complex but still tractable.
The two groups we consider in the present model are characterized by different socio-
economic status, which may reflect gaps in education, occupation, income, etc. The
two population groups may thus describe natives and immigrants, natives and guest
workers, two different ethnic groups, and so on.

We further assume that geographically the residential area under consideration is
sufficiently small and may be considered homogeneous in respect of infrastructure
development, types of housing, accessibility to the city centre, and other foci of
population attraction. This assumption can be relaxed by introducing space-dependent
parameters.

3.1 Equations for population densities

The two population groups are characterized by their densities u(x, 7) and v(x, t),
where x = (x, y) represents the spatial coordinates and ¢ is time. The socioeconomic
status at location x and time ¢ is denoted by s(x, ¢). We associate the u-residents with
high socioeconomic status and the v-residents with low status. The changes of the two
densities in time consist of growth contributions, G, and G,, and migration contribu-
tions, M, and M,. The principal difference between these two components is as
follows. The contributions G, and G, change the overall population size of the system
(causing either growth or decline in the number of residents). Concurrently, the con-
tributions M, and M, reflect the internal circulation of population within the system;
these contributions do not change the overall population size of the system.

Rate of change: Growth contributions: Migration contributions:

Change of local Natural growth—exponential  Density-driven migration—

population density growth constrained by migration within the system

per unit of time limited space to less populated areas
Growth due to migration— Status-driven migration—

= migration into and + migration within the system

out of the system, driven following status differences
by status considerations. between populations.

S — | —— | ——

6_u or @ G, or G, M, or M, )

ot ot

Schematically, the contributions in question can be illustrated by the following equa-
tion: the growth terms are modelled by

G, (u,s) = (o —ou)u+oy(s—sg)u, G,(v,5) = (B =Bv)v—P;5(s—sr)v,(2)

where all coefficients, o, and f8; (i = 1, 2, 3) are positive. The contributions (o, — o, u)u
and (f8, — B,v)v describe logistic growth. Unrestricted natural growth (described by o, u
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and f,v) leads to an exponential increase. This growth, however, may slow down and
saturate subsequently (—o,u” and —p,v°) because of limited local housing capacity.
The contributions os(s — sz )u and —pf;(s — sg)v, where sz is a constant reference
status, describe changes in local population densities through ‘status-driven’ migra-
tion. According to these terms, a neighbourhood with a high status (s > sz ) attracts
high-income (u-residents) and drives out low-income residents (v-residents). This
‘repulsion’ effect may be caused by high rental prices or high property taxes, specifi-
cally when the ad valorem (for example, value-based) system of property taxation is in
effect. Because low-income residents who already own properties in high-status neigh-
bourhoods cannot always afford to pay high property taxes, they may consider selling
their properties and moving elsewhere. Concurrently, a low-status neighbourhood
(s < sg) attracts v-residents and drives out u-residents.

We chose these contributions to be proportional to the densities # and v in order to
account for the effects of institutionalization (Massey, 1985; van Kempen and Oziiekren,
1998). This effect can be explained as follows: a higher concentration of v-residents in a
low-status neighbourhood strengthens the local network of social institutions (ethnic
shops, clubs, etc), which facilitate the absorption of new v-residents.

The migration terms have two types of contributions:
(a) Migration from densely populated regions to less populated ones is modelled by

J[u(x’) —u(x)]p,(x" — x)dx’,

for temporal change of u, and by

J[u(x’) — ()], — x)dx’

for the temporal change of v.
(b) Migration driven by status considerations is modelled by

— [ist) = sl ('~ xjav”

for the temporal change of u, and by

J[s<x'> — s(0)lg, (x" — x)dx’ |

for the temporal change of v. In these expressions, dx = dx’dy’ is an infinitesimal area
element representing a small part of the residential area that is still large in compar-
ison with a single house, p,, p,, ¢,, ¢, are positive weight functions, and the integration
extends over the whole system.
The integral forms of these terms reflect the fact that intraurban migration is often
nonlocal: a migrant may move to a relatively distant neighbourhood if this neigh-
bourhood meets his or her needs. Thus, the density of u-residents at location x will
increase thanks to migration from densely populated places x’ [u(x’) — u(x) > 0] and
decrease thanks to migration to less populated areas [u(x’) — u(x) < 0]. Similarly, the
density of u-residents at location x will increase thanks to migration from places x'
with lower status [s(x") — s(x) < 0], and decrease thanks to migration to places x’ with
higher status [s(x') — s(x) > 0]. Similar considerations hold true for v-residents except
that status gradients act in opposite sense.

There are also considerations that favour local migration, that is, migration within
adjacent residential blocks. Families, for example, may prefer to move within their
neighbourhoods in order to avoid pulling children out of local schools or in order to
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retain networks of social and organizational relations. The actual decisions of where to
move are also governed to a large extent by the information individuals possess about
the urban area, and this information is more readily available for the areas in which
individuals already live (Clarke, 1986; White, 1998).

