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a  b  s  t  r  a  c  t

Self-organization  processes  leading  to  pattern  formation  phenomena  are  ubiquitous  in  nature.  Intensive
theoretical  and  experimental  research  efforts  during  the  past  few decades  have  resulted  in a  mathematical
theory  of  pattern  formation  whose  predictions  are  well  confirmed  by  controlled  laboratory  experiments.
There  is  an  increasing  observational  evidence  that  pattern  formation  plays  a significant  role  in shap-
ing  dryland  landscapes.  Supporting  these  observations  are  studies  of  continuum  vegetation  models  that
have  reproduced  many  of  the observed  patterns.  Such  continuum  models  consist  of  partial  differential
equations  and  lend  themselves  to the  powerful  methods  of  pattern  formation  theory.  Indeed,  vegeta-
tion  pattern  formation  has  been  identified  with  mathematical  instabilities  of  uniform  vegetation  states,
occurring  at  threshold  degrees  of  aridity.  This  paper  describes  applications  of  this  modelling  approach
to  problems  in  landscape,  community,  ecosystem  and  restoration  ecology,  highlighting  new  open  ques-
tions  and  research  directions  that  are  motivated  by  pattern  formation  theory.  Three  added  values  of  this
approach  are  emphasized:  (i)  the approach  reveals  universal  nonlinear  elements  for  which  a great  deal
of knowledge  is  already  available,  (ii)  it captures  important  aspects  of  ecosystem  complexity,  and  (iii)  it
provides  an  integrative  framework  for studying  problems  in  spatial  ecology.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The significance of spatial heterogeneity in understanding eco-
logical processes has been recognized long ago. One of the earliest
expressions of this recognition is the habitat heterogeneity hypoth-
esis that links spatial heterogeneity to niche formation and species
coexistence (Tews et al., 2004). The increasing interest in spatial
aspects of ecological processes has led to the emergence of an inde-
pendent research field, landscape ecology. Numerous studies have
been devoted to the definition and quantification of landscape het-
erogeneity, to the identification and study of its drivers (Turner,
2005), and to the implications for community dynamics, ecosystem
processes and ecosystem function (Holyoak et al., 2005; Loreau,
2010; Ritchie, 2010). Yet, an important if not crucial aspect of land-
scape heterogeneity has escaped deep consideration, that is, the
possible occurrence of spatial instabilities leading to self-organized
heterogeneity (Rietkerk et al., 2004).

Self-organized heterogeneity, or pattern formation,  is ubiquitous
in nature. Cloud streets, sand ripples, geological column formation,
and banded vegetation (Fig. 1) are a few examples of pattern-
formation phenomena. Underlying these phenomena are positive
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feedbacks operating at small scales that destabilize uniform states
and lead to large-scale regular or irregular patterns. Although we
generally cannot prove the emergence of patterns in nature from
such instabilities, we  often do make this association, relying on
experimental studies of model systems and on mathematical anal-
yses of model equations. This approach has partially been pursued
recently in the context of dryland vegetation. Most notably, model
studies have identified instabilities that induce vegetation patterns,
and tracked pattern changes along environmental gradients that
are consistent with field observations (Borthagaray et al., 2010;
Borgogno et al., 2009; Gilad et al., 2004, 2007a, 2007b; Klausmeier,
1999; Lefever and Lejeune, 1997; Rietkerk et al., 2002; Sherratt,
2005; Saco et al., 2006; Deblauwe et al., 2008; Valentin et al., 1999;
von Hardenberg et al., 2001). These studies, however, have hardly
addressed ecosystem and community aspects of vegetation pattern
formation, nor have they used the powerful tools of pattern forma-
tion theory (Cross and Hohenberg, 1993; Pismen, 2006; Cross and
Greenside, 2009).

Two  main modelling approaches are currently prevalent in
the context of resource limited vegetation landscapes, discrete,
agent-based or individual-based models (Grimm and Railsback,
2005), and continuum, partial-differential-equations (PDEs) mod-
els. Discrete models are numerical algorithms that go down to
the level of individual plants and often describe them in great
detail. Continuum models consist of spatially continuous variables
satisfying sets of coupled PDEs. The lowest level of description in
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Fig. 1. Patterns in nature. (a) Cloud streets (courtesy of Hezi Yizhaq), (b) sand ripples (courtesy of Arie Barlev), (c) hexagonal column formation in the Giant’s Causeway,
Northern Ireland (from Goehring et al., 2009), (d) banded vegetation in Niger (from Valentin et al., 1999).

continuum models does not involve individual plants but rather
processes at small scales. In this approach plants are described by
the biomass they form per unit ground area, which may  result
from a single or many individuals. While the continuum modelling
approach does not capture information items related to the life
cycle of an individual, it is capable of describing continuous
processes such as overland water flow, soil-water dynamics, fog
advection, erosion-deposition processes, etc.

From the implementation point of view discrete models are for-
mulated in terms of algorithms that are executed by numerical
computations, whereas continuum PDEs models are amenable to
mathematical analysis besides numerical computations. This is an
important difference between the two modelling approaches; con-
tinuum models lend themselves to the powerful tools of pattern
formation theory (Cross and Hohenberg, 1993; Pismen, 2006; Cross
and Greenside, 2009), whereas no mathematical theory of this kind
is available for discrete models.

The main purpose of this paper is to describe a few applications
of pattern formation theory to spatial ecology, highlighting new
open questions and research directions, and emphasizing the added
values of this approach. The results and the open questions to be
discussed are particularly relevant to clonal plant growth, the topic
of this special issue.

2. A glimpse into pattern-formation theory

Spatially extended systems that are driven far from equilib-
rium often show ordered patterns with characteristic length scales.
Numerous natural examples of this phenomenon exist, a few of
them are shown in Fig. 1. A fascinating aspect of this phenomenon is
that the order is not imposed by any external factor; it rather results
from positive feedbacks operating at small scales, that give rise to
self-organization and pattern formation at large scales. Associated
with these phenomena are a few principles:

• Symmetry breaking: A uniform force that drives a uniform system
out of equilibrium can break the spatial uniformity (or symmetry
to translations) of the system and induce spatially periodic pat-
terns. The transition to the patterned state is not gradual; spatial
variability appears only beyond a critical force strength at which
the stabilizing and destabilizing factors just balance one another.
We  call such a phenomenon a symmetry-breaking instability.

