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A B S T R A C T

The spatial competition between two plant species that make different compromises in capturing soil

water and sunlight is studied using a mathematical model. A precipitation range along the rainfall

gradient is identified where two alternative stable states coexist. The first state describes a uniform

distribution of a plant species that specializes in capturing soil water, whereas the second state describes

a periodic pattern of a species that specializes in capturing light. We show that this bistability range

generally divides into three parts according to the dynamics of the front or ecotone that separates the

two plant populations: a low precipitation range where the superior competitor for water displaces the

superior competitor for light, a high precipitation range where the displacement is reversed, and an

intermediate range where neither species displaces the other. While in the low and high precipitation

ranges one species outcompetes the other, the intermediate range allows for species coexistence in the

form of a multitude of stable localized solutions consisting of fixed domains of one species in areas

otherwise occupied by the other species. These localized solutions can only be realized when one of the

alternative stable states is spatially patterned. We further study two factors that affect the size of the

species coexistence range: the strength of the competition for light and the form of the tradeoff between

the competitive abilities to capture water and light.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Water-limited vegetation is generally patchy. According to the
traditional view, vegetation patchiness is a result of an underlying
physical template, often formed by slow geologic and geomor-
phologic processes, that creates favorable vegetation-growth
areas (Sheffer et al., 2013). A different view of vegetation
patchiness has been motivated by recent field observations of
banded vegetation and other forms of regular vegetation patterns
in nearly homogeneous landscapes (Tongway et al., 2001;
Deblauwe et al., 2008). According to this view vegetation patterns
can result from small-scale biomass-water feedbacks that give
rise to self-organization at large scales even in spatially uniform
systems (Rietkerk and van de Koppel, 2008; Meron, 2012).
Mathematical models that capture these feedbacks have been
very instrumental in understanding the causes of self-organized
vegetation patchiness and the specific forms it takes along the
rainfall gradient (Borgogno et al., 2009). Studies of such models
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have first identified five basic vegetation states along the rainfall
gradient (von Hardenberg et al., 2001; Rietkerk et al., 2002):
uniform vegetation, hexagonal gap patterns, stripes or labyrin-
thine patterns, hexagonal spot patterns, and bare soil, which are in
good agreement with field observations. They further suggest
richer forms of self-organized vegetation patchiness: disordered
spatial mixtures of basic states in bistability ranges, and
amorphous patches that span wide patch-size distributions under
conditions of global competition (von Hardenberg et al., 2010;
Meron, 2012).

Most model studies have considered a single plant species,
overlooking the large plant communities that generally exist in
water-limited landscapes (Shachak et al., 2005). The tendency of
water-limited ecosystems to self-organize in patchy landscapes
raises the question: what impact does vegetation pattern
formation have on species coexistence and diversity? This is a
significant question, particularly nowadays, when transitions
between different vegetation states become more likely due to
the ongoing global climate change and the environmental
fluctuations associated with it (Field et al., 2013). Understanding
the response of plant communities to such transitions is important
for maintaining the diversity of water-limited ecosystems and
securing their function and stability.
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Very few model studies have addressed the interaction between
different species in water-limited vegetation, taking into account
mechanisms of vegetation pattern formation. All of them have
considered a pattern-forming species that acts as an ecosystem
engineer (Jones et al., 1994, 1997) by concentrating the water
resource, thereby facilitating the growth of the other species
understory (Pugnaire and Luque, 2001; Holzapfel et al., 2006;
Maestre et al., 2005). One set of studies has focused on the
interplay between biomass-water feedbacks that have opposite
effects on the soil-water distribution, and the development
ecosystem engineering under conditions of water stress (Gilad
et al., 2007a,b; Meron, 2012). Two other studies focused on species
coexistence where a pattern-forming ecosystem engineer is an
inferior competitor that survives the competition with a superior
competitor because of the highly dispersive character of the latter
(Baudena and Rietkerk, 2013; Nathan et al., 2013).

In this paper we propose a new pattern-formation mechanism
of species coexistence that is based on a generic mathematical
property associated with bistability of a uniform state and a
periodic-pattern state – the possible existence of a multitude of
stable localized structures (or homoclinic orbits in an appropri-
ately defined dynamical system) (Knobloch, 2008). These struc-
tures consist of confined domains of the patterned state in a
background of the other, spatially uniform, alternative stable state,
and vice versa. Their existence is related to the dynamics of the
transition zones that separate the two alternative stable states, i.e.
the fronts that are bi-asymptotic to the two states (Pomeau, 1986).
When the two alternative stable states are spatially uniform the
fronts propagate in one direction or another, except for a particular
value of the control parameter (the Maxwell point) at which the
fronts are stationary (Pismen, 2006). By contrast, when one of the
alternative stable states is spatially patterned there might exist a
finite range of the control parameter within which fronts are
stationary or pinned. It is within this range that localized
structures are found. The mathematical property described above
is commonly referred to as ‘‘homoclinic snaking’’, because of the
snake-like forms of the solution branches that describe the
localized structures in the corresponding bifurcation diagrams
(Knobloch, 2008). Localized structures of this kind were found also
in a vegetation model for a single plant species in a bistability range
of periodic vegetation pattern and bare soil (Lejeune et al., 2002;
Zelnik et al., 2013).

To study species coexistence associated with bistability of
uniform and patterned states we consider two plant species in
water limited ecosystems that are related to one another by a
tradeoff between investment in growing taller shoots and
investment in increasing root-to-shoot ratio. Taller plants have
an advantage in capturing light whereas plants with higher root-
to-shoot ratios have an advantage in capturing soil water. We
study the interaction between these two species along a rainfall
gradient using a modified version of the vegetation model
introduced by Gilad et al. (2004) that includes inter-specific
competition for light. Since the proposed coexistence mechanism
is based on a generic mathematical property of bistable pattern-
forming systems, the results presented here may be applicable to
many other contexts of ecological communities.

