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Front dynamics in catalytic surface reactions
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Abstract

A variety of pattern formation phenomena in catalytic surface reactions can be attributed to the dynamics of interfaces,
or fronts, separating distinct uniform states. The states may represent surface coverages by different adsorbates or in the
case of forced oscillations, different phases of oscillation. The dynamics of fronts are strongly affected by front instabilities
and by diffusion anisotropy. We identify two new pattern formation mechanisms associated with different front behaviors
in orthogonal directions: an ordering process by which stationary labyrinths in an isotropic system evolve into ordered
stationary stripes, and confinement of isotropic spatiotemporal chaos to one space dimension, a state we termstratified chaos.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Heterogeneous catalytic reactions, involving ad-
sorption and desorption of molecular species on crys-
tal surfaces, provide a wealth of nonlinear dynamics
and pattern formation phenomena on micrometer to
millimeter scales. These phenomena include sponta-
neous oscillations and entrainment in forced oscilla-
tions [1], front [2,3] and pulse [4] dynamics and spiral
waves [5,6]. The micrometer-scale dynamics are often
associated with spatiotemporal processes at a smaller
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(nanometer) scale such as surface phase transitions
induced by adsorption of molecular species [1]. The
wide range of length scales in catalytic surface reac-
tions makes them excellent subjects for investigating
the relations between dynamics at micro-scales and
nano-scales, and for studying the potential control
of nanostructures by manipulating patterns at the
micro-scale.

Two theoretical approaches are being used to bridge
over the different length scales: a top-down approach
involving phenomenological macroscopic models for
the reaction schemes [1], and a bottom-up approach
using Monte-Carlo simulations [7,8] and microscopic
models [9]. This paper belongs to the former category.
We consider a class of pattern formation mechanisms
at the micrometer to millimeter scales associated with
single fronts which are the smallest structures at these
scales. The mechanisms pertain to instabilities of the
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front structures themselves [10–12]. Single front struc-
tures may form in catalytic reactions with bistability
of two stationary uniform states [3,13,14], or in os-
cillatory reactions subjected to time-periodic modula-
tion of a control parameter. Periodic forcing at twice
the unforced reaction frequency fixes the phase of os-
cillation at two possible values differing byπ . Phase
fronts that shift the oscillation phase byπ may form
between these two phase states [15,16].

An example of a catalytic surface reaction which has
both oscillations and bistability of stationary states is
the CO oxidation on Pt(1 1 0), Pt(1 0 0), and Pt(2 1 0)
surfaces [1]. Oscillations in this reaction consist of
surface phase transitions between a CO covered 1× 1
phase with a high oxygen sticking coefficient and a
CO depleted reconstructed phase with a low oxygen
sticking coefficient. Periodic forcing of the reaction
on Pt(1 1 0) has been studied by modulating the partial
pressure of oxygen [17].

In a different parameter range bistability of sta-
tionary states, a CO covered surface and an oxygen
covered surface, has been observed. A simple bista-
bility with a unique front solution was theoretically
predicted [18] and experimentally verified [19] in the
CO oxidation on Pt(1 1 1) where no reconstruction oc-
curs. A significant observation made in CO oxidation
experiments on Pt(1 0 0) and Pt(1 1 0) is the coexis-
tence of two stable fronts, pertaining to CO covered
state invading an oxygen covered state (a “CO front”),
and an oxygen covered state invading a CO covered
state (an “oxygen front”). This coexistence of fronts,
referred to as “dynamic bistability” [14,20], has been
attributed to a front bifurcation [14]. Further studies
revealed the same phenomenon also in the NO+ H2
reaction on Rh(1 1 0) [21]. Presumably, it is also of
relevance for the rich spatiotemporal dynamics dis-
covered in the CO oxidation on Pt(2 1 0) [22]. In a
symmetric setting, this is a pitchfork bifurcation that
renders a stationary front unstable and produces a
pair of counter-propagating stable fronts. Front bifur-
cations of this type have been found both in nonoscil-
latory bistable systems [10,23,24] and in periodically
forced oscillatory systems [15]. They are referred to
as “nonequilibrium Ising–Bloch (NIB) bifurcations”.