• Universality: Symmetry-breaking instabilities lead to patterns
that are to a large extent universal. The same patterns can appear
in completely different physical, chemical or biological contexts
if they are induced by the same type of instability. Stripe-like
patterns, for example, appear in cloud streets and in banded veg-
etation on hill slopes (Fig. 1a and d), although the local feedbacks
that drive the common instability are obviously different.

• Emergence: Pattern formation is an emergent property (Anderson,
1972), that is, a property that appears at the system level, i.e. the
level of clouds or patchy landscapes, and has no meaning at the
level of the system’s constituents (water molecules, plants). It
is a bottom-up self-organization process, whereby small-scale
interactions give rise to large-scale order, but large-scale pat-

tern dynamics can also feed back on small-scale interactions.
Top-down processes of this kind can be interpreted as adaptive
behavior of the system’s constituents (Levin, 1998).

The pattern-forming instabilities that a uniform state can go
through are commonly classified according to the nature of the
perturbations or modes that grow from the unstable state and the
new states they lead to. Thus, four main types of instabilities are
distinguished:

1. Stationary uniform instability,  in which a monotonously growing
uniform mode leads to a stationary uniform state.

2. Stationary nonuniform instability,  in which a monotonously
growing nonuniform mode leads to a stationary spatial pattern.

3. Oscillatory uniform instability,  in which a uniform mode with
oscillatory growth leads to uniform oscillations.

4. Oscillatory nonuniform instability,  in which a nonuniform mode
with oscillatory growth leads to traveling waves.

The second and fourth instability types directly lead to spatial
patterns as the growing modes are already spatially structured. The
first and third instability types do not lead directly to spatial pat-
terns as the growing modes are uniform. Spatial patterns can still
result from these instabilities if they involve the creation of multi-
ple stable states, for then patterns consisting of domains of different
states can be formed.

The universal behavior of systems close to instability points
is rooted in the mathematical theory of pattern formation. Start-
ing from the specific equations that describe any system near an
instability point, it is possible to derive new equations that look
alike for all systems that share that type of instability. The new
equations, often called normal form or amplitude equations,  differ
from one system to another only in the coefficients of the various
terms that appear in the equations, which are expressed in terms
of parameters that are specific to the system in question. This is
a powerful result of pattern formation theory; the normal form
equations for various instabilities have thoroughly been studied,
and the identification of an instability in a particular system makes
that information available at once.

3. The pattern-formation approach applied to dryland
vegetation

3.1. Modelling dryland vegetation

Vegetation pattern formation is a result of positive feedbacks
operating at local scale. We  focus here on two  important feedbacks
(Gilad et al., 2007a, 2007b; Meron et al., 2007a,b). The first, illus-
trated in Fig. 2a, is a positive feedback between above-ground and
below-ground biomass (hereafter the root-augmentation feedback)
and is related to the root-to-shoot ratio, a characteristic trait of
plant species. As a plant grows its root zone extends to new soil
regions where water can be taken up from. As a result the amount
of water available to the plant increases and the plant grows even
further. The second feedback, illustrated in Fig. 2b, is a positive
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Fig. 2. Schematic illustrations of the root-augmentation feedback (a) and the infiltration feedback (b).

feedback between biomass and water (hereafter the infiltration
feedback). Bare soils in arid regions are often covered by biologi-
cal soil crusts which reduce the infiltration rate of surface water
into the soil relative to the infiltration rate in vegetation patches
(Eldridge et al., 2000). As a consequence vegetation patches act as
sinks for runoff water generated by their crusted neighborhoods.
This accelerates their growth, sharpens the infiltration contrast and
increase even further the soil moisture in the patch areas. Soil ero-
sion in bare areas and deposition in vegetation patches is another
mechanism that can induce or enhance infiltration contrast (Saco
et al., 2006).

Both feedbacks involve water transport towards the growing
vegetation patches, and therefore provide pattern formation mech-
anisms, for while they help the vegetation patches grow, they
inhibit the growth in the patches’ surroundings. For this reason
they are often referred to as mechanisms of short-range activation
and long-range inhibition.1 Positive feedbacks that do not involve
water transport, such as reduced evaporation in patch areas due to
shading, are not pattern forming.

Several continuum models have been proposed for studying
vegetation patchiness (Borgogno et al., 2009). We  choose to present
here the Gilad et al. (2004, 2007a, 2007b) model because it is the
only model that captures the two feedbacks discussed above, and,
unlike most other models, describes satisfactorily overland water
flow for arbitrary topographies by deriving it from shallow water
theory. The model, hereafter the Gilad et al. model, consists of one
or more biomass variables, bi(�r, t), where �r = (x, y), representing
species belonging to different functional groups, and two  water
variables, w(�r, t) and h(�r, t), representing the soil-water content per
unit ground area and the height of a thin surface water layer above
ground level, respectively. The equations for the biomass variables
include diffusion-like terms which account for clonal growth or
short-distance seed dispersal. The model equations have already
been presented and described in detail in earlier publications (Gilad
et al., 2007a, 2007b).  We  refer the reader to these earlier works
and limit the discussion here mostly to the manner by which the
root-augmentation and the infiltration feedbacks are modelled.

The root-augmentation feedback is captured by representing
the spatial extents of the root zones of plants located at a point
�r by means of a localized kernel function

g

(
|�r − �r′|

S

)
,

whose width, S = S0(1 + �b + · · ·), grows monotonously with the
above ground biomass, b(�r, t). The root-to-shoot ratio can then be
quantified by the parameter � = S−1

0 dS/db|b=0. Gilad et al. (2004,
2007a) have used a Gaussian function for the kernel g, but other

1 An alternative terminology that is often used is short-range facilitation and long-
range competition. While the long-range inhibition is generally due to competition
(over a limiting resource), the short-range activation is not necessarily associated
with facilitation. We therefore prefer the terms activation and inhibition over facil-
itation and competition.

forms can be considered (Barbier et al., 2008). The infiltration feed-
back is captured by assuming an increasing biomass dependence of
the infiltration rate of the form (Gilad et al., 2007a, 2007b; Rietkerk
et al., 2002):

I(�r, t) = A
b(�r, t) + Qf

b(�r, t) + Q
,

where A and Q are constant parameters and f is another parameter
representing the infiltration contrast. The value f = 1 corresponds
to an infiltration rate which is biomass independent, I = A, i.e. no
infiltration contrast between bare soil and vegetated area. This case
may  approximate sandy soils. Small values, f � 1, on the other hand
represent high infiltration contrasts: low infiltration rate in bare
soil, I(0) = Af,  and high infiltration rates in vegetated patches that
asymptote to I(∞) = A.