These considerations determine the shapes of the weight functions—p,, p., ¢,, ¢,-
We assume that each of these functions has two contributions: a constant term
representing nonlocal migration, where all migration distances are conditionally given
equal weights, and a term which peaks at x = (0, 0) representing local migration. A
possible choice for p, is

2
pu(x) = au+buexp (;) >

where r> = x?+ y2 In this equation, a, is the constant contribution term, and
b,exp( —r?/d?) is the term that peaks at x = (0, 0) and decays as we go away from
the origin (the parameter b, represents the size of the local migration and the param-
eter d its spatial extent). The meaning of this term is that most migrants move over
short distances (Clark, 1980). This behaviour is more typical of poor migrants (Lynn
and McGeary, 1990, page 91). Similar forms can be chosen for p,, ¢,, and ¢,. Expanding
u(x") in a Taylor series about u(x) we find

J[u(x’) —u(x)] p,(x = x")dx" = ou[(u) — u(x)] + D\V’u ,

where o, and D, are constant parameters, V> =3°/0x’+ 3°/0y” is the Laplacian
operator in the plane, and

) = %L u(x')dx’

is the average of u over the system area, 4. Similar forms are obtained for the other
integrals. Summing up all migration contributions, M, for u-residents and M, for
v-residents, we obtain:

M,(u,5) = D\Vu—D¥s + o [(u) — u(x)] — asl(s) — s(x)]
M, (v, s) = DVu+ D,V’s + Bal(u) — u(x)] + Bs[(s) — s(x)] .

The diffusion terms in equations (3) describe local migration while the other terms in
equations (3) describe the net effect of nonlocal migration. The schematic form (1) can
now be written in mathematical terms as

Ou ov
i G,(u, s) + M, (u, s), 5

©)

= G, (v, 5) + M, (v, 5) , @

where G, and G, are given by equations (2) and M, and M, are given by equations (3).

3.2 Evolution equation for the status variable

So far we have discussed how socioeconomic status affects population densities.
The relationship between these variables is, however, reciprocal, that is, population
densities may affect the status of a neighbourhood as well: new u-residents raise the
overall socioeconomic status of a neighbourhood, whereas new v-residents lower it
(Galster, 1987). This is a positive feedback effect; high (low) status attracts u-residents
(v-residents), which raise (lower) the status further up (down). In practice, the socio-
economic status and gradients thereof can neither grow nor decline indefinitely.
For instance, the upper percentile of society may include people with different
levels of wealth. To saturate the status growth (in absolute value), balancing terms
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should be introduced. Schematically, we may write the equation for the temporal status
change as:

Change of Positive feedback: Balance of
local status = u-residents raise the status + positive
in time while v-residents lower it. feedback
% P B
ot
The positive feedback and balance contributions are modelled by:
P o= qu—pv, B = (s —5) = 7als =)+ DsVs ©)

where the parameters y,, 7,, 73, 74 and Ds in equations (6) are all positive. The diffusion
term in equations (6) acts to smooth out sharp status gradients, an effect that can be
understood in the following way. High-status neighbourhoods generate a demand for
goods and services which low-status residents in nearby neighbourhoods can provide.
This acts to raise the socioeconomic status of the latter (van Kempen and van Weesep,
1998). The nonlinear term has a cubic rather than quadratic form in order to allow
saturation of both growth and decline of status. As we shall see in section 4, the
parameter y, plays a crucial role in capturing the phenomenon of segregation and
can be related to the tension between the two population groups. The schematic
from (5) can now be written mathematically as

os

ot
where P and B are given by equations (6). Equations (4) and (7) constitute the model
equations.

= P(u, v) + B(s) . )

3.3 The full model and its symmetric form

Some of the parameters appearing in these equations can be eliminated by rescaling
time, space, and the dynamical variables u, v, and s (Murray, 1989; Yizhaq, 2003).®
In terms of the rescaled quantities the model equations read

% = u—ur+su+Vu—96Vs+ Uy , ®)

dv - 2 2 2

T ov — v — fsv+ 0,V o+ Vs + My, )

os 3 )

T e(u—yv—us) — & +0,Vs , (10)
where

U = pil{u) —u(x)] = p,[ls) — s(x)], Mo = a[{v) —v(x) + 65[(s) — s(x)].

To help identify solutions and instabilities of equations (8)—(10) we will often consider
a symmetric local form of these equations by setting « = f =0, =1, 6; =, =9, and
dropping the nonlocal terms Uy, and FVy.. The model then reads

Ou

i u—u+su+Vu— Vs , (11)

@ For example, time is rescaled by the growth rate, «,, so that the new nondimensional time is «, 7.
There is no loss of information in this process; the dimensional quantities (variables and parameters)
can be recovered at any time by simple algebraic operations.
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and
0
ailt) = u—uz—su+Vzu+5V25, (12)
Os 3 2
5, = flu—v—us) &N+ 0V (13)

Equations (11) - (13) are invariant under the symmetry transformation
u — v, v — u, s — =5 . (14)

The significance of this symmetry is that if v =u, v=uv, s=s, is a solution of
equations (11)—(13) then u = vy, v = u,, s = —s, is also a solution. Thus, any solution
for which u # v is accompanied by a symmetric counterpart.