In this paper, we study pattern formation mech-
anisms resulting from the coupling of the NIB bi-
furcation to the crystal surface anisotropy [25,26].
Anisotropy has a dramatic impact on chemical waves

on catalytic surfaces. Square-shaped waves have been
seen in the reaction of NO and H2 on Rh(1 1 0)
[21,27,28], while the reaction of O2 and H2 on
Rh(1 1 1) displays triangular patterns [29]. To sim-
plify the analysis, we use a FitzHugh-Nagumo (FHN)
model with diffusion anisotropy. More realistic mod-
els which also have a NIB bifurcation are expected
to exhibit similar behaviors. In Section 2, we present
the anisotropic FHN model and describe two types
of front instabilities: the NIB bifurcation and trans-
verse (or morphological) instability. We also present
the normal form equation for periodically forced
oscillations and discuss the NIB bifurcation in that
context. In Section 3, we study the effects of diffusion
anisotropy on the velocity of curved fronts by deriving
the angular dependence of velocity–curvature rela-
tions. These relations are used in Section 4 to study
the effects of anisotropy on the two types of front
instabilities. These effects suggest new mechanisms
of pattern formation which we describe in Section 5.
We conclude with a discussion in Section 6.

2. The model

Phenomenological models with parameters de-
duced from experimental data have been developed
for several surface reactions including CO oxidation
on platinum surfaces [30]. The rate equations involve
adsorption, desorption, dissociation, and reaction
terms. The spatial coupling is provided by surface
diffusion of some adsorbed species with anisotropy
of the diffusion being either intrinsic or induced by
adsorbate coverages. Many qualitative features of
models of this kind are captured by FHN models
describing oscillatory or bistable media [10]. The
specific model we choose to study is

∂u

∂t
= ε−1(u− u3 − v)+ δ−1∇2u+ ∂

∂y

[
dδ−1∂u

∂y

]
,

∂v

∂t
= u− a1v − a0 + ∇2v, (1)

whereu is the activator andv the inhibitor. The pa-
rametera0 can be regarded as a bias parameter which
breaks the odd symmetry of the system,(u, v) →
(−u,−v) at a0 = 0. The parametera1 can be cho-
sen so that Eqs. (1) represent an oscillatory medium
arising from a Hopf bifurcation of the(u, v) = (0,0)
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state to uniform oscillations(a1 < 1), or a bistable
medium with two stationary and uniform stable states,
an “up” state,(u+, v+), and a “down” state,(u−, v−)
(a1 > 1). For the symmetric system(a0 = 0), the
Hopf bifurcation occurs asε is decreased pastεc =
a−1

1 . The Hopf frequency isω0 =
√
a−1

1 − 1. The
parameterd introduces diffusion anisotropy.

We now review a few results for isotropic systems
(d = 0). Consider first bistable systems(a1 > 1)
[10–12], where the coexistence of up and down states
allows for fronts solutions connecting the two states
in space. In the symmetric case(a0 = 0), a station-
ary front solution exists. This solution loses stability
to a pair of counter-propagating fronts in a pitchfork
bifurcation asε or δ is decreased below some critical
values. Forε/δ � 1, the bifurcation point is given
by η = ηc, whereη = √

εδ, ηc = 3
2

√
2q3 andq2 =

a1 + 1
2. This is the NIB bifurcation. The stationary

front is often called an “Ising front”, while the two
counter-propagating fronts are called “Bloch fronts”.
The corresponding bifurcation diagram is shown in
Fig. 1(a). Breaking the odd symmetry by settinga0 
=
0 unfolds the pitchfork bifurcation into a saddle-node
bifurcation as shown in Fig. 1(b).