2. Modeling community dynamics

The model we study is based on the multi-species vegetation
model introduced by Gilad et al. (Gilad et al., 2007a; Meron, 2011).
The Gilad et al. model describes the evolution of a plant community
in a water limited system where species interact through
competition for water. In its most general form the model consists
of a system of integro-differential equations that models non-local
water uptake by laterally extended root zones. Here we study a
modified version of this model that takes into account competition
for light too, but simplifies it in other respects.

2.1. Model equations

The original model consists of equations for the above-ground
biomass densities Bi of N interacting species (i = 1, . . ., N), the soil
water content per unit ground area W and the height of a surface-
water layer above ground level H. We simplify it first by assuming
that the infiltration rate of surface water into the ground is
approximately constant, independent of the plants’ biomass. Quite
often the infiltration rate in bare soil is lower than that in vegetated
soil because it is covered by physical and biogenic crust that makes
the infiltration slower (Eldridge and Zaady, 2012). This effect can
be negligible in sandy soils which are often uncrusted. When the
infiltration rate is constant the equation for H decouples from the
equations for W and the Bis and the variable H can be eliminated
(Zelnik et al., 2013). The model equations in one dimension (1d)
then read

@Bi

@t
¼ LiðBÞGBi

ðBi;WÞð1� Bi=KiÞBi �MiBi þ DBi

@2
Bi

@x2
; (2.1a)

@W

@t
¼ P � LW � GWðBÞW þ DW

@2
W

@x2
; (2.1b)

where B = (B1, . . ., BN) and x represents a 1d lateral direction. The
nonlinear growth rate of the ith species includes a water
dependent factor, GBi

ðBi;WÞ, that represents water uptake by
the plants’ roots, and a biomass dependent factor, Li(B), that
accounts for light attenuation by competing plant species. The
growth rate of grown plants is also limited by genetic factors, such
as stem strength, whose effects are lumped in the parameter Ki. In
the case of annuals Ki can also represent the limited size a plant can
develop in its life cycle. Biomass growth is also limited by mortality
and grazing that are represented by the parameter Mi. Spatial
biomass expansion is accounted for by a diffusion term that
represents short-distance seed dispersal or clonal growth, where
the ‘‘biomass diffusivity’’, DBi

, is assumed to be a constant
parameter. In the soil water Eq. (2.1b), the parameter P represents
the precipitation rate while L represents the evaporation rate,
which in general may also depend on the above-ground biomass to
account for reduced evaporation by shading. The factor GW(B) is the
rate of water uptake by the plants’ roots, and its biomass
dependence reflects the increase in the root-zone size as the
above-ground increases, i.e. the root-to-shoot ratio. Lastly, the
term DW@2W/@x2 models water transport in a non-saturated soil
with DW being a diffusivity constant.

2.2. Competition for water

Plants compete for water through water uptake by their roots.
For laterally extended root zones the uptake is nonlocal and is
captured by the following form (Gilad et al., 2007b),

GWðx; tÞ ¼
XN

i¼1

Gi

Z
giðx0; x; tÞBiðx0; tÞdx0;

where the kernel gi(x
0, x, t) represents the roots architecture, and

the integration is over the root zone of plants located at x. We use
the form

giðx; x0; tÞ ¼
1

si

ffiffiffiffiffiffiffi
2p
p exp � jx� x0j2

2s2
i ð1þ EiBiðx; tÞÞ2

 !
;

where Ei quantify the root augmentation per unit of above-ground
biomass, which is a measure of the root-to-shoot ratio. Note that



P. Kyriazopoulos et al. / Ecological Complexity 20 (2014) 271–281 273
gi(x, x0, t) 6¼ gi(x0, x, t) because of the biomass dependence. The
biomass growth rates have nonlocal forms too

GBi
ðx; tÞ ¼

Z
giðx; x0; tÞWðx0; tÞdx0;

since they depend on water availability at all points where the
plants’ roots extend to.

Another simplification we make here is the assumption of
laterally confined root zones. This assumption is consistent with
the assumption of sandy soil (used to eliminate the surface water
variable) because its high soil-water diffusivity combined with
gravity gives an advantage to plants with roots extending vertically
to deep soil layers. To implement this simplification we take the
limits si! 0 (vanishingly small lateral root sizes of seedlings) in
which the biomass growth rates and the water uptake rate become

GBi
ðBi;WÞ ¼ ð1þ EiBiÞW ; (2.2)

GWðBÞ ¼
XN

i¼1

GiBið1þ EiBiÞ: (2.3)

Competition for water can be inter-specific, occurring between
individuals that belong to different plant species, or intra-specific,
occurring between individuals that belong to the same plant
species. Inter-specific competition is captured by the rate forms
(2.2) and (2.3), which give advantage to species with higher Ei

values, for they grow faster and leave less water for other species.
Intra-specific competition is also captured but in a spatial context;
the biomass density of a given species, Bi, does not resolve the
different individuals that contribute to the biomass Bi(x, t)dx

within a small length element (area element in 2d) around the
point x, but does distinguish between groups of individuals that
occupy different length elements.

An important manifestation of intra-specific competition
occurring between distinct spatial locations is spatial instabilities
leading to vegetation patterns. Intra-specific competition leading
to vegetation pattern formation is captured by the soil-water
diffusion term and the water uptake term in (2.1b), which together
with the water-dependent biomass growth rate form a positive
feedback between local vegetation growth and water transport
towards the growing vegetation. The water uptake by a patch of
growing vegetation depletes the local soil water content and
induces water diffusion from the patch surroundings. The supply of
water by diffusion accelerates the vegetation growth in the patch,
but also inhibits the growth in the patch surroundings, thereby
favoring the growth of nonuniform perturbations and the
formation of vegetation patterns.