The parameters � and f quantify the strengths of the root-
augmentation and infiltration feedbacks and therefore strongly
affect the system’s spatial behavior. Another significant parame-
ter is the precipitation or rainfall rate p, which, in general, is time
dependent. However, when the characteristic growth time of the
vegetation is significantly longer than the time scales of rainfall
variability, the vegetation responds to the time-average precipita-
tion and p can be taken as a constant parameter. Woody vegetation,
for example, grows slowly compared to seasonal variability and in
that case p can represent the annual rainfall. In the following we will
consider p to be constant, disregarding inter-annual rainfall vari-
ability. We  refer the reader to Kletter et al. (2009) for an analysis
of a time-dependent intermittent rainfall. On a slope, a topography
function, �(�r), measuring ground level height at a point �r, should be
specified.

It is worth noting that the information that is used in building
a continuum model pertains to small spatial scales, within a single
patch, and to low organization levels, mostly the organism level,
while the information that is extracted from the model pertains
to large landscape scales and to high organization levels – popu-
lation, community and ecosystem. Once the model has been built,
solving it numerically requires specifying initial conditions, that is,
initial spatial distributions of the biomass and water variables. The
solutions then provide the spatial distributions at any time in the
future.

3.2. Vegetation pattern formation

Vegetation pattern formation is the manner by which dryland
vegetation can cope with water deficit. It does so by increasing
water availability to vegetation patches at the expense of their
neighborhoods. Depending on rainfall rate, soil properties, species
traits, topography, consumer pressure and other factors, different
spatial patterns are formed. The pattern formation approach pro-
vides an invaluable tool for investigating these patterns.

Consider first the Gilad et al. model for a single species, with
biomass b, that may  represent woody vegetation. The simplest
model solutions are time-independent, spatially uniform solutions.
There are two  solutions of that kind representing bare soil (b = 0)
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Fig. 3. Stationary nonuniform instability of uniform vegetation. A result of linear
stability analysis of the Gilad et al. model showing the growth rates of sinusoidal
perturbations with different wave numbers. Above a critical precipitation, p2, all
perturbations have negative growth rates and uniform vegetation is stable. Slightly
below p2, a narrow band of wave numbers have positive growth rates, implying an
instability to a vegetation pattern.
From Gilad et al. (2007a).

and uniform vegetation. The first question pattern-formation the-
ory motivates concerns the stability of these uniform solutions. A
uniform state is linearly stable if any infinitesimally small perturba-
tion, uniform or non-uniform, decays to zero in the course of time.
It is linearly unstable if there exists a perturbation that grows in
time. The dynamics of small perturbations are studied by means
of linear stability analysis. Applying such an analysis to the uniform
vegetation state, for plane topography, provides the result shown
in Fig. 3 (Gilad et al., 2004, 2007a).  The figure shows the growth
rates of sinusoidal perturbations with different wavelengths � or
wave numbers k = 2�/�. Since any perturbation can be represented
as a sum of sinusoidal perturbations with different wave numbers
(i.e. as a Fourier series), the decay of any sinusoidal perturbation
implies the linear stability of the uniform state. This is the case
for p > p2 in which the growth rate is negative for any k. At p = p2,
however, there is a critical wave number, kC, for which the growth
rate is zero. Slightly below that precipitation rate, p < p2, perturba-
tions with wave numbers kC and nearby wave numbers grow in
time, rendering the uniform vegetation unstable. This is a station-
ary nonuniform instability (see Section 2) that leads to a stationary
pattern state. We  note that if we remove the two  pattern-forming
feedbacks, root-augmentation and infiltration, by setting � = 0 and
f = 1, the instability disappears and the uniform vegetation state
remains stable whenever it exists.

A linear stability analysis applied to the bare-soil uniform state
reveals that it is stable at sufficiently small precipitation rates but
becomes unstable in a stationary uniform instability (see Section
2) at a critical value, p = pC with pC < p2. At this instability point the
uniform vegetation state appears but it is already unstable (unless
� = 0 and f = 1) and therefore a pattern state appears. Fig. 4 summa-
rizes the results described for the uniform solutions (Gilad et al.,
2004, 2007a).  It displays the uniform solutions as functions of the
precipitation rate with the convention that solid line represents
linearly stable solutions, and dashed and dotted lines represent
solutions that are unstable to uniform and non-uniform pertur-
bations, respectively. A diagram of this kind is called a bifurcation
diagram.

Fig. 4. A bifurcation diagram for stationary uniform solutions of the Gilad et al.
(2007b) model. Solid lines represent linearly stable solutions, dashed lines repre-
sent solutions that are unstable to uniform perturbations, and dotted lines represent
solutions that are unstable to nonuniform perturbations. Bare soil (B) is stable at low
precipitation rates (p < pc) whereas uniform vegetation (ε) is stable at high precipita-
tion rates (p > p2), as the solid lines indicate. In between stable pattern states exist,
examples of which are shown in panels A–C. Dark shades of gray represent high
biomass.
From Gilad et al. (2007a).

A second question pattern-formation theory motivates is what
pattern states appear along the rainfall gradient and are they
necessarily regular periodic patterns? The insets in Fig. 4 show
numerically computed pattern solutions along the precipitation
axis for a plane topography. The uniform vegetation state desta-
bilizes at p = p2 to a periodic gap pattern consisting of a hexagonal
array of gaps in uniform vegetation. At lower precipitation rates
a new regular pattern state appears, consisting of vegetation
stripes. Depending on initial conditions, periodic stripe patterns or
labyrinthine patterns are formed. At yet lower precipitation rates
a periodic spot pattern appears, consisting of a hexagonal array of
vegetation spots (Gilad et al., 2004, 2007a).  On a slope, a similar
solution structure holds with two  major differences. First, stripes
are oriented perpendicular to the slope because this way they inter-
cept more runoff water. Second, they can migrate uphill, as most of
the runoff is intercepted at the top part of the stripe, while the
bottom part losses runoff to the next lower stripe (Gilad et al.,
2007a; Sherratt, 2005). Note that in plane topography the stripes
often assume the form of labyrinthine patterns; in the absence
of a preferred direction random initial conditions induce different
orientations at different locations. An instability of stripe patterns
to transverse modulations, i.e. to wavy modulations of the stripes
(Cross and Hohenberg, 1993) can enhance the labyrinth nature of
the patterns. The full bifurcation structure of these periodic pattern
solutions has not been evaluated yet.