In the model equations (8)—(10) or (11)—(13) the interaction between the two
population groups is determined by considerations of socioeconomic status. For
instance, a population group may not respond immediately to population changes in
its neighbourhood. It may rather observe ongoing changes in the socioeconomic status
of its neighbourhood before making a decision either to move out or to stay. Mathe-
matically, the coupling between the population densities # and v is mediated by the
status variable s. We refer to this type of interaction as indirect.

Under certain circumstances the interactions may also be direct. For instance,
residents of a given neighbourhood may decide to move out simply because another
ethnic group moves in. These ‘identity’ interactions can be modelled by adding terms of
the form uv to the right-hand sides of equations (11) and (12). The modified equations
then read

% = u—u’—luv+su+Vu— Vs, (11")
% _ 2 _ 2 Sv72 /
i v—v  —{uw—sv+Vuv+Vs . (12"

Assuming { is positive,”® an increase in the density of v-residents at a given location
leads to a decrease in the density of u-residents at that location and vice versa. The
direct coupling terms model repulsive interactions and reflect mutual avoidance
between the two groups.

In the following sections we study the model equations analytically and numeri-
cally. In integrating the model equations numerically, we use standard methods as
described in (Yizhaq, 2003). The parameter values used in the numerical simulations
are specified in the figure captions.

4 Uniform population states and their stability
The simplest solutions of the model equations (11)—(13) are stationary uniform solu-
tions. The population states they represent (table 1, over) may not be encountered in
urban realities, but they may provide important information for analyzing possible
nonuniform and nonstationary population states. To find stationary uniform solutions
we set all time and space derivatives in the model equations to zero.

First, let us consider the symmetric model (11)—(13). Solving the resulting equa-
tions, we obtain the population states shown in table 1. Note that the nonlocal terms
Uy and V4 vanish for uniform solutions. Thus, the solutions displayed in table 1 also

G { is often referred to as a competition coefficient (Brown and Rothery, 1993, page 379).
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Table 1. Stationary uniform solutions of the symmetric model (11)—(13).

State Symbol  Solution (u, v, s)
No population 0 0, 0,0)
Symmetric mixed population M (1, 1, 0)
Nonsymmetric mixed population N_ A—=n1+n —n
N, (I4n, T—=n,n)
Pure population P, (p,0,s,)
P_ (0, P, — SP)

solve the nonlocal symmetric model [equations (11)—(13) with the terms Uy, and Vg
included]. The parameter # in table 1 is given by

The analytical expressions for p and s, are fairly complicated and we prefer graphic
displays such as that in figure 1(a).

We are concerned mainly with stable population states. Unstable states evolve to
other (stable) states under the action of arbitrarily small perturbations and cannot
describe the system in the long run. We first consider the linear stability of the states
to uniform perturbations. The no-population state 0 exists for all parameters but is
always unstable. This reflects our assumption that the area under consideration has all
the infrastructure and facilities to serve as a residential area and therefore residents
immediately occupy vacant housing units.

The range of existence and stability of all other states are summarized in the
bifurcation diagram presented in figure 1(a). The diagram shows the u-component of
the various solutions as functions of the parameter . Solid (dashed) lines represent
stable (unstable) solutions or states. The parameter 4 measures (in an inverse sense) the
status gap that develops between distinct population states (for example, N_ and N,)

2.5

u
—_

/
—0.5
0

@

Figure 1. Bifurcation diagrams for stationary uniform solutions, showing the density of u-residents
as a function of the parameter p which measures in an inverse sense the social inequality. Solid
(dashed) lines stand for stable (unstable) solutions. The symmetric model [equations (14)—(16)
with ¢ =1 and & = 1] gives rise to a pitchfork bifurcation (a) which unfolds into an imperfect
pitchfork bifurcation (b) when the asymmetric model is considered [equations (11)—(13) with
e=1,¢=1, p, =0, = p, = 0,]. Similar diagrams can be drawn for v and s. For more details
see the text.

(®)
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and should be regarded as a characteristic property of the two populations. According
to equation (13), large values of u imply strong damping of status deviations from the
reference zero value (or sz in the unscaled equations) and, consequently, small status
gaps. Indeed according to table 1, the status gap, As, between N, and N_ is 2y, and the
smaller u the larger As or the socioeconomic inequality between the two populations.
In the next section we will relate u to the index of dissimilarity.

As p is decreased below p, =2 the symmetric mixed population state M loses
stability and the pair of asymmetric mixed population states, N_ and N, appear. This
is a pitchfork bifurcation, which breaks the symmetry of the state M. The appearance of
two new states is a consequence of the symmetry (14) of the symmetric model. The
pitchfork bifurcation and the pair of asymmetric mixed population states are missing
in earlier models. Upon decreasing p further another critical value u, =2 —¢&/e
appears where the asymmetric mixed states lose stability in a pair of transcritical
bifurcations. At this critical point the two pure states P, and P_ gain stability.

The various states described above pertain to a symmetric system with respect to
the two population groups, where characteristic properties, such as natural growth rate
and mobility are equal for the two groups. In reality, people of lower socioeconomic
status live in denser residential areas, their natural growth rate is often higher, and
their mobility is lower (Clark, 1980; Lynn and McGeary, 1990). This asymmetry is
included in the system (8)—(10). The significance of the symmetric model lies in the
bifurcation structure it unravels. The behaviours of the asymmetric system (8)—(10)
near the bifurcation points are captured by universal unfolding of this bifurcation
structure (Golubitsky et al, 1988). Figure 1(b) shows how the pitchfork bifurcation of
figure 1(a) is modified when we consider the asymmetric equations (8)—(10). It shows
in particular that in the asymmetric case both the N, state and P, can coexist in
contrast to the symmetric case.