Any of the front solutions may be unstable to trans-
verse perturbations where modulations of a linear front
begin to grow. For the symmetric system(a0 = 0) and
for ε/δ � 1, the thresholds for these instabilities are
given byδ = δI(ε) = ε/η2

c andδ = δB(ε) = ηc/
√
ε

for Ising and Bloch fronts, respectively. A diagram in
the(ε, δ) plane, displaying the NIB bifurcation bound-
ary, δ = δF(ε), and the transverse instability bound-
aries,δ = δI(ε) andδ = δB(ε), is shown in Fig. 2.

Consider now the oscillatory case(a1 < 1)
[15,16,31,32] with the system periodically forced
at a frequencyωf ≈ 2ω0. Close to the Hopf bi-
furcation of the (u, v) = (0,0) state any of the
state variables can be expanded as power series in
µ = √

(εc − ε)/εc: u = µu1 + µ2u2 + · · · , where
u1 = Aexp(iωf t/2) + c.c. (and similarly forv). An
equation for the amplitudeA can be derived using
standard techniques by inserting the expansions foru

andv into Eqs. (1). The result is the forced complex
Ginzburg–Landau (FCGL) equation [33,34]:

At = (µ+ iν)A− (1 + iβ)|A|2A
+(1 + iα)∇2A+ γ Ā, (2)

Fig. 1. The NIB bifurcation in the FHN model. The front speed,
c, is shown as a solid curve for stable fronts and a dashed curve
for unstable fronts. (a) The symmetric case,a0 = 0 and (b) the
nonsymmetric case,a0 
= 0.

Fig. 2. The NIB bifurcation and planar-front transverse insta-
bility boundaries in theε–δ parameter plane for a symmetric
and isotropic model. The thick curve is the NIB bifurcation,
δF(ε) = η2

c/ε. The thin curves are the boundaries for the trans-
verse instability of Ising,δI (ε), and Bloch,δB(ε), fronts. When
δ > δI (δ > δB), planar Ising (Bloch) fronts are unstable to trans-
verse perturbations. Parameters:a1 = 2.0, a0 = 0, d = 0.
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where we rescaled the amplitude and the space and
time coordinates, but for simplicity kept the same no-
tation. In this equation,µ represents the distance from
the Hopf bifurcation;ν represents the deviation of
the system’s oscillation frequency,1

2ωf , from the fre-
quency,ω0, of the unforced system;β represents a
nonlinear correction of the oscillation frequency;α
represents dispersion; andγ is the forcing strength.
The forcing breaks the phase shift symmetry of Eq. (2),
A → Aexp(iφ), whereφ is an arbitrary constant.

Eq. (2) has two stable constant solutions,A0 and
Aπ with the properties,|A0| = |Aπ | and argAπ −
argA0 = π . The two solutions describe uniform oscil-
lations of the original system (1), with constant phases
of oscillation, differing byπ with respect to one an-
other. In this respect, the forced oscillatory system is
actually a bistable system and front solutions form that
connect the two phase states in space. These front so-
lutions undergo a NIB bifurcation similar to that found
in the bistable FHN model. The bifurcation parameter
is the forcing strength,γ . For γ larger than a critical
value,γc, a single stable Ising front solution exists.
The front is stationary and forms a fixed interface be-
tween the two phase states. Asγ is decreased below
γc, the stationary Ising front solution loses stability
and a pair of counter-propagating Bloch front solutions
appear.

In the following sections, we focus on the bistable
form of the FHN model (with diffusion anisotropy,
d 
= 0). Many of the findings associated with the NIB
bifurcation are expected to hold for the forced oscil-
latory case as well.

3. Velocity of curved fronts in the presence of
anisotropy

We study the effects of diffusion anisotropy on the
dynamics of fronts in two space dimensions by de-
riving velocity–curvature relations for nearly planar
fronts. The derivation uses a singular perturbation
approach and is valid forλ := √

ε/δ � 1. Relations
of this kind have proved invaluable for qualitative
prediction of pattern formation processes in isotropic
systems such as spot replication and spiral wave
nucleation [11,12,35–37].