The overall picture that has emerged so far is of five basic veg-
etation states along the rainfall gradient: uniform vegetation at
high rainfall rates, periodic gap, stripe and spot patterns at decreas-
ing rainfall rates, and bare soil at low rainfall rates. This sequence
of basic vegetation states is consistent with field observations
(Deblauwe et al., 2008; Valentin et al., 1999), although many more
patterns are observed too. Indeed, the Gilad et al. model, as well as
other models, predict a wide variety of vegetation states in precipi-
tation ranges where two stable basic states coexist. Such bistability
ranges are found between any pair of consecutive states: bare-soil
and spots, spots and stripes, stripes and gaps and gaps and uniform
vegetation. In these ranges spatial mixtures of the different states
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Fig. 5. Mixed patterns predicted by the Gilad et al. model. Shown are numerical solutions of the model equations in bistability ranges of bare soil and spots (a), spots and
stripes (b), stripes and gaps (c) and gaps and uniform vegetation (d). Darker gray shades denote higher biomass.
From Kletter et al. (2011).

Fig. 6. Mixed patterns in nature: an isolated shrub patch in the northern Negev, Israel (A), mixture of spots and stripes of woody vegetation in Niger (B), mixture of stripes
and  gaps of woody vegetation in Niger (C), and isolated gaps in the pro-Namib zone of the west coast of southern Africa (D).
From Rietkerk et al. (2002) (B and C) and Tlidi et al. (2008) (D).
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Fig. 7. Homoclinic snaking in the Swift–Hohenberg model. A bifurcation diagram showing intermediate solutions in a bistability range of uniform, u = 0, and pattern states
u  = up (a). The intermediate solutions describe localized structures with even (b) and odd (c) numbers of humps. Thick (thin) lines denote stable (unstable) solutions. The
parameter range rp1 < r < rp2 is called the homoclinic snaking range.
Courtesy of John Burke.

can form a variety of irregular stable patterns (Meron et al., 2004)
as Fig. 5 illustrates. Fig. 6 shows similar types of mixed patterns in
nature.

The mathematical theory of spatially mixed patterns in bistable
systems is far from being complete. However, significant progress
has been made recently in the case of bistability of uniform and spa-
tially periodic states. Fig. 7 shows a bifurcation diagram for a simple
pattern-formation model, the Swift–Hohenberg equation,2 that has
a bistability range of a uniform zero state and a periodic pattern.

2 The Swift–Hohenberg equation reads ut = ru + bu2 − u3 − (∂2
x + k2

0)
2
u, where r,

b  and k0 are parameters. It can be regarded as the simplest model that captures a

Apart of the zero solution and the periodic solution there are many
intermediate solutions representing spatial mixtures thereof, some
of them are shown in the figure (the blue lines). (For interpretation
of the references to color in the text, the reader is referred to the web
version of the article.) They correspond to localized structures con-
sisting of confined domains of the periodic pattern in a background
of the zero state. There are two  families of such localized solutions,
one with an even number of humps and one with an odd number
of humps. The solution families “snake” upward, giving rise to a

stationary non-uniform instability. In this model the instability destabilizes the zero
state, u = 0 to a stationary periodic pattern with wave number k0.
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Fig. 8. Transition from a periodic spot pattern to a hole pattern in a bistability range of uniform bare soil and a periodic spot pattern. The transition was induced by a
biomass-removal disturbance, uniform across the pattern. Lighter shades of gray denote lower biomass. Time proceeds from left to right. Panel (a) shows the initial disturbed
periodic pattern, while panel (c) shows a nearly asymptotic hole pattern whose biomass has recovered except for of a few “holes” where the original spots have decayed.
The  arrows in panels (a) and (b) point towards one of the decaying spot.
The patterns were computed using the model introduced by von Hardenberg et al. (2001).

multitude of stable localized structures of increasing sizes. In addi-
tion, there is also a multitude of stable “hole solutions”, consisting
of holes of increasing sizes in otherwise periodic patterns. Beyond
that, there are also stable solutions consisting of several localized
structures of various sizes, or of several holes of various sizes, or of
combinations of localized structures and holes (Knobloch, 2008).

This mathematical observation, known as homoclinic snaking,
appears valid, with some variations, for any system in a bistabil-
ity range of a uniform and a pattern state. It has been observed in
various physical contexts, including nonlinear optical systems, con-
vective systems, and magnetic systems (see Burke and Knobloch
(2007), Knobloch (2008) and references therein). In particular it
applies to the bistability ranges of bare soil and spots and of uniform
vegetation and gaps (Tlidi et al., 2008), as the localized solutions in
Fig. 5a and d suggest.

These results of pattern formation theory motivate yet another
question, pertaining to the nature of transitions between alternate
stable states or “catastrophic shifts” (Rietkerk et al., 2004, Scheffer
et al., 2001). The common view is of an abrupt transition between
the two states in response to a gradual environmental change. This
view has been applied to the context of dryland vegetation for
explaining desertification. Implicit in this approach is the assump-
tion that the two alternate stable states are spatially uniform, but
that is not generally the case because uniform vegetation and bare
soil are not adjacent states along the rainfall gradient or along any
other environmental gradient. A transition to bare soil is likely to
occur from the spot-pattern state and therefore the complex struc-
ture of intermediate states due to homoclinic snaking must be taken
into account.

The multitude of intermediate states in the bistability range of
bare soil and a periodic spot pattern suggests that desertification
may  not necessarily be abrupt, but rather a gradual process. Fig. 8
shows numerical simulations of the vegetation model introduced
by von Hardenberg et al. (2001) in a bistability range of an hexag-
onal spot pattern and uniform bare soil. The initial state (panel (a))
consists of a nearly hexagonal spot pattern, which is perturbed by
uniform partial biomass removal, visualized in the figure as a lighter
gray shade. The system responds to the initial perturbation by the
decay of several spots, as the arrows indicate. The decay occurs
where spots are closer to one another due to (penta-hepta) defects
in the (hexagonal) periodic pattern. The final pattern has recov-
ered from the perturbation, as the darker shades of gray in panel
(c) imply, but contains “holes” at the locations where spots have
decayed. Periodic patterns with holes are among the multitude of
intermediates states that exist in the bistability range of uniform
and pattern states. Thus, rather than recovering the original spot
pattern or decaying to bare soil, the system has relaxed to one of
the many available intermediate states.