Including direct (or ‘identity’) interaction terms, +(uv [see equations (11") and
(12")], does not change the qualitative bifurcation picture. The main effect of the
repulsive direction interaction, as figure 2 demonstrates, is to increase the status-gap
range (or the range of u) at which the pure states P, and P_ are stable. The pitchfork

Figure 2. Bifurcation diagram for the extended symmetric model, equations (14'), (15"), and (16),
with repulsive direct coupling between u and v ({ = 0.3), representing ‘identity’ repulsion. Solid
(dashed) lines stand for stable (unstable) uniform solutions. The repulsive interaction between the
two population groups extends the range of p where the two pure states, P, and P_, stably
coexist. A comparison with figure 1(a) indicates that status-gap values that give rise to stable
mixed population states (N, and N_) in the absence of repulsive population interactions may no
longer allow for stable mixed populations when these interactions exist. Parameters: ¢ = 1, ¢ = 1.
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bifurcation point shifts to higher u values according to u, = 2/(1 — {), assuming { < 1,
while the values of the pure states are independent of {. As a result the intersection
points of the mixed population branches, N, and N_, and the pure population
branches, P, and P_, shift to higher p values. The implication of this shift on segrega-
tion is that the stronger the repulsive identity interactions the stronger the segregation.
Because the qualitative structure of the bifurcation diagram is not changed by the direct
interaction terms we will assume in the following that { = 0 unless we specifically
consider other values.

The stationary uniform states described in table 1 may lose stability to nonuniform
perturbations as well. Indeed, both the M state and the N_ and N, states may undergo
Turing instabilities provided status-driven migration (parametrized by J) is strong
enough (Yizhaq, 2003). In the following we consider parameter ranges where Turing
instabilities do not appear.

5 Relating model solutions to sociospatial phenomena

The analysis of the previous section reveals parameter ranges where two stable uniform
solutions coexist. In the symmetric model, the N_ and N, states coexist in the range
p < < p,, and the P, and P_ states coexist in the range x < p,. In the asymmetric
model additional forms of coexistence are possible. The coexistence of stable uniform
solutions allows for nonuniform solutions pertaining to islands of one population
state in a neighbourhood of the other. A variety of sociospatial structures and
phenomena can be related to solutions of this kind: segregation patterns, transition
zones, neighbourhood-change processes, etc. In the following subsections we present
numerical solutions of the symmetric and asymmetric models describing such struc-
tures and phenomena. In solving the model equations we use no-flux boundary
conditions. This excludes local migration across the boundaries of the system, but
does not exclude interurban migration modelled by equation (2).

5.1 Segregation forms

The phenomenon of segregation refers to nonuniform distributions of population
groups where some areas show an overrepresentation and other areas an underrepre-
sentation of a given population group (Morrill, 1995). The bifurcation diagram for the
symmetric model shown in figure 1(a) suggests three different segregation behaviours
as the parameter u is decreased, or the socioeconomic inequality is increased: no
segregation (u > u,), variable (weak) segregation (u, < u < p,), and strong segregation
(1< ).

The absence of segregation for u > p, is implied by the existence of a single stable
uniform state, the M state, representing a uniform mixed population. In the range
B < <, [g, =1 in figure 1(a)], two stable uniform states coexist, the N_ and N,
mixed population states, and segregation patterns involving domains of N_ in neigh-
bourhoods of N, and vice versa are possible. The segregation is weak close to
p = u, =2 because the inequality between the two asymmetric states N_ and N, is
small, but as u is decreased toward u = u, = 1 the segregation becomes stronger. In an
N, domain the majority of the population is affluent u-residents but a minority of
high-status v-residents is able to share the same site. The opposite holds for an N_
domain. These patterns of segregation are consistent with those reported in various
empirical studies (see, among others, Friedrichs, 1998; Guest and Weed, 1976; St. John
and Clymer, 2000). Below g = u,, the N_ and N, states become unstable while the
pure population states, P, and P_, become stable. Segregation patterns involving
domains of these states describe enclaves of pure v-population in neighbourhoods
of pure u-population and vice versa (Yizhaq and Meron, 2002).
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A common quantitative measure of segregation is the index of dissimilarity (Massey
and Denton, 1988), defined as

Diss = %Zn;

where m,, is the number of v-residents in the 7th neighbourhood, M, is the total
number of v-residents in the whole residential area, and similar definitions hold for
the u-population. The index of dissimilarity spans the range 0 < Diss < 1; if the two
populations are distributed evenly throughout the residential area, Diss = 0, and if the
two groups reside in completely different areas, Diss = 1. In the context of the sym-
metric model, Diss = 0 (no segregation) for u > u, where the uniform mixed state M is
stable and Diss = 1 (stronger segregation) for 4 < p, where the pure population states
P, becomes stable.