2.3. Competition for light

When the productivity of a system is sufficiently high, taller
plants reduce the availability of light to shorter plants by shading.
The positive feedback between shoot growth and light availability
results in an inter-specific competition for light that can lead to the
dominance of the taller plant species (Tilman, 1982).1 To capture
competition for light we introduce the following form for the
biomass growth rate of the ith plant species:

LiðBÞ ¼Vi 1�
S j 6¼ iB j

SB j þ h

 !
: (2.4)
1 Note that the biomass variable represents the overall biomass per unit area of

the ith species, irrespective of the number of individuals contributing to it. Thus, the

modeling approach used here does not resolve local intra-specific competition.

However, it does take into account nonlocal intra-specific competition as explained

in Section 2.2.
Here, Vi represents the growth rate of the ith species in the absence
of competitors and h is a positive constant serving as a reference
value for the total biomass beyond which light becomes a limiting
resource for small plants.

2.4. Trait tradeoff

We consider species that make different tradeoffs between
investment in shoot growth and investment in root growth. To
define this tradeoff we quantify the investment in shoot growth by
the parameter K and the investment in root growth by the
parameter E, and describe them parametrically as

K ¼ Kðx; aÞ ¼ Kmin þ ðKmax � KminÞð1� xÞa;
E ¼ Eðx; aÞ ¼ Emin þ ðEmax � EminÞxa ;

(2.5)

where x 2 [0, 1] is a dimensionless tradeoff parameter, which
describes the community of interest. The ith species is defined by
the pair (Ki, Ei) or, alternatively, by the point xi on the tradeoff axis.2

The parameter a > 0 delimits tradeoff curves in the rectangle
R = [Emin, Emax] � [Kmin, Kmax] that describe different species pools
as Fig. 1 illustrates.

2.5. Parameter values and units

The model equations are presented in dimensional form. The
dimensions of the state variables, the independent space and time
variables, and the model parameters are presented in Table 1.
Table 1 also displays the numerical values used in this study for the
various parameters. No attempt has been made to fit the parameter
values to a specific ecosystem; the values used rather represent the
correct orders of magnitude for herbaceous or small woody
vegetation (e.g. shrubs) in general. For simplicity, in what follows
we drop the units notation from numerical values of parameters
and variables and refer the reader to Table 1 for that purpose.

3. Stationary solutions

We consider the system (2.1) for two interacting plant species,
that is, the set of equations

@B1

@t
¼ L1ðBÞGB1

ðB1;WÞð1� B1=K1ÞB1 �M1B1 þ DB1

@2
B1

@x2
;

@B2

@t
¼ L2ðBÞGB2

ðB2;WÞð1� B2=K2ÞB2 �M2B2 þ DB2

@2
B2

@x2
;

@W

@t
¼ P � LW � GW ðBÞW þ DW

@2
W

@x2
;

(3.1)

where GBi
, GW(B) and Li(B) are given, respectively, by (2.2), (2.3)

and (2.4) for i = 1, 2 and B = (B1, B2). We study this system on a finite
spatial interval imposing periodic boundary conditions. Analogous
results can be obtained for the homogeneous Newmann boundary
conditions. Since we are primarily interested in species that make
different compromises in their investments in above and below-
ground biomass, we characterize them by x values close to zero
and close to unity. Specifically, we assign a value x1� 1 to the
species with biomass B1, and a value x2 = 1 to the species with
biomass B2. The x1 species represents a superior competitor for
light (high K and low E) while the x2 species represents a superior
competitor for water (high E and low K). The two species are kept
identical in regard to all other trait parameters.
2 More precisely, the point xi, including a small length element Dx around it,

describes a functional group whose species share the same values, Ki and Ei, of the

functional traits K and E.
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Fig. 1. The tradeoff between soil-water capture, as quantified by E, and sunlight

capture, as quantified by K (see (2.5)). Shown are three typical tradeoff lines in the

rectangle [Emin, Emax] � [Kmin, Kmax] that are parameterized by x 2 [0, 1] and

represent different species pools: diagonal (a = 1), subdiagonal (a > 1) and

supdiagonal (a < 1). The solid circles represent the two species to be

considered, x = 0 (biomass B1) and x = 1 (biomass B2) for most of the studies,

and x� 1 (the circles a, b, c) and x = 1 for studying the effect of the species pools (or

a) on species coexistence (Section 5.2).
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3.1. Uniform states

The system (3.1) possesses three types of uniform equilibria
U = (B1, B2, W):
� T
Ta
A

sp
he trivial bare soil state U0 = (0, 0, W0)

� P
ure population states U�1 ¼ ðB�1;0;W�

1Þ and U�2 ¼ ð0;B�2;W�
2Þ,
� C
oexistence states of the form U ¼ ðB1;B2;WÞ.
A linear stability analysis of these solutions is described in Appendix
A. The results are summarized in the bifurcation diagram in Fig. 2,
which shows the existence and stability ranges of selected stationary
uniform states (excluding, in particular, the coexistence states which
are unstable in the parameter range considered here). At very low
precipitation values P, the bare-soil state, U0, is the only stable state.
At sufficiently high P values there is a bistability range of the two
uniform pure-population states, U�1 and U�2. The latter loses stability at
P ¼ PM

2 to a mixed-population state, leaving the pure-population state
ble 1
list of dimensional quantities (state variables, space and time coordinates, parameters)

ecies.

Quantity Units Description

Bi kg/m2 Biomass density

W kg/m2 Soil water density

x m Space coordinate

t yr Time coordinate

Kmin kg/m2 Minimal standing bio

Kmax kg/m2 Maximal standing bi

Emin (kg/m2)�1 Minimal root augme

Emax (kg/m2)�1 Maximal root augme

x1 – Tradeoff parameter f

x2 – Tradeoff parameter f

L yr�1 Soil water evaporatio

P kg/m2 yr�1 Precipitation rate

h kg/m2 Reference total-biom

DW m2/yr Soil water diffusivity

DB1
¼ DB2

m2/yr Seed dispersal coeffic

M1 = M2 yr�1 Biomass decay rates

V1 = V2 (kg/m2)�1 yr�1 Biomass growth rate

G1 = G2 (kg/m2)�1 yr�1 Soil water uptake rat
U�1 of the superior light competitor, x1� 1, as the only stable state in
the range P> PM

2 . The stability range of the uniform state U�1 is
bounded below by a nonuniform stationary instability at PT

1 (see
Fig. 2) that leads to a stationary periodic pattern. The uniform state U�2
can also go through such an instability but at lower precipitation
values. These are Turing instabilities (Turing, 1952) that in the
present context require strong water uptake and fast soil-water
diffusion relative to the rate of seed dispersal or clonal growth.

