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A quasi-2-dimensional stationary spot in a disk-shaped chemical reactor is observed to bifurcate to an
oscillating spot when a control parameter is increased beyond a critical value. Further increase of the
control parameter leads to the collapse and disappearance of the spot. Analysis of a bistable activator-
inhibitor model indicates that the observed behavior is a consequence of interaction of the front with
the boundary near a parity breaking front bifurcation. [S0031-9007(96)00591-1]

PACS numbers: 82.20.Mj, 47.54.+r, 82.40.Ck

Oscillations in spatially extended chemical systems ar¢he outer 1.5 mm width edge of the gel is not in contact
often the result of underlying oscillating dynamics of thewith the reservoir. The entire system is immersed in a
local chemical kinetics [1]. In systems with nonuniform water bath maintained & = 30°C. The side of the
spatial structures, oscillations may also be drivendidy  gel opposite the chemical reservoir is a window through
fusion Spiral waves and breathing spots in excitable andvhich the gel is illuminated with blue light (400—440 nm),
bistable media are examples of oscillatory behaviors wherand the patterns are viewed using a video camera. The
the local kinetics without diffusion converge to station- system is studied in a range in which the homogeneous FIS
ary uniform states, while spatial structures undergo oscilreaction has two stable states, one with o/ (about 4)
lations. Chemical spirals have been observed and studiexhd the other with highH (about 7) [5,7]. Inthe observed
for more than two decades [2], but breathing spots have ngtatterns the black and white regions correspond to the low
been previously observed although they have been founand highpH states, respectively [7].
in numerical and analytical studies of activator-inhibitor We will now describe experiments that yield oscillat-
models [3,4]. ing spots. At low flow rates the gel reactor is uniformly

Figure 1 shows an example of the breathing spots obblack; at high flow rates, uniformly white [7]. When the
served in our study of a ferrocyanide-iodate-sulfite (FIS)ystem is switched on at intermediate flow rates, a black
reaction [5] in a quasi-2-dimensional reactor. The breathspot emerges in the center of the reactor. The spot is ini-
ing motion arises as a control parameter is increased and dially irregular but evolves to a circular spot centered in
initially stable circular front (the spot boundary) becomesthe reactor. Above a critical flow rate (about 150/ml
unstable. Further increase in control parameter eventuallfpr the reagent concentrations used; see Fig. 1), the circu-
leads to the front rebounding from the cell boundary andar spot oscillates in size as it approaches its asymptotic
propagating inward until the spot collapses and disappears.

The breathing motion is interpreted as transitions between

left and right propagating fronts near a parity breaking (a) (b)

front bifurcation [6]. The rebound phenomenon leading

to spot collapse is attributed to crossing the front bifurca-

tion as the control parameter is increased. We will first

describe the experimental system and then present the ob-

servations and the interpretation of the results in terms of (<)

a model reaction-diffusion system. =
The chemical patterns form in a thin gel layer that allows E =20
reaction and diffusion processes but prevents convection. -§ |
The apparatus is similar to that used by Lee and Swinney = _
[7]. A polyacrylamide gel layer (25 mm diameter, 0.3 mm |
thick) is in contact with a well-stirred reservoir (2.8 ml 0 -3, 90 80 130

Time {(min)

volume) that is continuously fed with reagents of the FIS o _ N _

reaction. Reagents are fed first to a premixer (1.0 ml volFIG. 1. An oscillating circular spot at (a) minimal size and

ume) in two streams, one with 80O, and NalQ, and the (b) maximal size. (c) Time evolution of the spot diameter.
ther with N3SO, and K,Fe(CN)s - 3H,0. The output The input concentrations to the reservoir in contact with

0 ) e 4T c 6 2 € oulp the gel reactor ar¢H,SQ;] = 3.35 mM, [10;7] = 75.0 mM,

of the premixer is fed to a stirred reservoir that is in contac{so, 2] = 89 mm, and[K;Fe(CN)s - 3H,0] = 20 mM. The

with the gel layer. The reservoir diameter is 22 mm; thusflow rate is 179 mih.
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(c) 20 | : FIG. 3. Periodic emergence of black rings near the boundary

leading to spot collapse near the center of the reactor. (a)—
(c) The dynamics of a single period, viewed at 80, 85, and
93 min, respectively; the time origin is arbitrary. (d) The
space-time evolution of a cross section of the reactor image.
The flow rate is 280 mih.
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tion. To develop this interpretation we consider a model
0e - : of a bistable reaction-diffusion system that exhibits pat-
12 170 220 tern phenomenology similar to that observed in the FIS
Flow rate (ml/hr) reaction [8], and is simpler for analysis than the Gaspér-
Showalter model for this reaction [5]. The model equa-
tions in one space dimension are