The variety of patterns discussed so far share one property –
they all have a characteristic length scale, whether it is the width
of a stripe, the size of a spot or the size of a gap. Recent field studies
(Kéfi et al., 2007; Scanlon et al., 2007), however, have reported the
observations of patterns with wide patch-size distributions, lacking
any characteristic length. Can continuum models account for scale-
free patterns of this kind too? Studies of the Gilad et al. model have
unraveled biotic and abiotic circumstances under which scale-free
patterns emerge as a pattern formation phenomenon. We  refer the
reader to von Hardenberg et al. (2010) for more details and state
here only the main result. Scale-free patterns can develop when the
spatial distribution of the water resource is fast relative to processes
that exploit or absorb it (Manor and Shnerb, 2008). Two realiza-
tions of this condition have been identified, fast surface-water flow
relative to the infiltration of surface water into the soil, and fast
soil-water diffusion relative to water uptake by plant roots. The first
realization is likely to apply to species whose patch sizes are rela-
tively small, such as perennial grasses, and to conditions of strong
runoff generation, such as high infiltration contrast and slope. The
second realization may  apply to woody vegetation in sandy soil.

3.3. Mechanisms of species-diversity change

Dryland vegetation generally involves two  major functional
groups, woody and herbaceous vegetation. While the woody vege-
tation often includes only a few species, the herbaceous vegetation
may  consist of tens or even hundreds of species, depending on
the areas considered (Boeken and Shachak, 2006). Since pattern-
formation processes of the woody vegetation involve redistribution
of the water resource, they may  have a significant impact on the
diversity of the herbaceous vegetation, and therefore should be
taken into account in species-diversity studies. In the following we
describe how the Gilad et al. model can be used to study mechanism
of species-diversity change associated with vegetation pattern for-
mation.

We use the two-species version of the model with b1 and b2
representing the woody and the herbaceous functional groups,
respectively. The two functional groups can be distinguished in
the model by choosing much higher growth and mortality rates
for the herbaceous species and much larger maximum standing
biomass for the woody species. This choice of parameters intro-
duces a strong asymmetry; the woody vegetation has a dominant
role in the pattern-formation process, whereas the herbaceous veg-
etation mostly responds to the landscape induced by the woody
vegetation without affecting it significantly.

Calculating the existence range of spatially uniform steady
states and their stability properties for a woody–herbaceous sys-
tem we  have obtained (Gilad et al., 2007b)  the bifurcation diagram
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Fig. 9. A bifurcation diagram showing stationary uniform and pattern solutions
of  a two-species version of the Gilad et al. (2007b) model that describes a
woody–herbaceous system. The solution branches B, V1 and V2 represent, respec-
tively, uniform bare soil, uniform woody vegetation and uniform herbaceous
vegetation. The branch S represents the amplitudes of spots patterns. Solid lines
represent stable solutions, and dashed and dotted lines represent solutions unstable
to  uniform and non-uniform perturbations, respectively.
From Gilad et al. (2007b).

shown in Fig. 9. The bare-soil state, B (b1 = b2 = 0), is stable at
low precipitation rates p, but becomes unstable to uniform herba-
ceous vegetation, V2 (b1 = 0, b2 /= 0), or “grassland”, as p exceeds a
threshold value pb2

. The grassland state remains stable up to a sec-
ond threshold (the beginning of the dashed part of the grassland
branch), where an unstable, uniform mixed woody–herbaceous
state appears (not shown in the figure). At significantly higher pre-
cipitation, uniform woody vegetation, V1, becomes stable, but in
the intermediate range stable pattern states prevail. Shown in the
figure is a numerically calculated solution branch, S, describing a
spot pattern of the woody species, representing a “shrubland”. At
the high and very low ends of this branch the pattern consist of the
woody species only, but the middle part of the branch describes
a shrubland with herbaceous vegetation growing understory – a
nursing effect to be addressed below.

An important point to stress in Fig. 9 is the existence of a bistabil-
ity range where both the spot pattern solution, S, and the solution
describing uniform herbaceous vegetation, V2, are stable. In that
range a variety of stable mixed patterns are expected to exist, due
to homoclinic snaking, including savanna-like patterns, that is, scat-
tered woody patches in a grassland (see Fig. 11). The association of
savanna-like patterns with bistability of woody spot pattern and
uniform herbaceous vegetation suggests the possible existence of
a simple, general criterion for savanna-like patterns that is met  by
many of the mechanisms that have been proposed for such patterns
(House et al., 2003). This suggestion can be tested by studying con-
tinuum models that capture these mechanisms and searching for
bistability ranges of S and V2 solution types.

To better understand the nursing effect of woody patches on
herbaceous vegetation let us focus for a moment on a system
consisting of a woody species alone. Associated with the biomass
patterns are soil-water patterns, and depending on the precipi-
tation the two type of patterns can correlate or anti-correlate, as
Fig. 10b and c demonstrate (Gilad et al., 2004, 2007a; Meron et al.,
2007a,b). At high precipitation (c) the soil-water content, w, in the
woody patch is lower than away from the patch, anti-correlating
with the biomass distribution, whereas at low precipitation (b) it
is higher in the patch area and correlates with the biomass. The
crossover from water depletion to water concentration in the patch
area, as the precipitation rate decreases (a), can be understood as
follows. Two processes strongly affect the water balance in the
patch area, infiltration of surface water, which acts to increase
the water content, and water uptake by the plants’ roots, which

acts to deplete it. Let us examine how each of these processes
changes with precipitation. Since the patch area decreases signifi-
cantly as the precipitation is decreased, the water uptake from any
unit area in the patch decreases significantly. By contrast, although
the biomass decreases too, the infiltration rate hardly decreases.
The reason is the saturated growth of the infiltration rate at high
biomass values and the slow approach to the asymptote I(∞) = A
Thus, as the precipitation decreases, the loss of soil water per unit
area of the vegetation patch decreases significantly while the water
gain remains almost unchanged. This tilts the balance between the
two  processes and induces the crossover shown in Fig. 10a.

A possible response of the herbaceous vegetation to the soil-
water pattern induced by the woody vegetation is shown in Fig. 10d
and e. At high precipitation the woody species excludes the herba-
ceous species from its neighborhood, allowing its growth only in
the open area away from the woody patch (e). By contrast, at low
precipitation the woody species ameliorates its patch area and cre-
ates a micro-habitat for the herbaceous vegetation understory (d).
Transitions of this kind, i.e. from competition to facilitation along
rainfall gradients, have been observed in field studies (Holzapfel
et al., 2006; Pugnaire and Luque, 2001). The distinctive ability of an
organism not only to respond to its physical environment but also to
modify it so as to create habitats for other species has been termed
ecosystem engineering (Jones et al., 1994, 1997). This model study
therefore suggests that plants can act as ecosystem engineers and
identifies biotic and abiotic conditions under which engineering
develops. It further suggests that the engineering capacity of woody
plants can buffer species-diversity loss along rainfall gradients.

