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The experiment on chaos in surface waves reported by Ciliberto and Gollub is used as a case
model for an understanding of the appearance of few-dimensional chaos in systems with an infinite

number of degrees of freedom. Center-manifold and normal-form theories are utilized to derive
the pertinent dynamical system and to provide an approximate solution of the partial differential
equations. Comparisons of theory and experiment are discussed.

PACS numbers: 05.45.+b

The recent effort in experimental research concern-
ing the onset of chaos in hydrodynamic systems firmly
established the fact that chaos sets in as a few-
dimensional phenomenon even in systems that are
traditionally described by partial differential equations
(pde's). ' The use of a small number of ordinary dif-
ferential equations (ode's) (or maps thereof) to model
the transition to chaos in hydrodynamics has thus been
phenomenologically justified. What has been lacking
so far, however, is an example where detailed theory
and detailed experiment exist in parallel, so as to
demonstrate how the tremendous reduction from an
infinite to a finite number of degrees of freedom oc-
curs in practice. The aim of this Letter is to report on
such a case.

As a case model we chose the experiment on chaos
in surface waves reported by Ciliberto and Gollub. 3

Besides being an extremely detailed study with exten-
sive results, this experiment is unique so far in the
sense that the transition to chaos appears essentially
directly from the quiescent state in a region of the
phase diagram. This allows a development of the
theory around the quiescent state in contrast with all
other cases where a series of bifurcations, leading to a
time-space-dependent state, precedes the onset of
chaos. The case chosen here allows us to use the for-
malism suggested by Coullet and Spiegel4 which util-
izes the center-manifold theorem and normal-form
theory to reduce the dynamics to a set of ode's. '

The experimental setup consists basically of a
cylinder containing water which is mounted on a cone
of a loudspeaker and is oscillated accurately in the
vertical direction. When the amplitude of the oscilla-
tion exceeds some frequency-dependent threshold
value, the free surface is deformed and surface modes
appear. The modes are basically the eigenmodes of
the operator '72~, where "7i is B„x+t)yy, and we con-
ceive a Cartesian set of coordinates which moves with
the cylinder such that the x-y plane is horizontal, and
z = 0 is at the free surface of the fluid in the quiescent
state. These modes are ft =—Jt ( kt r )sin( 10) or
Jt(kt r)cos(IB), where Jt is the Bessel function of or-

der i, r is the radial coordinate, 0 is the azimuthal coor-
dinate, and the allowed wave numbers kt are deter-
mined by boundary conditions. In Fig. 1 we reproduce
a portion of the experimental phase diagram in the re-
gion of parameter space where f4 3 and f7 2 appear to
the excited modes. In the regions marked (4,3) and
(7,2) the system displays these pure modes respective-
ly, and they oscillate at one-half the driving frequency.
For synchronization of the measurements at this fre-
quency, Ref. 3 reported slow periodic oscillations and
chaotic competition in the shaded region. The region
of greatest interest to us is the vicinity of the point of
intersection of the stability curves where it appears
that the quiescent state might become chaotic with a
small change of parameters. We de~clop the theory
around this point.

It is noteworthy that a time-resolved Fourier
analysis of the deformation field revealed many other
modes with f=3, 8, 11, 14, 18, 21, 25, 28, etc. This
seems at first perplexing when contrasted with the ex-
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FIG. 1. Experimental phase diagram. The regions denot-
ed (4,&) and (7,2) display single-mode patterns. In the
shaded regions mode competition leads to slow-periodic and
chaotic motions.
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perimental determination of the dimension of the
strange attractor which is smaller than 3. We shall see
that our theory, which also yields an approximate solu-
tion of the pde's, rationalizes these findings.

The starting point of the theory is hydrodynamics.
To simplify the algebra we neglect viscosity at first;

I

one can obtain then a description of the dynamics with
two scalar fields: the velocity potential $(r, t) [where
the velocity v(r, t) is '7@(r,t)] and the surface-
deformation variable z = ((xy, t). Following Benjamin
and Ursell, but supplementing nonlinear terms by ex-
panding around z = 0, we arrive at the following equa-
tions of motion in dimensionless units:

(Ia)

'72 —g+A cost j —Nz($, $),
hrv ph

where y, h, cu, p, g, and A are the surface tension of the fluid, the depth of the fluid layer, the frequency of oscilla-
tion, the density of the fluid, the gravitational acceleration, and the amplitude of forcing, respectively, Ni and N&

are

Nt($, $) ='7„$ '7t@+$'72tp+ —,'f2'7zi t)P/Bz+('7~('7~ tl@/t)z+. . . ,

N2= —,
' i~el'+ —,

'
~ ~(I~+I')/~. +

where the ellipsis represents higher-order terms.
Some of the gross features of the phase diagram (Fig.
1) are obtained from the linearized theory, Ni
= N2 =0. We picked the boundary conditions 8@/
r)n = 0 at the walls, tI$/Bz = 0 at z = h (the bottom of
the cell), and 8(/t)n = 0 on the wall at the free surface
(i.e., contact angle 90', see below for discussion).
Then, expanding ( and @ in f& [i.e. , ((x,y, r )