The expression, N, = (u., v,, s.) = (1 x5, 1 Fn, +n) withy =[e2 — u)/E]"?, for
the mixed population states of the symmetric model can be used to calculate the dissim-
ilarity index in the intermediate range p, < p < u,, where the segregation is variable. For
simplicity we assume that the total number of v-residents in the whole residential area is
equal to the total number of u-residents, that is, M, = M, = M. The number of v-residents
(u-residents) in the ith neighbourhood is m,; = v; 4; (m,; = u; A;), where A, is the area of
the ith neighbourhood, and if the ith neighbourhood is occupied by the N. states,
m, = v, A;, and m, = u_A;. Using the definition (16) of the dissimilarity index, a
straightforward calculation leads to Diss = 45/ M, where A is the total residential area.
The average population density in any neighbourhood is (v, + w1, )/2 = 1. This is also the
average density in the whole residential area, M/A = 1, and therefore

1/2
Diss = § = [@} . (17)

Equation (17) describes the dependence of the index of dissimilarity on the status-gap
parameter p. At the pitchfork bifurcation (u = p,) where N, =N_ =M we should
obtain Diss (u,) = 0 as the pair of asymmetric states N. and N_ coincide to form a
single stable state M. Inserting the numerical value of g, (u, = 2) in equation (17) leads
indeed to Diss (u,) = 0. Likewise, at the pair of transcritical bifurcations (p = p,),
where N, = P, we should obtain Diss (g,) = 1. Inserting u, = 2 — ¢/¢ in equation (17)
indeed gives Diss = 1.

The calculation of the index of dissimilarity can easily be extended to the case of
direct (ethnic) interactions ({ # 0). Figure 3 (over) shows graphs of Diss versus u for
increasing values of the identity-interaction parameter {. The graphs show two trends
as ( increases: (a) segregation begins at larger u values or at smaller status gaps, (b) the
status-gap range pertaining to variable segregation (0 < Diss < 1) diminishes.

The more realistic asymmetric model suggests richer behaviour. The bifurcation
diagram in figure 1(b), shows for example, a parameter range where the pure popula-
tion state P_ stably coexists with the mixed population state N,. In this parameter
range a segregation pattern involving enclaves of pure v-population in a neighbour-
hood of mixed population with a majority of u-residents, is possible, as figure 4 (over)
demonstrates.

mvi _ mu:
M, M,

; (16)

5.2 Transition zones

The interfaces between adjacent neighbourhoods form transition zones. The interfaces
in figure 4, for example, show a gradual transition from a pure v-population (P_) to a
mixed population with a majority of u-residents (N, ). Figure 5 (over) shows a transition
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zone between a pure u-population (P, ) and a pure v-population (P_). The width of the
transition zone is affected by the parameters d,, J,, and d; which represent the mobilities
of u-residents and v-residents. When the pure population states are not symmetric as in
figure 5, one population group (P_) invades the other (P,). The interfaces in figures 4
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Figure 3. The effects of status gap and ‘identity’ repulsion on segregation. Shown are graphs of
the index of dissimilarity versus the status-gap parameter, u, at increasing direct interaction
values: (@) { =1, (b) {=0.2, (c) { =0.5. For given {, segregation (Diss > 0) begins as p is
decreased below the pitchfork bifurcation threshold y, [see figure 1(a)]. The segregation gradually
increases and becomes strong (Diss = 1) as u is further decreased below the transcritical bifurca-
tions at . As { increases the onset of segregation, u,, increases (segregation begins at lower status
gaps), the onset of strong segregation, y,, increases as well, as the status gap range, u, < u < g,
pertaining to variable segregation (0 < Diss < 1) diminishes. Other parameters: e =1, £ =1
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Figure 4. An enclave of pure v-population, P_, in a neighbourhood of mixed population
with a majority of w-residents, N,, obtained with the asymmetric model [equations (11)—(13)].
Parameters: u=1.05, ¢e=1, (=1, a=1.1, =1, y=1, 6,=1, §, =9, =0.5 o, =0.05,
o,=0,=p =p,=0.
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Figure 5. A transition zone (interface) between the two pure population states P_ and P, for the
asymmetric model [equations (11)—(13)]. u-residents (v-residents) in the transitions zone have
lower (higher) status values compared with the u-residents (v-residents) on the left (right) of
the transition zone. A growth rate of v-residents higher than that of the u-residents (x = 1.04)
leads to invasion of the P_ state into the P, state. Other parameters: u=0.7, e=1, {=1,
0=104,=1,7y=10,=1,0,=0,=02,0,=0.1,0, =0, =p, =p,=0.

and 5 appear to be similar in shape to those found in various empirical studies (see, for
example, O’Neill, 1981).

Figure 6 (over) shows in a qualitative way the dependence of the width of the
transition zone on the parameter u, which parameterizes the socioeconomic status
gap, and on J, which parameterizes population mobility. Increasing the socioeconomic
inequality (or status gap) by decreasing the parameter u leads to a narrowing of the
transition zone. This observation can be interpreted as follows. The increased status
gap between individuals in the transition zones creates cognitive tensions (Festinger,
1957; Portugali et al, 1997) which drive residents out of these zones, thus narrowing
them. The same effect is obtained by increasing the parameter § (mobility) for a given u
(status gap). Increasing mobility (J) facilitates migration motivated by status con-
siderations; residents may move out of the transition zone even when the status gap
remains unchanged.