3.2. Spatially periodic states

To study the solutions that appear below the Turing instability
at PT

1 we resort to numerical continuation and stability methods.
Applying the continuation package AUTO (Doedel et al., 2002) with
P as a bifurcation parameter we find the spatially periodic solution
U�1; p ¼ ðB�1ðxÞ;0;W�

1ðxÞÞ that emanates from the U�1 uniform-
solution branch at PT

1 , and additional periodic solutions, not
shown in Fig. 2, that emanate from the U�1 branch at P< PT

1 . All
solution branches reconnect to the U�1 branch at lower P values.
Fig. 2 also shows typical spatial biomass and soil-water profiles
associated with these periodic solutions. As Fig. 2 indicates there is
a wide bistability range of the uniform U�2 state and the periodic
U�1; p pattern.

3.3. Localized states

As discussed in the Introduction section, bistability ranges of
uniform and periodic-pattern states often give rise to stable
localized solutions involving confined domains of one state in a
system otherwise occupied by the alternative state. In the
bistability range of the uniform U�2 state and the periodic U�1;p
pattern such solutions correspond to confined patterns of the
species x1 that specializes in capturing light in an otherwise
uniform distribution of the species x2 that specializes in capturing
soil water. The bifurcation diagram in Fig. 3 shows the solution
branches associated with several localized solutions of increasing
size and their stability properties. The localized solution branches
snake up towards the periodic-pattern solution, acquiring an
additional hump in each turn as the panels (a–f) show. Unlike some
other examples of homoclinic snaking (Knobloch, 2008; Beck et al.,
2009; Dawes, 2008) there appears to be a single family of localized
solutions containing both odd and even numbers of humps
(Bortolozzo et al., 2008), rather than two distinct families of odd
solutions and of even solutions.
, their units, meanings and numerical values. The subscript i refers to traits of the ith

Value

–

–

[0,5]

–

mass limit 0.5

omass limit 3

ntation per unit biomass 0.5

ntation per unit biomass 3

or superior light competitor x1�1

or superior water competitor 1

n rate 6

Variable

ass value for light to become a limiting resource Variable

6.25�10�1

ient 6.25�10�5

2

per unit soil water 0.1

e per unit biomass 2.2
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Parameters are as in Table 1 except that the spatial domain is scaled down by a

factor 5. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of the article.)
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4. Species coexistence and spatial displacement

The multiplicity of stable localized solutions implies the
possible coexistence of the two species in the same area and
under the same environmental conditions. This is a new species
coexistence mechanism in uniform environments associated with
pattern formation (Nathan et al., 2013). The mechanism is related
to the inability of either species to displace the other, or to the
pinning of the front that is bi-asymptotic to U�2 and U�1;p. The front
pinning can be viewed as resulting from the interplay between
competition for light and water; because of the different tradeoffs
the two species make in capturing these resources, each species
has an advantage and disadvantage in attempting to displace the
other, which balance one another. The physical and ecological
processes that maintain this balance over a precipitation range
rather than at a single precipitation value (the Maxwell point) are
not clear yet.

The localized structures occupy a limited subrange within the
bistability precipitation range of the two pure-population states U�2
and U�1; p. Outside this subrange, but still within the bistability
range, one species displaces the other as Fig. 4a, d show. At
relatively high precipitation water is no longer a strong limiting
factor and competition for light becomes more important. As a
result, the U�1; p state, which represents a periodic pattern of the
better competitor for light, invades into areas occupied by the U�2
state (Fig. 4d). At relatively low precipitation the vegetation is less
dense and light is no longer a strong limiting factor. As a result the
competition for water becomes more important, and the U�2 state,
which represents the better competitor for water, invades into
areas occupied by the U�1; p state (Fig. 4a).

Within the range of localized structures there is a significant
subrange in which the only stable localized structure is a single
hump solution, and a smaller subrange where only single-hump
and two-hump solutions are stable. In these subranges, large initial
domains of the patterned state U�1;p first contract but do not
disappear; they rather converge to a single-hump or two-hump
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Fig. 4. Space-time plots showing different dynamical behaviors within the

bistability range of the U�2 state (uniform distribution of the x2 species) and the

U�1;p state (periodic pattern of the x1 species). At low precipitation outside the range

of stable localized solutions the U�2 state invades into the U�1; p state, leading

asymptotically to a U�2 state occupying the whole domain (a). At higher

precipitation the U�2 state still invades into large domains of the U�1; p state, but

the invasion process culminates in a stable single-hump localized solution (b). At

yet higher precipitation a multitude of stable localized solutions exists and any

localized initial condition converges to a nearby localized solution (c). Finally, at

sufficiently high precipitation the U�1; p state invades into the U�2 state, leading

asymptotically to a U�1; p state occupying the whole domain (d). Parameters are as in

Table 1 with P as specified in the figure.
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solutions, as Fig. 4b demonstrates. Most of the remaining subrange
of stable localized solutions contains a high multiplicity of
localized structures of increasing sizes. Within this subrange most
initial conditions have ‘‘nearby’’ stable localized solutions to which
they converge on a relative short time scale without noticeable
contraction or expansion, as Fig. 4c demonstrates.