We first transform to an orthogonal coordinate
system(r, s) that moves with the front, wherer is

a coordinate normal to the front ands is the ar-
clength. We denote the position vector of the front by
X(s, t) = (X, Y ), and define it to coincide with the
u = 0 contour. The unit vectors tangent and normal
to the front are given by

ŝ = cosθ x̂ + sinθ ŷ, r̂ = − sinθ x̂ + cosθ ŷ,

whereθ(s, t) is the angle that̂s makes with thex-axis.
A point x = (x, y) in the laboratory frame can be
expressed as

x = X(s, t)+ r r̂.
This gives the following relation between the labora-
tory coordinates(x, y, t) and the coordinates(s, r, τ )
in the moving frame:

x =X(s, t)− r sinθ(s, τ ),

y = Y (s, t)+ r cosθ(s, τ ), t = τ, (3)

where ŝ = ∂X/∂s and ∂X/∂s = cosθ , ∂Y/∂s =
sinθ . In the moving frame coordinates, the front nor-
mal velocity and curvature are given byCn = −∂r/∂t
andκ = −∂θ/∂s, respectively.

The second step is to express Eqs. (1) in the moving
frame and use singular perturbation theory, exploiting
the smallness ofλ. We distinguish between an inner
region that includes the narrow front structure, and
outer regions on both sides of the front. In the inner
region ∂u/∂r ∼ O(λ−1) and ∂v/∂r ∼ O(1). In the
outer regions both∂u/∂r and∂v/∂r are of order unity.
In the inner regionv = vf is taken to be constant.
Expanding bothu and vf as powers series inλ and
using these expansions in the moving frame equations
we obtain at order unity

Cn = − 3

η
√

2
I (θ)vf − 1 + d

δI (θ)2
κ, (4)

whereI (θ) = √
1 + d cos2θ . In the outer regions to

the left and to the right of the front region different ap-
proximations can be made. Here,∂u/∂r ∼ ∂v/∂r ∼
O(1) and to leading order all terms containing the
factorλ can be neglected. The resulting equations can
be solved forv in the two outer regions. Continuity
of v and of ∂v/∂r at the front positionr = 0 yield
a second relation betweenCn andvf . Eliminating vf
by inserting this relation into Eq. (4) gives an implicit
relation between the normal velocity of the front and
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Fig. 3. The velocity of planar(κ = 0) fronts at different angles.
Bloch fronts exist in narrow sectors aroundθ = 0 and θ = π .
The wider sectors in between correspond to Ising fronts.

its curvature

Cn + 1 + d
δI (θ)2

κ = 3I (θ)(Cn + κ)
η
√

2q2
√
(Cn + κ)2 + 4q2

+3I (θ)a0

η
√

2q2
, (5)

whereq2 = a1 + 1
2. More details about this derivation

can be found in [26].
An example of the angular dependence of the ve-

locity of a planar front, obtained by solving Eq. (5)
at κ = 0 is shown in Fig. 3. The existence of a sin-
gle front branch atθ = π/2 implies an Ising front
when the propagation is in thex direction, whereas
the appearance of three front branches nearθ = 0 and
θ = π implies coexistence of Bloch fronts when the
propagation is in they direction.

Typical velocity–curvature relations obtained as so-
lutions of Eq. (5) for a givenθ value are shown in
Fig. 4. The number of intersection points with the
κ = 0 axis indicates the number of planar front solu-
tions. Positive slopes at these points indicate instabil-
ity to transverse perturbations. Termination points of
lower or upper branches close to theκ = 0 axis indi-
cate proximity to the NIB bifurcation and a likelihood
for spontaneous front transitions, i.e., dynamic transi-
tions between the two branches leading to reversals in
the direction of front propagation [12,35,37,38]. These
transitions can be induced by curvature variations, as
Fig. 4 suggests, as well as by other perturbations like
front interactions. Relations between the front veloc-
ity and its distance to a nearby front or a boundary
can be similarly derived [39].