5.3 Invasion and tipping

We use the model to study two types of neighbourhood-change process: (a) invasion,
involving displacements of transition zones, and (b) tipping, involving sudden reversals
of population distributions once critical population thresholds have been exceeded.
Invasion processes are studied by analyzing interface (or front) solutions of the model
equations. Tipping processes are studied by analyzing homogeneous and ‘nucleus’
solutions.

5.3.1 Invasion process

Numerical studies of the symmetric model [equations (11)—(13)] indicate that interface
solutions separating the two mixed population states, N_ and N,, or the two pure
population states, P_ and P_, are stationary.®” Interface solutions of the more generic
asymmetric model [equations (8)—(10)], however, may propagate. Transition-zone

@ A symmetry between the two populations states does not rule out interfaces moving at constant
speeds. Such moving interfaces may arise in pitchfork front bifurcations (Coullet et al, 1990;
Hagberg and Meron, 1994; Meron, 1999). However, no indications for the existence of such a
bifurcation have been found in the present model.
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Figure 6. Grey-scale maps showing stationary front solutions of the symmetric model [equations
(14)—(16)] in the x-y plane, for different values of u and 6. The front solutions represent
transition zones between the mixed population states N, (black) and N_ (white). Darker regions
represent higher densities of v-residents. Increasing the parameter § (mobility associated with
status considerations) for a given u (status gap) leads to a narrowing of the front width (transition
zone). The same effect is obtained by decreasing u (increasing the status gap). Parameters: ¢ = 1,
¢=1,0,=01,0,=0,=p,=p,=0.

motion is a result of a competition for housing at the interface between the two
population states (Downs, 1981; Lynn and McGeary, 1990, page 48; Schwab and
Marsh, 1980). The competition in the model equations is affected by the population
growth rates, the housing capacities, the nonlocal migration, etc. The manners by
which the interface velocity is affected by these factors have been studied by Yizhaq
and Meron (2002).

Interface motion may lead to merging of neighbourhoods, as figure 7 demon-
strates. The top-left frame in this figure shows the initial condition; a sharp interface
separating a v-population (white domain) from a u-population (black domain), with an
enclave of wu-population inside the domain of v-population (the black square). The
parameters chosen are such that the pure population states P_ and P, are unstable,
but the mixed population states N_ and N_ are stable. The successive frames (from left
to right) show the time evolution of the initial population distribution. The white and
black domains first converge to the stable N_ and N_ states, respectively, and the initial
sharp interface widens to its characteristic width. Along with these processes the black
domains (N, ) invade the white domain (N_) and merge into a single black domain that
continues invading the white domain.

Invasion processes are generally not uniform; the invasion in one part of the
interface may be faster than in another part because of nonuniform conditions,
such a spatially varying infrastructure. The model predicts the possibility of nonuni-
form invasion even when all conditions are uniform. Such an invasion form is a
result of an interface instability (Cross and Hohenberg, 1993). Figure 8 demonstrates
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Figure 7. Grey-scale maps showing solutions of the asymmetric model [equations (11)—(13)] in
the x—y plane that represent neighbourhood-change processes. The temporal evolution of neigh-
bourhoods (time goes from left to right) shows a hypothetical initial state (top-left frame)
involving neighbourhoods of solely v-residents (black) solely w-residents (white) with sharp
interfaces (zero width), the convergence to mixed population states N_ (black) and N_ (white)
with wider interfaces, the invasion of the N_ state into the N, state, and the merging of the N_
domains. Parameters: u=1.9, e=1, £=1, «a =1.006, f =1, 6, =0.95, §, =0.6, §, = 0.001,
o,=0,=p =p,=0.
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Figure 8. Grey-scale maps showing solutions of the symmetric model [equations (14)—(16)] in
the x — y plane that demonstrate nonuniform invasion due to a modulational interface instability
(time goes from left to right). An initial perturbation along a flat interface (left frame) evolves
into a growing bulge of the N_ state. The instability sets in when the parameter 6, which
quantifies migration due to status considerations, exceeds a threshold value, J. (below J. the
initial perturbation dies out and the interface resumes a flat form. Parameters: u = 1.88, ¢ =1,
¢t=lLa=1p=19y=16,=1,0=1.12,0,=0.1, 0, =0, =p, = p, =0.

this instability. Starting with a flat interface separating an N_ domain (black region)
from an N, domain (white region), a small invasion of v-residents into the N, domain
grows into a bulge which further intrudes into the N, domain. The instability sets in
when the parameter J, which quantifies migration due to status considerations,
exceeds a threshold value, ¢.. Below 0, initial perturbations along the interface smooth
out and disappear.
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The mechanism of nonuniform invasion can be understood by considering the
response of u-residents to a local invasion of v-residents to form a bulge in the inter-
face. Perceiving the threat of status decline u-residents respond by migrating out of the
bulge. Migration of u-residents to the sides of the bulge inhibits invasion of v-residents
to these areas and favours further invasion ahead.