5. Factors controlling species coexistence

The precipitation range of stable localized structures defines
the species coexistence range; domains of periodic distributions of
the x1 species embedded in an otherwise uniform distribution of
the x2 species or vice versa. The size of this range naturally
depends on model parameters that affect the competition for light
and water. Two parameters of this kind are investigated below, the
reference biomass value h, which controls the intensity of the
competition for light, and the species pool parameter a.
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5.1. Competition for light

The strength of the competition for light can be controlled using
the parameter h that appears in Eq. (2.4) for the biomass growth
rate Li(B). Smaller values of h imply lower biomass growth rate for
the shaded species and thus a stronger competition effect.
Conversely, as h is increased the competition for light becomes
weaker and completely disappears when h!1 as Li approaches a
constant value independent of B. Fig. 5 shows the effect of
increasing h on the species-coexistence range as measured by the
existence range of the one-hump solution. Apart from a small
range of low h values, the species-coexistence range is found to
decrease as h is increased. The reduction in the coexistence range
occurs mostly through a shift of its low precipitation edge to higher
precipitation values. As the competition for light decreases the
advantage of x1 over x2 weakens and x2 is able to displace x1. The
balance between the two competitive abilities (capturing light vs.
capturing water) that leads to front pinning, is then regained only
at higher precipitation values.

5.2. Species pool

We recall that E and K are the biotic parameters that control the
competitive abilities to capture water and light, respectively. The
actual values that these parameters can take in the rectangle
R = [Emin, Emax] � [Kmin, Kmax] are determined by the tradeoff
curves obtained for different a values, as Fig. 1 illustrates. Each
curve is parameterized by x 2 [0, 1] and represents a different
species pool.

In order to study how does the species pool affect coexistence in
2-species communities we fix the species with biomass density B2

at x2 = 1 and vary the species with biomass density B1 from x1 = 0
to a small positive value. In other words, we reduce the gap
between the two species by weakening the ability to capture light
and strengthening the ability to capture water of the species that
specializes in capturing light. We reduce the gap for three
representative values of a: a = 1 (diagonal curve), a < 1 (sup-
diagonal curve) and a > 1 (sub-diagonal curve). In a species pool
represented by a sup-diagonal tradeoff curve, increasing x from
zero involves a sharp increase in E, i.e. in the ability to capture
water, which comes at the expense of a small decrease in K, i.e. in
the ability to capture light (see point c in Fig. 1). That is, the overall
competitive ability is bettered with respect to the reference case
represented by the diagonal tradeoff line (point b in Fig. 1). In a
species pool represented by a sub-diagonal tradeoff curve, the
increase of x involves a sharp decrease in K, which is compensated
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only by a small increase in E (point a in Fig. 1). That is, the overall
competitive ability is worsened with respect to the reference case.

Fig. 6 shows the localized solution branches for three
representative values of a. Two trends can be identified with
respect to the reference diagonal tradeoff curve (a = 1); the range
of localized solutions moves to higher (lower) precipitation and
narrows down (widens up) as a is increased (decreased). These
trends can be understood by comparing the dynamics of the fronts
that separate the two stable states (U�2 and U�1;p) when a 6¼ 1 with
the front dynamics in the reference case a = 1, as explained below.
Recall that at precipitation rates below (above) the range of
localized solutions the x2 (x1) species displaces by front
propagation the x1 (x2) species.

When a > 1 the species x1 is significantly less competitive in
capturing light compared to the reference case a = 1 because of its
smaller K value. It is also less competitive in capturing water

[(Fig._6)TD$FIG]

0.1

0.14

0.18

0.22

0.26

α = 1

‖B
‖

0.1

0.14

0.18

0.22

0.26

α = 1.2

‖B
‖

122 124 126 128 130 132

0.1

0.14

0.18

0.22

0.26

α = 0.9

P

‖B
‖

Fig. 6. Species-pool effects on the species-coexistence range. The range moves to

higher (lower) precipitation and narrows down (widens up) as a is increased

(decreased) with respect to the reference value a = 1. Parameters are as in Table 1

with x1 = 0.01.
because it is significantly less better off in water capture compared
with the reference case (see Fig. 1). As a result, there exists a
precipitation range (just below P = 130 in Fig. 6) where the species
x1 displaces x2 when a = 1 but fails to displace x2 and forms
localized structures when a > 1. Likewise, there exists a precipi-
tation range (around P = 125) where x2 is unable to displace x1

when a = 1 but succeeds when a > 1. This explains the shift of the
localized solutions range to higher P as a increases beyond unity. It
also explains the narrowing down of the localized solutions range
because the advantage of x2 over x1 is stronger at lower P than the
converse advantage at higher P and therefore the contraction of
the localized solutions range at the lower P edge is larger than the
extension of the range at the upper P edge. Similar arguments
explain the shift of the localized solutions range to lower P and its
widening as a decreases below unity.

Finally, we note that if we reduce the gap between the two
species by fixing x1 = 0 and decreasing slightly x2 away from unity
along the different trait curves, using again the diagonal (a = 1) as a
reference curve, the effect on the localized solutions range
compared to Fig. 6 is qualitatively the same with respect to
the widening of the localized solutions range, while it is the inverse
with respect to the shift of the range.

6. Conclusion

We used a spatially explicit mathematical model to study
conditions for spatial coexistence of two plant species that make
different tradeoffs in capturing two limiting resources, soil water
and sun light. We focused on a parameter regime that gives rise to
bistability of two pure-population states over a range of
precipitation rates: a uniform state of a species that specializes
in capturing water and a patterned state of a species that
specializes in capturing light. Within the bistability range we
identified a sub-range where localized solutions exist, describing
fixed domains of the patterned states in a system otherwise
occupied by the uniform state. Stable solutions of this kind imply
long-term spatial coexistence of the two species. We found that
the size of the coexistence precipitation range size reduces as the
competition for light becomes weaker. We further found that
the size of this range and its position along the precipitation axis
vary with the form of the tradeoff curve, which defines the nature
of the species pool.