Fig. 4. Typical velocity–curvature relations of Eq. (5). (a) In the
“Bloch regime” where both planar front solutions exist and are
stable to transverse perturbations,δ = 1.2. (b) Near the front
bifurcation where two planar front solutions exist but are unstable
to transverse perturbations. The solution branches terminate near
small values of the curvatureκ, δ = 1.5. (c) In the “Ising regime”
only a single (in this case transversely unstable) planar front exists,
δ = 2.5. Other parameters:a1 = 2.0, a0 = 0.0, ε = 0.04.

4. Stability of planar fronts

Eq. (5) can be used to study the effects of anisotropy
on the stability properties of planar fronts. We begin
with the NIB bifurcation. Consider the symmetric
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model with a0 = 0. Settingκ = 0, we find the
Ising front solutionC0 = 0 and the two Bloch front
solutions

C0 = ±2q

η

√
η2

cI
2(θ)− η2, (6)

for η < ηcI (θ), whereηc is the NIB bifurcation point
for the isotropic system and we recall thatη = √

εδ.
We have used the notationC0 for the velocity of a
planar front. The anisotropy shifts the bifurcation point
by the factor 1≤ I ≤ 1 + d:

ηanis
c (θ) = ηcI (θ). (7)

In theε–δ plane the front bifurcation boundary is given
by

δ = δF = 9

8q6

I2(θ)

ε
. (8)

The stability of the Ising and Bloch fronts to transverse
perturbations can be studied by linearizing Eq. (5)
aroundκ = 0. This yields relations of the form

Cn = C0 −Dκ, (9)

whereC0 is one of the three front solutions (an Ising
front and a pair of Bloch fronts). The conditionD = 0
gives the transverse instability threshold of the planar
front solutions. For the symmetric system(a0 = 0)
we obtain

δ = δI = 8q6

9

(1 + d)2ε
I6(θ)

(10)

for the Ising front, and

δ = δB = 3

2
√

2q3

√
1 + d√
ε

(11)

for the Bloch fronts. Notice that the transverse in-
stability threshold for Bloch fronts (in the symmetric
case) is independent of the angleθ . Fig. 5 shows the
NIB bifurcation boundary and the transverse instabil-
ity boundaries forθ = 0 (solid curves) and forθ =
π/2 (dashed curves) assuming a symmetric system,
a0 = 0.

In the nonsymmetric case(a0 
= 0), it is still pos-
sible to find an analytical expression for the threshold
of the NIB bifurcation,ηanis

c (θ). This threshold occurs
when theκ = 0 curve is tangent to the cubicCn–κ

Fig. 5. The NIB bifurcation and planar-front transverse instability
boundaries in theε–δ parameter plane for the symmetric(a0 = 0)
and anisotropic(d 
= 0) case. The dashed curves are for the case
of planar fronts propagating in thex direction (θ = π/2) and the
solid curves are for planar fronts propagating in they direction
(θ = 0). The thick curves are the front bifurcation and the thin
curves are the transverse instability boundaries of Ising and Bloch
fronts. Note that the transverse instability boundaries for Bloch
fronts in the x and y directions coincide. Parameters:a1 = 2,
a0 = 0, d = 1.

curve that solves Eq. (5). We first solve for the value
of Cn at this point by deriving Eq. (5) with respect to
Cn and setting dκ/dCn = κ = 0. Using this value of
Cn in Eq. (5) withκ = 0 gives the threshold

ηanis
c (θ) = ηcI (θ)(1 − a2/3

0 )3/2. (12)

Fig. 5 shows three points labeled A, B, C at param-
eter values where different spatiotemporal dynamics
are expected to be found. At A, there are stable Bloch
fronts in both thex andy directions. The Bloch fronts
in they direction are faster because the distance of the
point A to the solid NIB bifurcation boundary is larger
than the distance to the dashed NIB bifurcation bound-
ary (see Fig. 1(a) for the dependence of Bloch front
velocity on the distance to the NIB bifurcation point).
At B, there are Ising fronts in both thex andy direc-
tions that are unstable to transverse perturbations. At
C, there are stable Ising fronts in thex direction and
unstable Bloch fronts in they direction. In the nonsym-
metric case(a0 
= 0), there are additional possibilities
since the two Bloch fronts are no longer symmetric
and their transverse instability boundaries are not de-
generate [26]. In Section 5, we consider three pattern
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formation mechanisms in conditions closely related to
the points A, B, C, but in a nonsymmetric system.