The possible development of modulated interfaces (transition zones) in homo-
geneous systems has been addressed previously by Rosser (1980) in an attempt to
explain wedge-shaped ghettos, and by Downs (1981) who emphasized the importance
of economic considerations.

5.3.2 Tipping process

The ‘tipping-point’ phenomenon refers to a sudden reversal of a population distribu-
tion as a critical minority population exceeds some threshold. Evidence of urban
tipping has been available since the pioneering studies of Grodzins (1957) and Wolf
(1963). However, researchers are not in full agreement about the nature of and the
driving force behind this phenomenon (Goring, 1978; Hartshorn, 1992; Schwab and
Marsh, 1980; Schwirian, 1983; Woods, 1981). In this section we will demonstrate the
existence of tipping in the proposed model, and use concepts of dynamical systems
theory to gain additional insight into this interesting phenomenon.

Let us consider, for example, a parameter range where the two uniform mixed
population states N, and N_ exist and are stable. In addition to these stable states
the system also has an unstable uniform state: the M state in the symmetric model
or the unstable branch of the saddle-node bifurcation in the asymmetric model (see
figure 1) which we also denote here by M. To account for the tipping-point phenom-
enon in the model equations we first restrict the analysis to uniform states. A
calculation of the eigenvalues associated with the unstable state M in a wide parameter
range shows that two of the three eigenvalues have negative real parts. This implies a
two-dimensional stable manifold of the M state which divides the three-dimensional
phase space, that is, the space spanned by u, v, s, into two distinct parts. The asymp-
totic behaviour of the system depends on the location (in phase space) of the initial
state with respect to the stable manifold of M. If the initial state is located on the same
side of the stable manifold as the N, state, the system will converge in time to the N,
state. If on the other hand the initial state is located on the other side of the stable
manifold, the time evolution will take the system to the N_ state. This threshold
behaviour can be regarded as tipping: starting with an N, state and perturbing it
strongly enough, for example, by increasing v, so as to cross the stable manifold of
M, leads to population inversion and convergence toward the N_ state.

A mathematical investigation of phase-space trajectories near the M state suggests
four kinds of transient behaviour as figure 9 shows. The transients are affected by two
main factors, (1) the direction of the stable manifold at the transient point in phase
space, and (2) the proximity to the stable manifold. Consider first the case where
tipping fails, that is, over a long time the system converges to the N, state. Starting
at any point along the A trajectory in figure 9, or at any point along the D trajectory
the system will eventually evolve to the same state, N,. The two trajectories, however,
represent different transients, as figure 10 shows, because they correspond to different
directions of the stable manifold. In A the v-population first sharply decreases whereas
in D it first sharply increases (stage II). Following this fast initial stage is a slow
evolution stage where the v-population in both cases decreases (stage I1I). The differ-
ence in the time scale follows from the proximity to the stable manifold. The closer the
initial point to the stable manifold, the closer the system approaches the unstable M
state, and the sharper the difference in time scales. The next stage (stage 1V) is faster as
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the system departs from the unstable M state, but as it approaches the asymptotic state,
N,, the time evolution is slow again (stage V). Stage I corresponds in all cases to the
perturbation (for example, invasion) that posits the system in its initial state.
Consider now the case where tipping succeeds, that is, over a long time the system
converges to the N_ state. Starting at any point along the B trajectory, or at any point
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Figure 9. Trajectories in the (u—v) phase plane showing the time evolution of four different initial
conditions near the unstable mixed state M. The initial conditions may represent deviations from
the stable N, state as a result of invasions of v-residents. Trajectories B and C describe invasions
that shift the system to the N_ state (tipping) whereas trajectories A and D describe weaker
invasions that do not have any effect on the long-run behaviour of the system. The trajectories
were obtained using the uniform asymmetric model [equations (11) —(13)]. Parameters: yu = 1.57,
e=1L<¢=lLa=11p=17y=1.
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Figure 10. The time dependence of the v population for each trajectory shown in figure 8. Graphs
B and C show tipping whereas in graphs A and D tipping fails. In all graphs five stages can be
identified: (I) initial condition, (II) transient, (III) slow growth in cases B and C (decline in A
and D), (IV) rapid growth (decline), (V) convergence. For more details see the text.
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along the C trajectory the system will eventually evolve toward the same state, N_. The
different initial states (pertaining to different directions of the stable manifold of M)
lead to different responses in stage II: in trajectory C the v-population continues the
perturbation trend and keeps increasing, while in trajectory B the v-population first
decreases. The subsequent stages are similar in both cases: slow (stage III), fast
(stage IV) and slow (stage V) increase of the v-population toward its asymptotic value
at the N_ state.

The discussion of the tipping-point phenomenon has so far been restricted to
uniform solutions of the model equations. In this context the initial invasion that
induces the tipping was assumed to be uniform in space. Very often the invasion
process occurs locally. A ‘successful’ tipping results in a nucleus of the inversed popula-
tion that grows or approaches a fixed size. Numerical studies of the nonsymmetric
model indicate, however, that the growth of the nucleus is not guaranteed even if
population inversion takes place locally; the nucleus must have a minimum size or a
critical radius, otherwise it will diminish and disappear. This finding is demonstrated
in figure 11. The numerical studies also indicate that the critical radius increases as the
status gap increases (or u decreases).