Localized structures in bistability ranges of uniform and
patterned states have been found in various physical contexts
(Knobloch, 2008), and are likely to occur in ecological contexts too.
The context considered in this paper, i.e. a plant community
distributed along a tradeoff axis of above-ground vs. below-ground
resource-capture capabilities, may be applicable to herbaceous
plant communities in which one or more species are capable of
forming patterns (Sheffer et al., 2007; Meron et al., 2007). Woody-
herbaceous systems, such as Savanna landscapes (Sankaran et al.,
2004), provide another possible example. Here, the pattern-
forming woody life form constitutes the stable periodic-pattern
state and the herbaceous vegetation forms the alternative stable
uniform state – the grassland (Gilad et al., 2007a). Localized
structures consisting of confined domains of the woody pattern in
an otherwise uniform grassland then create savanna-like land-
scapes. A related problem is shrubland-grassland transitions, e.g.
the displacement of black grama (Bouteloua eriopoda) grassland by
creosotebush (Larrea tridentata) shrubland (Turnbull et al., 2010).
Here, the displacement process is a front propagation problem,
which indicates the possible realization of pinned fronts and
localized structures under different environmental conditions. In
all these examples identifying bistability ranges of uniform and
patterned population states may shed new light on the possible
dynamical responses of the corresponding plant communities to
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environmental changes. We note that the assumption of sandy soil,
which we used to simplify the model equations by eliminating
overland water flow, applies to several examples of pattern-
forming herbaceous and woody-herbaceous systems, e.g. herba-
ceous gap patterns (fairy circles) (Cramer and Barger, 2013) and
savanna landscapes (Scholes et al., 2002) in southern Africa. We
believe, however, that the coexistence mechanism is general and
applies to other soil types in bistability ranges of uniform and
patterned vegetation states.

A basic assumption underlying the model equations is
translational invariance, that is, the absence of any external
heterogeneity, such as non-uniform rainfall. Such heterogeneities
can lead to front pinning and species coexistence even in the case
of bistability of uniform states; a non-uniform rainfall that shifts
the precipitation rate from one side of the Maxwell point to
another can lead to front pinning at the spatial location of the
Maxwell point. The significance of the results reported here is that
front pinning and species coexistence can occur even in uniform
(translationally invariant) systems. In the current study the
precipitation range of species coexistence is pretty narrow. Further
studies are needed in order to identify biotic and abiotic
circumstances that lead to wider coexistence ranges.
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Appendix A. Uniform steady states and their stability
properties

A.1. Uniform steady states

We focus in this appendix on the trivial uniform state, U0 = (0, 0,
W0) with W0 = P/L, and on the two pure-population uniform states
U�1 ¼ ðB�1;0;W�

1Þ and U�2 ¼ ð0;B�2;W�
2Þ for B�1; B�2 >0. We do not

study mixed states of the form (B1, B2, W) as they are unstable in
the parameter range we consider in this study.

The uniform pure-population states, for i = 1, 2, are given by

B�i
� ¼ �

ffiffiffiffiffiffi
Di

p
þ PViðKiEi � 1Þ � GiKiMi

2Ei GiKiMi þ PNi

� � ;

and

W�
i
� ¼ P

Lþ GiB
�
i ð1þ EiB

�
i Þ
;

with

DiðPÞ ¼ Ki GiMi � PEiVi

� �
þ PVi

� �
2

� 4KiEi LMi � PVi

� �
GiKiMi þ PVi

� �
;

where a necessary condition for these states to exist is Di being
non-negative. Let,

P0
i :¼ LMi=Vi (A.1)
and

PF
i :

¼
Mið2KiEi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LGiKiðKiEi þ 1Þ þ L2

q
� Ki Gi � 2LEi

� �
� GiK

2
i EiÞ

Vi KiEi þ 1ð Þ2
;

(A.2)

be the largest root of Di(P) = 0. Note that B�i
� is a double root at PF

i

and d2/dP2(Di(P)) > 0 which implies that Di(P) > 0 for P> PF
i .

Therefore, if

ðKiEi � 1Þ>0 and PF
i ViðKiEi � 1Þ � GiKiMi >0; (A.3)

B�i
�>0; for PF

i � P< P0
i ; (A.4)

and

B�i
� � 0<B�i

þ; for P	 P0
i : (A.5)

On the other hand, when (A.3) is not satisfied, B�i
þ is positive for

P> P0
i while B�i

� is negative for all P> PF
i . We use these criteria to

define parameter ranges where U�i
� ¼ ðB�i

�;0;W�
i
�Þ (i = 1, 2) are

positive, and thus can represent realistic quantities. In what
follows, we refer to U�i

� only in parameter ranges where they are
positive.

A.2. Stability

To study the stability of a uniform state U* to uniform and
nonuniform perturbation we consider an unbounded domain
and an infinitesimally small sinusoidal perturbation with
wavenumber k:

Uðx; tÞ ¼ U� þ Ûexpðikxþ ltÞ þ c:c:; (A.6)

where U(x, t) = (B1(x, t), B2(x, t), W(x, t)) represents the perturbed
state and ‘‘c.c.’’ stands for the complex conjugate. We then study
the linear problem obtained by inserting the form (A.6) into (2.1)
keeping only terms that are linear in Û.

To simplify the presentation, we first study the stability
of U* to uniform perturbations for which k = 0. In this case,
the linear stability of U* is determined by the eigenvalues
of a 3 � 3 Jacobian matrix associated with the reaction terms
of (2.1). For the trivial uniform state U* = U0 the Jacobian
reads,

J0ð0;0;W0Þ ¼
PVi=L�Mi 0 0
0 PVi=L�Mi 0
�GiP=L �GiP=L �L

0
BB@

1
CCA (A.7)

which readily implies that U0 is stable for P< P0 :¼minfP0
1 ; P

0
2g,

where P0
1, P0

2 are given by (A.1), and becomes unstable for
P > P0.