5. Pattern formation mechanisms

Anisotropy may introduce mechanisms for pattern
formation that do not exist in isotropic system. We
present three examples. The first simply shows a dis-
tortion of a wave pattern due to diffusion anisotropy.
The distortion may be strong but does not change the
nature of the pattern. The second demonstrates an or-
dering effect of anisotropy where a labyrinthine pat-
tern transforms into an ordered stripe pattern. The last
demonstrates a confinement of spatiotemporal chaos
to one space dimension.

Isotropic bistable systems in the Bloch regime pro-
duce traveling wave phenomena including rotating
spiral waves. Fig. 6 shows the development of an oval
spiral wave from a front line, consisting of two Bloch
fronts, in the presence of anisotropy. The diffusion
anisotropy causes the Bloch fronts propagating in
they direction to move faster than those propagating
in the x direction as the velocity–curvature relations
depicted in Fig. 7 show. Note the negative slopes
of the Bloch front branches which imply stability to
transverse perturbations. In the Ising regime, isotropic
bistable systems may form stationary labyrinthine pat-
terns as shown in Fig. 8(a). The pattern was obtained
by numerical solution of Eqs. (1) withd = 0. Switch-
ing on anisotropic diffusion(d 
= 0) but keeping both
the x and they directions in the Ising regime leads
to an ordering process where the pattern approaches
regular stripes oriented parallel to they direction as
shown in Figs. 8(b)–(d). The selection of they direc-
tion follows from the stronger transverse instability
of planar and weakly curved fronts in this direction

Fig. 6. Formation of an anisotropic spiral wave of Eqs. (1) with parameters corresponding to stable Bloch fronts in both thex and y
directions. The shaded regions are up-state domains. Thick (thin) curves areu = 0 (v = 0) contours. Thev = 0 line always lags behind
the u = 0 line. Parameters:a1 = 2.0, a0 = −0.1, ε = 0.03, δ = 0.8, d = 1.

Fig. 7. Velocity vs curvature relation for Fig. 6. The solid (dashed)
curves pertain to fronts propagating in they (x) direction. Param-
eters:a1 = 2.0, a0 = −0.1, ε = 0.03, δ = 0.8, d = 1.

as indicated by the velocity–curvature relation shown
in Fig. 9. Notice that the weaker transverse instability
of fronts propagating in thex direction is suppressed
due to front interactions. Similar behavior is expected
when the difference in transverse instability strengths
is greater or when a front propagating in thex direc-
tion is transversally stable.

In the two examples discussed above, the front type
(Ising or Bloch) did not switch as the direction of
propagation changed fromx to y. Fig. 10 shows an
example of velocity–curvature relations where Bloch
fronts propagating in they direction become stable
Ising fronts when the propagation direction changes to
x. Fig. 11 shows a numerical solution of Eqs. (1) start-
ing with an isotropic disordered state. As time evolves,
strong irregular dynamics become confined to they
direction and a state we termstratified chaosdevelops.
Segments oriented in they direction grow at their tips
and either merge into larger segments or emit traveling
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Fig. 8. Ordering effect in the Ising regime. An initial labyrinthine pattern evolves towards an ordered stripe pattern. Fronts propagating in
the x andy directions are both unstable to transverse perturbations but the instability is stronger in they direction. Parameters:a1 = 2.0,
a0 = −0.1, ε = 0.03, δ = 4.0, d = 1.

Fig. 9. Velocity vs curvature relation for Fig. 8. The solid (dashed)
curves pertain to fronts propagating in they (x) direction. Param-
eters:a1 = 2.0, a0 = −0.1, ε = 0.03, δ = 4.0, d = 1.

segments which grow new tips. In thex direction, a
nearly regular periodic structure is maintained.