(t)f, (xy), etc.J, and denoting the ampli-

tudes by a single index, fi and @&, respectively, we ar-

rive at a 1inear system:

0 —Xt

I i+Acost 0
t

where Xt= hkt tanh(hki) —O(1), I i= (I/hco )(ykt /
p+g) —O(10 '), and A= —A/hcu' —O(10 3).
The numerical estimates pertain to the experimental
conditions of Fig. 1. This system is a Floquet problem
and is equivalent to the Mathieu equation

(t+ (cot +XiAcost)(=0, (3)
where c0t = ~(Xtl t)' is the natural frequency of the i
mode. Since A is so small we can find the neutral sta-
bility curves, which are the one-half tongues of the
Mathieu equation, analytically via perturbation theory.
The result takes the form

r, (A) =1/4X, + —,
' A+ O(A'). (4)

To compare with Fig. 1 we return to dimensional
variables. In Fig. 2 we sketch the predictions of Eq.
(4) as compared to the experimental situation. The
modes f4 3 and f7 z have neutral stability curves pre-

cisely in the right region of parameters. However, the
mode f», which is not seen experimentally is found
between them. The reason is the boundary condition
tl(/t)n =0. If we pick the condition ( =0 at the walls,

the mode fit i is pushed outside the region of interest,
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FIG. 2. Theoretical stability boundaries as predicted by

the linearized theory without damping. The mode (10,1)
has a tongue to the left of the mode (4,3). The ordinate is
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but the modes fz 4 and fto i creep in. Our conclusion
is that the experimental boundary condition is neither,
but a mixture of the two. We thus disregard the mode
f» i from now on. ' Note that because of the neglect
of damping the stability curves begin at A = 0, but the
point of intersection is right on the experimental fre-
quency.

To proceed we want to use the center-manifold
theorems to reduce the dynamics to ode's, and
normal-form theory9 to obtain the simplest (minimal)
nonlinear description. We thus expand the fields in
the modes fi, and, if we denote the amplitudes of f4 3

and f7 z by at and the amplitudes of the rest of the
modes by p, Eqs. (I) lead in principle to an infinite
set of ode's:

~t = Ki«)~i+ gi(ii}. i pi }). (Sa)

p. =re (r)p +g (', ~, }, tp, }).
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Since these equations are not autonomous, the
separation into stable and unstable modes should be
based on a Floquet analysis. Since we neglected dissi-
pation, there are no Floquet exponents with negative
real part for the system (5). However, in the physical
system dissipation exists, and near the point of inter-
section of the stability curves, only two such ex-
ponents cross the imaginary axis. Besides serving this
important rule of separating stable from unstable
modes, dissipation is not important as far as the nor-
mal form is concerned. We thus derive the normal
form from (5), adding dissipation at the end. For this
derivation we need autonomous equations. 4 To make
(5) autonomous we introduce an artificial "critical"
degree of freedom n„n, =——,

' Ae", such that n, = in,
and n,"= —in,". The cosine term in K(t) is then
n, +n,'. Accordingly the matrix K simplifies to

and the cosine term is pushed to the nonlinear
g ( {nt), [Pt I ). It is noteworthy that in this form the
linear problem near the point of intersection in Fig. 1

can be diagonalized to read n =Jn, where

i043
—i043

—1072

with Ot=coi/cu. Thus the linear matrix at this point is
technically similar to the one obtained for codi-
mension-3 bifurcations. Accordingly, one might be
less surprised that chaos can set in very close to this
point.

The analysis from this point follows very closely the
formalism proposed by Coullet and Spiegel. 4 After a
considerable amount of algebra that will be reported
elsewhere we find the following normal form:

n = (i O —A.,)n, + t'yie"n,'+iy2ln, I'n, + iy3lnt, l~n, +iy4n,'nt„

nb = (tOy Xi, )nii+ t5ie nb + t52 )nb[ nt, + l53]ng [ nb+ I54nbngp

(7a)

(7b)

where a =—4, 3 and b =—7, 2. We derived analytic expressions for the coefficients y; and 5; and evaluated them nu-
merically for the boundary conditions 8(/dn =0. A., and A. b are phenomenological. The theory also yields a solu-
tion for the fields. The most interesting is the deformation field $ (x,y, t) which is found in the form