For the pure uniform states, U�1
� and U�2

�, the corresponding
Jacobian matrices J1�ðB�1

�;0;W�
1
�Þ and J2�ð0;B�2

�;W�
2
�Þ have,

respectively, the following entries:

J1
21

� ¼ J1
23
� ¼ 0

J1
11

� ¼ V1B�1
�ðE1 � 1=K1 � 2E1B�1

�=K1ÞW�
1
�

J1
13

� ¼ V1ð1� B�1
�=K1Þð1þ E1B�1

�ÞB�1
�

J1
31

� ¼ �ðG1ð1þ 2E1B�1
�ÞW�

1
�Þ

J1
33

� ¼ �ðLþ G1B�1
�ð1þ E1B�1

�ÞÞ

J1
22

� ¼ V2
h

ðB�1
� þ hÞ

W�
1
� �M2

(A.8)
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and

J2
12

� ¼ J2
13
� ¼ 0

J2
22

� ¼V2B�2
�ðE2 � 1=K2 � 2E2B�2

�=K2ÞW�
2
�

J2
23

� ¼V2ð1� B�2
�=K2Þð1þ E2B�2

�ÞB�2
�

J2
32

� ¼ �ðG2ð1þ 2E2B�2
�ÞÞW�

2
�

J2
33

� ¼ �ðLþ G2B�2
�ð1þ E2B�2

�ÞÞ

J2
11

� ¼V1
h

ðB�2
� þ hÞ

W�
2
� �M1:

(A.9)

The stability of U�1
� and U�2

� is determined by the roots of the
characteristic polynomials

J1
22

� � l1

� �
l1

2 � ðJ1
11

� þ J1
33

�Þl1 � J1
13

�
J1
31

� þ J1
11

�
J1
33

�� �
¼ 0 ; (A.10)

J2
11

� � l2

� �
l2

2 � ðJ2
22

� þ J2
33

�Þl2 � J2
23

�
J2
32

� þ J2
22

�
J2
33

�� �
¼ 0: (A.11)

We first examine the roots of the polynomial

li
2 � ðJi

ii

� þ Ji
33

�Þli þ Ji
ii

�
Ji
33

� � Ji
i3

�
Ji
3i

� ¼ 0: (A.12)

which appears in (A.10) and (A.11) for i = 1 and 2, respectively. For
this we note that

Ji
ii

þ
Ji
33

þ � Ji
i3

þ
Ji
3i

þ
>0; (A.13)

and

Ji
ii

�
Ji
33

� � Ji
i3

�
Ji
3i

�
<0: (A.14)

To see this, recall that B�i
� are roots of the polynomial

f iðsÞ :¼ViPð1� s=KiÞð1þ EisÞ �MiðLþ Gisð1þ EisÞÞ; (A.15)

and note that

f 0i ðsÞ ¼ � GiMi 2sEi þ 1ð Þ � PVi �
2sEi

Ki
� 1

Ki
þ Ei

� �� �
:

Let

giðsÞ :¼ �sf 0i ðsÞ;

then we observe that

Ji
ii

�
Ji
33

� � Ji
i3

�
Ji
3i

� ¼ giðB�i
�Þ:

Since g00i ðsÞ ¼ 4Ei GiKiMi þ PVi

� �
=Ki >0, gi(s) is convex. Moreover,

gi(s) has one zero at s = 0 and the other coincides with the point at
which fi(s) achieves a maximum. Therefore, we easily conclude that
Ji
ii

þ
Ji
33

þ � Ji
i3

þ
Ji
3i

þ ¼ giðB�i
þÞ>0 and Ji

ii

�
Ji
33

� � Ji
i3

�
Ji
3i

� ¼ giðB�i
�Þ<0,

whenever B�i
� is positive. Consequently, from (A.14) the charac-

teristic polynomial for the linearization around U�i
�, possesses at

least one eigenvalue with positive real part, and thus U�i
� is

unstable. On the other hand, from (A.13) both eigenvalues of the
linearization around U�i

þ, which correspond to the roots of (A.12),
have negative real part when

ðJi
ii

þ þ Ji
33

þÞ<0; (A.16)

for i = 1 or 2.
It remains to determine the signs of the other eigenvalues that
arise from (A.10) and (A.11), namely l1 ¼ J1

22
þ

and l2 ¼ J2
11
þ

. For
simplicity, we assume that

M1 ¼ M2 and V1 ¼V2; (A.17)

which is compatible with the parameter values considered in
Table 1. Then,

liðBþi ; PÞ ¼ PV1h

ðBþi þ hÞðLþ GiB
þ
i ð1þ EiB

þ
i Þ
�M1:

Moreover, the algebraic system

liðs; PÞ ¼ 0; f iðs; PÞ ¼ 0; (A.18)

with fi given in (A.15), is solvable for a pair (s, P). We consider the
solution pair ðsi; P

M
i Þ with

s�i :¼ EiKi � 1� Eihþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEiKi � 1� hEiÞ2 � 4Eiðhð1� EiKiÞ � KiÞ

q� �
ð2EiÞ�1;

and

PM
i :¼ M1ðs�i þ hÞðLþ Gis

�
i ð1þ Eis

�
i ÞðV1hÞ�1

: (A.19)

Then, we have that liðBþi Þ is negative for P< PM
i when

EiKi	1; (A.20)

or

EiKi <1 and h<Ki=ð1� EiKiÞ; (A.21)

while it is positive for EiKi < 1, h 	 Ki/(1 � EiKi) and P > P0, or for
EiKi 	 1 and P>PM

i .