This example demonstrates the utility of the pattern formation
approach in unraveling mechanisms of species diversity change.
The tilted balance between surface-water infiltration and soil-
water uptake along a rainfall gradient would be hard to deduce
without the application of the pattern-formation approach to a
continuum model. This mechanism may  not be the only factor at
work, nor even the most significant one in all field realizations
of transitions from competition to faciltation along environmental
gradients. Soil-moisture increase because of reduced evaporation
and transpiration, and nutrient-concentration increase because of
litter decomposition, are among the additional factors that ame-
liorate the micro-environments formed by woody patches and
contribute to facilitation in stressed environments (Bruno et al.,
2003; Callaway and Walker, 1997; Holmgren et al., 1997). How-
ever, the effects of reduced patch size in a woody spot pattern on the
spatial distribution of soil water, and thus on the diversity of herba-
ceous vegetation, can be significant and should be considered, along
with other factors, in studies of facilitation along environmental
gradients.

Transitions from competition to facilitation can also be induced
at constant precipitation by increasing the woody-patch density
(Gilad et al., 2007b).  Patterns of highly dense as well as sparsely
scattered woody patches can be realized in the bistability range
of periodic spot patterns and uniform herbaceous vegetation. As
Fig. 11 shows, in the case of sparse woody patches the herba-
ceous species is excluded from the woody patches and grows in
the open area only (a), whereas in the case of dense woody patches
the growth of the herbaceous species is facilitated by the woody
species and occurs understory (b). The mechanism is similar to
that described for a single patch along a precipitation gradient,
except that the decline in soil water is due to higher uptake in dense
patterns and not due to lower precipitation.

This observation suggests another mechanism of species diver-
sity change, associated with nonuniform dilution of woody patches
in a bistability range of uniform herbaceous vegetation and a
periodic spot pattern consisting of mixed woody–herbaceous
patches. The two  types of vegetation states and various spatial
mixtures thereof, differ in the niches they form for herbaceous
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Fig. 10. Model solutions for a woody–herbaceous system, showing a transition from competition to facilitation as precipitation decreases. The lines B,  and S in panel (a)
show,  respectively, the soil-water content (per unit ground area) in bare soil and in a woody (b1) patch as functions of precipitation, in the absence of herbaceous vegetation,
b2. Above (below) a threshold precipitation pf , the water content under the woody patch is lower (higher) than in bare soil, implying competition (facilitation). Examples of
soil-water distributions, w(x), above and below pf are shown in panels (b) and (c) respectively. Possible responses of the herbaceous vegetation to the soil-water distributions
are  shown in panels (d) and (e).
From Gilad et al. (2007b).

vegetation. Consider for example herbaceous species that differ
from one another with respect to two traits, tolerance to shading
and tolerance to grazing (Gilad et al., 2007b).  These species can be
divided into three groups: (i) species that are intolerant to both
shading and grazing, (ii) species intolerant to shading but tolerant
to grazing, (iii) species intolerant to grazing but tolerant to shad-
ing. A landscape consisting of a periodic dense pattern of woody
patches will accommodate only group (iii), while an open-area
landscape, free of woody patches, will accommodate only group
(ii). However, in the bistability range of both landscape types all
three groups can be accommodated by appropriate removal and
dilution of woody patches. In this range there exist stable spatially
mixed patterns that contain three different habitats as Fig. 12 illus-
trates: areas of dense woody patches accommodating group (iii),
open areas accommodating group (ii), and open areas enclosed
by dense woody patches that restrict grazers access and there-
fore accommodate group (i). Mathematically, areas of dense woody
patches surrounded by open areas correspond to solutions describ-
ing localized structures, whereas open areas enclosed by dense
woody patches correspond to solutions describing combinations
of localized structures with holes in periodic patterns (see Section
3.2).

We stress that bistability of uniform herbaceous vegetation and
a periodic spot pattern is a necessary condition for the coexistence
of the three groups of herbaceous species. In a higher precipitation
range where the spot pattern is the only stable solution, multi-
species patterns as in Fig. 12 will converge in the course of time

to  a single herbaceous species, residing in the woody patches, or
to no herbaceous vegetation at all. The bistability condition, how-
ever, is not a sufficient condition, because the solution branches of
localized structures and holes in periodic patterns may  occupy only
part of the bistability precipitation range (see Fig. 7). Identifying the
biotic and abiotic conditions that control the size of these solution
branches, is a significant open problem that can be addressed with
continuum models.

3.4. Rehabilitation of degraded vegetation

A common rehabilitation practice of degraded vegetation on
hill slopes is based on runoff harvesting by means of parallel con-
tour bunds or embankments that intercept water runoff and along
which the vegetation is planted. The optimal distance between
adjacent bunds, however, is unknown, nor their minimal effec-
tive depth. Since under favorable rainfall conditions the vegetation
tends to self-organize in banded patterns anyway, restoring veg-
etation by runoff harvesting is a resonance problem, the spatial
counterpart of time-periodic forcing of oscillatory systems, in
which the bunds provide the periodic force. Resonant response
in this context means the success of the system to follow the
spatial pattern even if there is a mismatch between the forc-
ing pattern and the pattern that the unforced system tends to
form.

Little is known about this spatial resonance problem, but recent
studies of the Swift–Hohenberg equation subjected to a parametric
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Fig. 11. Transition from competition to facilitation in woody (b1) – herbaceous (b2) system, induced by a change of woody-patch density in a bistability range of uniform
herbaceous vegetation and a woody spot pattern. At low density herbaceous vegetation grows in the open areas (a), while at high density understory (b). Darker gray shades
denote higher biomass.
From Gilad et al. (2007b).