Why should a minority enclave reach a certain critical size in order to expand into
a majority-populated area? A possible answer to this question is as follows: if the
relationship between the majority and minority is that of repulsion, the concentration
of minority families in the fringe of the majority populated areas should be sufficiently
large in order for the majority households to realise that their way of life in the area is
threatened and that they may be better off moving elsewhere. On the minority side,
reaching a certain level of concentration may trigger ‘economies of scale’ and the
establishment of more specialized ethnic stores and institutions (Massey, 1985).

However, if the critical size is not reached, the nucleus of an invading population
may disappear because of exogenous factors, such as immigration and urban policies
(slum clearance and gentrification), or because of endogenous causes, such as violent
reaction of the local population to ‘intruders’ (Sampson et al, 1997).
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Figure 11. Grey-scale maps showing solutions of the asymmetric model [equations (11)—(13)] in
the x—y plane that represent failure [frames (a)—(d)] and success [frames (e)—(h)] of local
tipping. Two nuclei of invaded domains [grey disks in frames (a) and (e)], first go through
local tipping [black disks in frames (b) and (f)], and then, depending on their initial sizes, either
shrink and disappear [frames (c) and (d)], or grow [frames (g) and (h)]. Darker areas represent
regions with higher densities of v-residents. Parameters: u=1.8, ¢ =1,e=1, «a =1.007, f =1,
y=10=10 =9;,=038,9,=0.001, 0, =0, =p, =p, =0.
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6 Discussion

The proposed mathematical model can be regarded as an extension of earlier
continuum models of intraurban segregation (O’Neill, 1981; Zhang, 1989). The main
new ingredient of the proposed model is a status variable. Mediating the interaction
between the two population groups by status considerations leads to a wider range of
segregation and neighbourhood-change forms compared with earlier models. In partic-
ular, we find that segregation patterns may not necessarily involve enclaves of pure
populations. At moderate status gaps the model produces weaker forms of segregation
patterns involving domains of mixed populations with different proportions, as
observed in practice (Morrill, 1995). The different segregation forms, and their depend-
ences on the interaction types between the two populations, are demonstrated in
graphs of the dissimilarity index versus the status-gap parameter (figure 3).

We also find that neighbourhood-change processes may not necessarily involve
local migration directed from highly populated places to places of lower population
density. As the model shows, there are circumstances where status considerations
dominate and local migration occurs in the opposite direction, that is, from areas of
lower densities to areas of higher densities. In urban systems such migration may be
commonplace, reflecting the alternative waves of suburbanization and reurbanization
(see, among others, Ishikawa and Fielding, 1998).

The continuum and the deterministic nature of the model help to elucidate dynam-
ical features of segregation phenomena that are less apparent in stochastic discrete
models. The relation of segregation to an instability of a mixed population state, M,
has not been realized in studies of discrete models, although these models may
capture the instability. Likewise, the coexistence of two stable mixed population
states, N, and N_, beyond the instability cannot be easily inferred from studies of
discrete models. The coexistence of stable states implies two different equilibrium
population ratios (u-rich and v-rich) which dictate the local population dynamics; an
initial population mix will evolve in time toward one of the two equilibrium popula-
tion ratios. Another example, where continuum models appear advantageous over
discrete ones, concerns the contour shape of a transition zone in the two-dimensional
urban plane. Using a continuum model we could identify an instability of the transition
zone to undulating perturbations which lead to uneven invasion of one population
state into another. Uneven enclave shapes are usually explained by anisotropy of the
urban space (Rosser, 1980), but from the point of view of pattern-formation theory, this
phenomenon can also occur in a homogeneous and isotropic environment. Studies of
the model in two space dimensions can reveal the conditions under which corrugated
neighbourhoods develop.

In extending the basic model to include direct interaction terms we assumed a
symmetry between the two populations (a single coefficient { multiplies both terms).
The symmetry and the positive sign of { imply repulsive interactions between the two
population groups. The nature of the interactions between the two population groups,
however, may not be symmetric; although one population group may repel the other,
the latter group may be indifferent or even attract the former (Morrill, 1995). Such a
situation can readily be simulated with the model by assuming competition coefficients
with opposite signs.

An underlying assumption of the proposed model is that the urban area under
consideration is homogeneous in respect of infrastructure development, types of
housing, accessibility to the city centre, etc. Strictly speaking, this assumption can
be justified only for fairly small areas at the spatial scale of a few residential blocks.
At larger scales heterogeneities of these types can be handled by assuming spatial
variations of the model parameters, or by adding a new dynamical variable reflecting
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differences in intraurban development. We postpone the consideration of spatial
heterogeneities to a future study.

Another topic that deserves special attention is the effect of nonlocal migration.
The model equations (8)—(10) include terms describing migration to distant locations,
but we have not studied their effect in great detail. Analysis of the uniform states and
their stability in the limit of large systems shows that these terms may unfold the
bifurcations and shift their locations. The effects of these terms are expected to be
more pronounced for nonuniform states. We intend to investigate these effects in a
future study.
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