To quantify the irregular character of the dynamics
in they direction and the regular dynamics in thex di-
rection, we computed the normalized spatial two-point
correlation functions,Cy(r) andCx(r), for theu field
in both thex and they directions. These correlation

Fig. 11. Development of stratified chaos in Eqs. (1) with parameters corresponding to an Ising front in thex direction and to Bloch fronts
in the y direction. Parameters:a1 = 2.0, a0 = −0.1, ε = 0.039, δ = 1.7, d = 1.

Fig. 10. Velocity vs curvature relation for Fig. 11. The solid
(dashed) curves pertain to fronts propagating in they (x) direction.
Parameters:a1 = 2.0, a0 = −0.1, ε = 0.039, δ = 1.7, d = 1.

functions are given by

Cy(r)= 〈)u(x, y + r))u(x, y)〉
〈)u(x, y)2〉 ,

Cx(r)= 〈)u(x + r, y))u(x, y)〉
〈)u(x, y)2〉 ,
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Fig. 12. Correlation functionsCx(r) (dashed curve) andCy(r)
(solid curve) for a state of stratified chaos.

Fig. 13. Close-up of repeated segment formation. Shaded regions
are up-state domains. Thick (thin) curves areu = 0 (v = 0)
contours. Thev = 0 contour always lags behind theu = 0
contour. The tip of a stripe segment (a) grows outward (b)–(c). A
pinching dynamic begins (d) which leads to segment formation (e)
traveling along they direction (f). The segment formation leaves
a shortened stripe segment (e) whose tip grows outward again (f)
and the process repeats. The parameters are the same as in Fig. 10.

where)u(x, y) = u(x, y)− 〈u〉, and the brackets〈 〉
denote space and time averaging. Fig. 12 shows the
results of these computations. Correlations in they di-
rection decay to 0 on a length scale much smaller than
the system size which is a characteristic of spatiotem-
poral chaotic systems. In contrast, correlations in the
x direction oscillate with constant amplitude. This ob-
servation may be used to define stratified chaos as a
state that displays finite correlation length in one direc-
tion (x) and infinite correlation length in the other(y).

A typical segment formation, occurring in they di-
rection, is illustrated in Fig. 13. The mechanism for
this process relies strongly on the transition from an
Ising front in thex direction to a Bloch front in they
direction. In thex direction, a pair of fronts approach-
ing one another (“white” invading “gray” fronts in
Fig. 13) repel and form stationary or breathing stripes.
In the y direction, a pair of approaching fronts col-
lapse and the domains following them merge. Imagine
a segment tip growing into a bulge as in Fig. 13(a)–(c).
At the neck of the bulge, propagation directions devi-
ating from thex-axis develop and front collapse may
occur. This leads to the detachment of a traveling seg-
ment as shown in Fig. 13(d)–(f).

6. Conclusion

The coupling of diffusion anisotropy to front insta-
bilities in bistable systems may lead to new pattern
formation mechanisms. A system with a single sta-
ble front in thex direction (stable Ising front) and
a single unstable front in they direction (unstable
Ising front) tends to develop periodic stripe patterns
aligned along they direction. A system with a single
stable (Ising) front in thex direction and a pair of
counter-propagating (Bloch) fronts in they direction
may develop “stratified chaos”, a state characterized
by irregular dynamics confined to one space dimen-
sion. Additional new mechanisms of pattern forma-
tion are likely to be found by exploring different
combinations of front stability and multiplicity in two
orthogonal directions.

We studied the FHN type model but similar mech-
anisms are expected to be found in the FCGL equa-
tion (2) which describes periodically forced oscillatory
systems. We only considered diffusion anisotropy but
other forms of anisotropy are likely to have similar ef-
fects as they may also produce different front proper-
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ties (stability, dynamics and multiplicity) in orthogo-
nal directions. These expectations should be tested us-
ing realistic models of catalytic surface reactions, e.g.,
the NO+ CO reaction on Pt(1 0 0) [40], the O2 + H2
[41], and the NO+ H2 [42] reactions on Rh(1 1 0).
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