Fig. 12. Schematic illustration of herbaceous-species coexistence in a bistability
range of uniform herbaceous vegetation and periodic woody spot pattern (green
spots). The variety of intermediate patterns in this range provides niches for herba-
ceous species that are intolerant to both shading and grazing (red open area),
intolerant to shading but tolerant to grazing (purple open area), and tolerant to
shading but intolerant to grazing (yellow spots understory of woody patches). (For
interpretation of the references to color in this figure legend, the reader is referred
to  the web version of the article.)

spatially periodic weak force, shed some light on the intricate
nature of vegetation restoration (Manor et al., 2008, 2009). Apply-
ing a stripe-like forcing pattern, with a forcing wave-number kf
(or wavelength �f = 2�/kf), to a system that supports stripe pat-
terns with wave-numbers centered around k0, does not necessarily
reinforce stripe patterns, even if kf is close to k0. Instead, two-
dimensional oblique and rectangular patterns generally form as
Fig. 13 shows. This surprising response of the system is related to
the type of forcing, parametric or multiplicative rather than addi-
tive, and to the freedom of a two-dimensional system to respond in
a direction perpendicular to the forcing. The forcing exerted by the
parallel bunds results in periodic soil-water concentration which
affects the biomass growth rate, and is therefore a form of paramet-
ric forcing. The parametric forcing favors a resonant response at a
wave-number kf/2. As a consequence, the system locks its wave-
vector component in the forcing direction, x, to one-half of the
forcing wave-number, kx = kf/2, and compensates for the unfavor-
able wave-number by building a wave-vector component, ky, in the
orthogonal direction, y, forming a two-dimensional pattern.

The view of vegetation restoration as a spatial resonance prob-
lem can be pursued using continuum vegetation models that are
subjected to spatially periodic forcing. The forcing can be simulated
by modulating the topography function, �(�r), or the infiltration rate
I(�r). Such studies may  prove invaluable in devising cost-effective
restoration practices. The practices currently used involve strong
forcing, i.e. substantial landscape modulations, which are costly.
Can practices involving weak landscape modulations, such as peri-
odic soil-crust removal, achieve the same goal? Studies addressing
this question require the application of pattern-formation theory,
for, as discussed above, the response of the vegetation to the weak
forcing may  not be trivial.
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Fig. 13. Two-dimensional response to a one-dimensional spatial force in the Swift–Hohenberg equation. A system that supports a stripe pattern with wave-number k0 (a),
responds to a stripe-like force with a wave-number kf = 1.2k0 (b), by forming an oblique pattern when the force is sufficiently weak (c), or a rectangular pattern with stronger
force  (d). Both two-dimensional patterns are resonant since their wave-vector components in the forcing direction are exactly half the forcing wave number.
Adopted from Manor et al. (2008).

Fig. 14. Examples of bottom-up and top-down processes that are captured by the pattern-formation modelling approach. Local biomass-water feedbacks (lower frame) can
induce symmetry-breaking instabilities that lead to vegetation pattern formation at the landscape scale (upper frame). Environmental changes at the landscape scale induce
transitions to other alternate stable vegetation patterns (upper frame). These pattern transitions change the local soil-water distributions and thereby affect inter-specific
interactions (lower frame). In woody–herbaceous systems these interaction changes may  induce transitions from competition to facilitation. In other systems they may feed
back  on vegetation pattern formation (dashed arrow).

4. Added values of the pattern-formation approach

4.1. Universality

Nonlinear dynamical phenomena are to a large extent universal.
Synchronized oscillations, chaotic dynamics and catastrophic shifts
are all examples of universal behaviors shared by many different
systems. Unraveling the nonlinear elements that are responsible
for universal behavior in a given system is important because it
helps associating the system with known and often well under-
stood dynamical behaviors. Modelling approaches which make
these elements transparent are therefore advantageous over other
approaches.

Instabilities are the most fundamental elements responsible for
universal behavior. This is grounded in the mathematical theory
of normal forms which associates a set of characteristic dynamical

equations with each instability type, and provides the machinery of
deriving these equations from any continuum model that contains
this type of instability. Continuum models lend themselves to sta-
bility analyses and thereby allow the identification of instabilities
and their normal forms.

Another mathematical construct that contains universal infor-
mation and is particularly relevant to the subject of this paper
is the existence of two alternate stable states of which one
state is not spatially uniform. This is the case of desertification;
continuum models of dryland vegetation have unraveled bista-
bility ranges of uniform bare-soil state and a spot-pattern state
(von Hardenberg et al., 2001; Gilad et al., 2004). Linking this
finding with independent studies of simple pattern-formation
models, such as the Swift–Hohenberg model (Knobloch, 2008),
suggest at once that desertification may  not be an abrupt tran-
sition, but rather a gradual process involving dynamics across



Author's personal copy

80 E. Meron / Ecological Modelling 234 (2012) 70– 82

the multitude of intermediate states that exist between the
bare-soil and the spot-pattern states (see Section 3.2). Bista-
bility range of uniform and pattern states is also realized in
woody–herbaceous systems. The multitude of intermediate pat-
terns in this range accounts for savanna-like patterns (see Section
3.3). Whether this is a universal mechanism of savanna land-
scapes is an interesting open question that can be studied
by modelling the various mechanisms that have been pro-
posed for savanna landscapes and identifying possible bistability
ranges of uniform herbaceous vegetation and woody spot pat-
terns.

It is important to stress that continuum models contain
important non-universal information as well. For example, the
identification of a stationary non-uniform instability of uniform
vegetation implies the appearance of biomass patterns of a uni-
versal form (hexagonal gap patterns). Soil-water patterns will
also assume that universal form, but the relations between the
biomass and soil-water patterns depend on elements which are
system-specific – the relative strengths of the infiltration and root-
augmentation feedbacks.

4.2. Aspects of complex systems

Ecological systems generally involve processes occurring across
different length scales and across different trophic and organi-
zational levels. Two aspects of such processes are particularly
significant, the emergence of new properties in bottom-up
processes, and the adaptation of the system’s constituents
to environmental changes in top-down processes. Both the
individual-based and the pattern-formation modelling approaches
capture these two aspects, but differ in the description of the sys-
tem’s constituents. In individual-based modelling the constituents
are individuals plants or other organisms, whereas in pattern-
formation modelling the constituents are eco-physical processes,
occurring locally at small spatial scales, such as water flow, infil-
tration of surface water, water uptake by plants’ roots, biomass
growth, etc.

Vegetation pattern formation is an example of a bottom-up pro-
cess, whereby positive feedbacks operating at local scales leads to
the emergence of periodic patterns at landscape scales. Changes
of local woody–herbaceous interactions as a result of rainfall vari-
ability or consumer pressure is an example of a top-down process
whereby induced woody-pattern transitions at the landscape scale
change the local soil-water distribution and, consequently, the col-
onization of herbaceous vegetation. Fig. 14 provides a schematic
illustration of these bottom-up and top-down processes.

The pattern-formation approach provides a powerful tool for
studying these and other processes across different length scales
and organization levels. Since continuum pattern-formation mod-
els are amenable to mathematical analysis they can be used not
only to simulate various scenarios of ecosystem dynamics, but also
to elucidate mechanisms of such complex processes.