We conclude that when (A.16), (A.17) along with (A.20) or
(A.21) are satisfied for i = 1 (respectively i = 2), U�1

þ (respectively
U�2
þ) is stable, for all P<PM

1 (respectively P< PM
2 ). On the

other hand, U�i
� is unstable for the range of P defined in

(A.4).
We are now in a position to study the stability of the trivial

state, U0, and of the two pure-population states, U�1
� and U�2

�, to
the growth of nonuniform perturbations characterized
by nonzero wavenumbers, i.e. k 6¼ 0 in (A.6). The dynamics of
such perturbation are determined by the eigenvalues of the
matrix

Jk ¼ J � k2D;

where

D ¼ diagðDB1
;DB2

;DWÞ;

and J is given by (A.7) for U0 and by the expressions in (A.8) and
(A.9) for U�1

� and U�2
�. The eigenvalues of Jk are determined by the

roots of the characteristic polynomial:

detðJ � k2D� lI3Þ ¼ 0; (A.22)

where I3 is the 3 � 3 identity matrix. It can be easily checked that
for P< P0 ¼minfP0

1 ; P
0
2g the trivial state U0 remains stable for all k,

since the diagonal elements of J0 in (A.7) are negative.
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For the pure-population state U�1
þ (respectively U�2

þ), we
assume that (A.16), (A.17) along with (A.20) or (A.21) are satisfied
and that P< PM

1 (respectively P< PM
2 ), so that the state is stable for

k = 0. For the sake of clarity, in what follows we drop superscript ‘þ’
in the notation of the elements (A.8), (A.9) of the Jacobian matrix.
Then, the characteristic polynomial (A.22) for the two pure-
population states takes the forms

J1
22 � k2DB2

� l1

� �
l1

2 � a1ðk2Þl1 þ b1ðk
2Þ

� �
¼ 0 ; (A.23)

J2
11 � k2DB1

� l2

� �
l2

2 � a2ðk2Þl2 þ b2ðk
2Þ

� �
¼ 0 ; (A.24)

where

aiðk2Þ ¼ ðJi
ii þ Ji

33Þ � ðDBi
þ DW Þk2

; (A.25)

biðk
2Þ ¼ DBi

DW k4 � ðDBi
Ji
33 þ DW Ji

iiÞk
2 þ ðJi

iiJ
i
33 � Ji

i3Ji
3iÞ: (A.26)

Clearly the single eigenvalues l1ðk2Þ ¼ J1
22 � k2DB2

and l2ðk2Þ ¼
J2
11 � k2DB1

are negative for all k, and the other two eigenvalues are
given by

li
�ðk2Þ ¼

aiðk2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiðk2Þ

2
� 4biðk

2Þ
q

2
: (A.27)

Since ai(k2) < 0, the real part of l�i ðk
2Þ remains negative for all k,

while lþi may become positive, only if

biðk
2Þ<0; (A.28)

for some k 6¼ 0. From, (A.13), this immediately implies, that
ðDBi

Ji
33 þ DW Ji

iiÞ needs to be positive, or

TðdÞ ¼ dJi
33 þ Ji

ii >0 ; d :¼ DBi
=DW : (A.29)

Therefore, since Ji
33 <0, destabilization of S�i

þ, requires

Ji
ii ¼ ViB

�
i
þ Ei � 1=Ki � 2

Ei

Ki
B�i
þ

� �
W�

i
þ>0: (A.30)

In addition, from (A.16) ðJi
ii þ Ji

33Þ<0 and since TðdÞ ¼ ðdJi
33 þ Ji

iiÞ is a
decreasing function of d, we also need

d<1: (A.31)

Moreover, (A.26) has a minimum at

ki;c
2 ¼
ðDBi

Ji
33 þ DW Ji

iiÞ
2DBi

DW
; (A.32)

and so (A.28) is satisfied for some k 6¼ 0, when the parameter values
Ki, Ei, Mi, L, Ni, G, P and the diffusion coefficients DBi

;DW are such
that the minimum value given by the expression

biðki;c
2Þ ¼ 4DBi

DWðJi
iiJ

i
33 � Ji

i3Ji
3iÞ � ðDBi

Ji
33 þ DW Ji

iiÞ
2
; (A.33)

is negative. Finally, zeros of the right hand side of (A.33) with respect
to P provide us the instability thresholds denoted by PT

i , while the
wavenumber ki,c growing at the instability point is given by (A.32).
Appendix B. Numerical stability analysis for nonuniform
stationary solutions in a finite system

We consider a reaction-diffusion system of the form:

@tU ¼ DLU þ FðUÞ;
where the spatial variable x lies in the interval [0, 1], U = (U1, U2,
U3), D = diag (D1, D2, D3) for D1, D2, D3 real positive numbers,
L ¼ diag ð@xx; @xx; @xxÞ and

FðUÞ ¼ ð f 1ðUÞ; f 2ðUÞ; f 3ðUÞÞ

is a differentiable vector field. We consider the system either with
periodic boundary conditions or homogeneous Neumann bound-
ary conditions.

We divide the spatial interval into the uniform grid xj = jDx, for
j = 0, . . . N, with Dx = 1/N, and we let

Uh ¼ ðu0
1; . . . ;uN

1 ;u
0
2; . . . ;uN

2 ;u
0
3; . . . ;uN

3 Þ;

represent the vector of U evaluated at the grid nodes. Then we use
the standard second order central difference approximation of the
second derivative given by a 3 points stencil. This approximation
can be represented by a (N + 1) � (N + 1) matrix A. Consequently,
we denote by dA ¼ diagðD1A;D2A;D3AÞ the 3(N + 1) � 3(N + 1)
matrix approximating DL, and by

FhðUhÞ¼ ð f 1ðu0
1Þ; . . . ; f 1ðuN

1 Þ; f 2ðu0
2Þ; . . . ; f 2ðuN

2 Þ; f 3ðu0
3Þ; . . . ; f 3ðuN

3 ÞÞ:

the vector field evaluated at the node points.

We then compute the discrete Jacobian matrix of Fh, denoted by
JFh around an inhomogeneous discretized steady state UðxÞ ending
up with a linear operator

dAþ JFhjUh
:

Finally, we compute the spectrum of dAþ JFhjŪh
using MATLAB, in

order to determine the linear stability of ŪðxÞ for the system
U0h ¼ dAUh þ FhðUhÞ, with Uh(t), Fh in R3(N+1) .
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