((xy, t) =(i' (xy, t)+( (xy, t)+( (xy, t),
where

( ' (xy, t) = (i/82)n4 3f4 3+ (i/J2)n7 2f& 2+c.c.,

whereas ji2l(x,y, t) is quadratic in the amplitudes n and contains modes with /=0, 3, 4, 7, 8, 11, and 14, and
(t3i (xy, t) is cubic in n and contains modes with l = 1, 4, 7, 10, 12, 15, 18, and 21. All the time-dependent coeffi-
cients are known once Eqs. (7) are solved. One sees that to lowest order only f4 3 and f7 2 are expected to exist.
However, to higher order the stable modes appear as dictated by the center-manifold theorem. These are precisely
the modes seen experimentally via the time-resolved Fourier transform (cf. above). There is of course no con-
tradiction between the low dimensionality of the dynamics [Eqs. (7)] and the fact that many modes are seen in the
field, since these are enslaved by the fundamental linearly unstable modes.

Finally, we want to reconstruct the phase diagram Fig. l. As a first step we eliminate the trivial, fast time depen-
dence that results from the periodic forcing. This is done by use of the two-time-scales method. One writes

n,. (t) =ni ~i(t, r)+en, '~(t, r)+O(6 ) where r =et and &=2(O, —Ot ) —O(10 '). Inserting these definitions
in Eqs. (7), equating terms of the same order of e, and using the condition to remove secular terms, we arrive fi-

nally at the results n, = a (7.)e", nt, = b (7 )e", and

da/d. =(-ca+ y. )a+ r, a + r, ~a~'a+ r3~b ~a+ I4a b

db/dt = ( —Lt, + i g t, )b + i 5 i b'+ i h2 ( b ( b + i b 3 ) a ) b + i b 4 b a .
(9)

Here I; and 4; are y;/e and 5;/e, respectively; L, & are A.,b/e and @,&=(O, t,
——,')/e. Equations (9) can be in-

tegrated numerically to explore the phase diagram. It turns out that the phase diagram of Fig. 1 is not fully repro-
duced The as. ymmetry between the (4,3) and the (7,2) modes is observed but no chaotic behavior is found. This
is not too surprising since the boundary condition 8(/Bn =0, on which we based our calculations, is not exact.
However, the normal form and therefore the structure of Eqs. (9) is correct. We therefore base our further
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TABLE I. Parameters used to reproduce the phase dia-
grafH. 84-

0J, = 49.4490 sec
mq = 50.2265 sec
x =1.9249
Xg, = 1.9684
I..=L,,=5X10-'/»

y2 = —5.0x 10
8& = 6.5 x 10-'
y3 =53= 8.5 X 10-'
y4= 64=0
yi = —X,A/40,
5i = —xbA/40i,

F

~ 80

analysis on these equations, treating the coefficients of
the nonlinear terms as free parameters. The values of
parameters used are displayed in Table I. We discuss
here the part of the phase diagram in the close vicinity
of the interesting point of intersection (which, strictly
speaking, is also the range of validity of our theory).
The results of the numerical investigation are shown
in Fig. 3. The characteristics of Fig. 1 are reproduced:
(i) the asymmetry between the modes, i.e., the fact
that f4 3 damps f7 2, whereas f7 2 pumps f4 3, (ii) the
existence of a region of periodic competition between
the modes; and (iii) the existence of chaotic competi-
tion. Most importantly, the theory reproduces the fact
that the boundaries behveen these regions converge
close to the point of intersection, as scen experimen-
tally. We note, however, that a careful search revealed
periodic windows in the chaotic regime and also very
small chaotic regions in the "periodic" regime, very
close to the "boundary" with the chaotic regime. The
slight disagreement with the frequency range between
Figs. 1 and 3 is due to different boundary conditions.
The variance in the values of A can be easily fixed by
an adjustment of the parameters of Table I. We did
not attempt to obtain a "best" fit.

To conclude, we have shown that one can go all the
way from pde's to few-dimensional chaos in a hydro-
dynamic system of experimental interest. One can
derive the nonlinear ode's including the coefficients.
In fact, Eqs. (7), for either the modes (4,3) and (ll, l)
or (11,1) and (7,2) and with coefficients whose calcu-
lation is based on the formulas derived for the bound-
ary condition ri(/Bn =0, should agree quite well with a
similar experiment if done with a fluid that wets the
walls efficiently. For the experiment at hand we could
rationalize essentially all the major experimental find-
ings. Further theoretical work will elucidate the
mechanism for the transition to chaos in this system.
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FIG. 3. The theoretical phase diagram. A is 2h IA I.
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