4.3. Integrative framework

Ecology, as an empirical science, has branched into many
research fields according to the hierarchical levels and
spatio-temporal scales the empirical studies have addressed.
As a result, many subdisciplines have emerged, including popula-
tion ecology, community ecology, ecosystem ecology, landscape
ecology, and restoration ecology. Since ecosystem dynamics gen-
erally proceed across different organization and trophic levels, and
involve different length and time scales, integrative studies that
cross the boundaries between these subdisciplines are needed.
Indeed, increasing research efforts have been devoted recently
to the integration of community and ecosystem ecology (Jones

and Lawton, 1995; Loreau, 2010). Likewise, efforts to incorporate
spatial heterogeneity in community dynamics, thus integrating
community and landscape ecology, are ongoing (Holyoak et al.,
2005; Ritchie, 2010).

We suggest here that the pattern-formation approach to ecology
can provide a framework that integrates landscape ecology with
other subdisciplines, such as population, community and ecosys-
tem ecology, as well as conservation and restoration ecology. It
does so by resolving the ecological and physical processes occurring
locally, which are the elements that go into the models, and by pro-
viding analytical and numerical tools for upscaling these processes
to landscape scales. Thus, the emergence of vegetation patterns
from local water-biomass feedbacks integrates aspects of popula-
tion, ecosystem and landscape ecology. The emergence of rainfall
dependent inter-specific interactions in woody–herbaceous sys-
tems, the dependence of these interactions on woody patch density
and the implications for the coexistence of different herbaceous
species, integrates aspects of community, ecosystem and landscape
ecology. Finally, the capability of studying the response of woody
vegetation to imposed landscape modulations adds aspects of con-
servation and restoration ecology.

5. Conclusion

The pattern-formation modelling approach seeks to upscale
information at the organism level and sub-patch scales, to infor-
mation at the ecosystem level and landscape scales. The former
information is used in building the model equations, while the
latter is extracted from the model by means of mathematical anal-
ysis and numerical simulations. Unlike individual-based models
the basic elements are not individuals, but rather local processes,
such as resource flows, clonal propagation of plants, seed dispersal,
growth of above and below-ground biomass, etc. These processes
are mathematically expressed in terms of space and time depen-
dent dynamical variables, such as biomass and limiting resources.
Since no reference to individuals is made, questions related to
the life-cycle of an individual or to age distributions cannot be
addressed. On the other hand, pattern-formation models can prop-
erly handle the continuous flow of matter and lend themselves to
the powerful mathematical methods of pattern-formation theory.

Three added values of the pattern-formation modelling
approach have been emphasized: (i) It reveals universal elements
such as instabilities, bistability ranges, and resonant responses, for
which a great deal of knowledge is already available. (ii) It captures
processes across different length scales and organization levels,
thereby revealing bottom-up processes and emergent properties,
as well as top-down processes and adaptive response to envi-
ronmental changes. (iii) It provides an integrative framework for
studying problems in spatial ecology, coupling aspects of landscape,
population, community and restoration ecology.

Applications of the pattern-formation approach to water-
limited landscapes predict the possible emergence of spatial
heterogeneity as a self-organization phenomenon. The predicted
spatial patterns can be periodic (spots, stripes and gaps), irregular
with a characteristic length scale, or scale free. The pattern forma-
tion approach provides clear criteria for the realizations of these
different pattern types in terms of environmental conditions, such
as precipitation rate, infiltration rate, water-ground friction force,
topography and disturbances, and in terms of species traits, such
as biomass growth rate, uptake rate and root-to-shoot ratio. Fur-
ther model studies, however, are needed. In particular, the extent
of the snaking range, within the bistability range of bare soil and
spot pattern, has not been calculated yet using vegetation models.
Understanding the dependence of this range on biotic and abiotic
factors is important for studies of desertification and species diver-
sity.
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The coupling of biotic and abiotic variables in the pattern-
formation modelling approach provide information about resource
patterns as well, which can correlate or anti-correlate with biomass
patterns. These correlations change not only with environmental
conditions and species traits, but also with spatial patterning, and
may  strongly affect community structure. Inter-specific interac-
tions in woody–herbaceous systems, for example, strongly depend
on the soil-water distributions that the woody life form induces.
These distributions, in turn, are affected by the root-to-shoot ratio
of the woody life form, by the precipitation rate, or by the den-
sity of woody patches. Accordingly, woody patches can exclude
herbaceous vegetation or facilitate its growth, and for given species
these relations can change along rainfall and consumer-pressure
gradients. Moreover, the multitude of spatial patterns the woody
vegetation can form in bistability ranges of basic vegetation states,
increases spatial heterogeneity and thus species diversity. Since the
pattern-formation approach provides a fairly good understanding
of vegetation pattern formation and how it is affected by envi-
ronmental conditions, it may  also provide information about the
response of species diversity to environmental changes taking into
consideration the mediating effects of vegetation patterns. Such
links between species diversity and vegetation pattern formation
have hardly been studied (Gilad et al., 2007b).

The pattern-formation modelling approach also suggests a new
view of vegetation restoration by water harvesting methods, that
is, restoration as a resonance problem in spatially forced pattern-
forming systems. Studies of simple pattern formation models, such
as the parametrically forced Swift–Hohenberg equation, clarify
conditions under which the response of the system to the forc-
ing may  strongly deviate from the forcing pattern. Applying these
results to vegetation restoration using continuum vegetation mod-
els can shed new light on the applicability of this ancient, but
powerful restoration practice, and on possible modifications that
can improve the ecological services it provides.

We  focused in this paper on dryland vegetation using mostly
the Gilad et al. model, but the approach is general and applica-
ble to other models of dryland vegetation, as well as to other
contexts, such as vegetation pattern formation in wetlands (van
der Valk and Warner, 2009). The specific model to be used in a
given ecological context depends to a large extent on the pro-
cesses and questions that are being addressed. To make the model
more tractable with the mathematical methods of pattern forma-
tion theory we generally try to simplify it as much as possible. This
simplification does not necessarily mean loss of essential informa-
tion, for despite the overwhelming complexity of ecosystems, not
all system processes are equally important in any given context or
for any given question. In fact, substantial changes in ecosystem
dynamics are often driven by very few processes (Holling, 1992),
and the challenge is to identify these few factors and simplify the
modelling accordingly. Here too, the theory of pattern formation
can be helpful, by providing the mathematical basis for such model
simplification.
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