FIG. 2. Time evolution of the cross section of a spot.
(a) Sinusoidal oscillations just beyond the onset of instability
(F = 160 ml/h). (b) Relaxation oscillations far beyond the 3
instability onset £ = 200 ml/h). (c) The square of the spot U =u —u — U+ Uy, (1a)
oscillation amplitude as a function of flow rate.

v, = €lu — ajv — ag) + vy, (1b)

stationary state. Beyond a higher critical value of the flomwhere the subscripts and ¢+ denote partial derivatives.
rate (158 mfh), the circular spot becomes unstable andFor a fixeda; > 1 there is a parameter range where the
begins to oscillate in size, as Fig. 2 illustrates. The oscilsystem is bistable; it has two coexisting stable stationary
lations are nearly sinusoidal just beyond the onset of inuniform statequ.,v+) and(u—,v—_). The parametes
stability [Fig. 2(a)], while well beyond onset they becomewill be associated with the flow rat€, and the two states
relaxational [Fig. 2(b)]. Measurements of the amplitude(u+, v+) and(u—, v—) with the white (highpH) and black
A of the oscillation as a function of flow rate indicate that (low pH) states, respectively.
the transition is a Hopf bifurcatiom? increases linearly Foray = 0 and fixedé the system (1) exhibits a pitch-
with distance above transition, as shown in Fig. 2(c). fork front bifurcation [also known as the nonequilibrium
Beyond a yet larger flow rate (260 pl), a shrinking Ising-Bloch (NIB) bifurcation] as the parameteris de-
spot does not stop shrinking at a minimum size but insteadreased past a critical value.. For € > €. there is
continues to shrink until the spot disappears. As the spat single, stationary front solution connectifg.,v+) at
collapses, a new black ring emerges near the outer edge of= —» to (u—,v_) atx = ». At € = ¢, the station-
the reactor, creating two new fronts, as Fig. 3(d) illustratesary front solution becomes unstable and a pair of counter-
The inner front travels inward while the outer front initially propagating front solutions with velocitiesx *./e. — €
travels towards the boundary but then rebounds and traveégppear. These are the parity broken front states corre-
inward. The ring then collapses to a black spot that shrinksponding to the black-whitec (< 0) and the white-black
and disappears. The space-time diagram in Fig. 3(djc > 0) fronts. Wheru, # 0 the pitchfork bifurcation be-
shows that this whole process is periodic. comes imperfect, i.e., unfolds into a saddle node bifurca-
We interpret these observations as interactions of théon where, ate = €.(ap), a stable-unstable pair of front
chemical front with the reactor boundary in the vicinity solutions appears in addition to the stable front solution
of a parity breaking front bifurcation. The parity bro- that already exists.
ken front states correspond to a black state invading a The front bifurcation can also be traversed by varying
white state (black-white front) and a white state invad-other parameters, in particular by increasing< 0. We
ing a black state (a white-black front). Although the two will investigate the effect of a no-flux boundary on the
fronts connect the same states, they differ in their innedynamics of a front ag is increased. Using a singular
structures and consequently in their direction of propagaperturbation approach with/8 as a small parameter, we

191



VOLUME 77, NUMBER 1 PHYSICAL REVIEW LETTERS 1dJdLy 1996

derive a relation between the front velocity, and the

distance from the front to the boundary, The Hopf 0.3 (a) i
bifurcation observed in the experiment will be associated
with the c-d relation becoming multivalued. C 0.0- -
In a moving coordinate system (1) becomes —
Uy +cu, +u—u—v=0, (2a) =031 ' ' g i
v, + cv, + €(u — ajv — ag) =0, (2b) 0.31 (b) i
wherex(r) is the position of the narrow front structure, C 4.0/ L

z =x — x7(t), and ¢ = x; is the front velocity. The
boundary conditions are:, v) — (u—,v-) asz — o and

(u;,v,) = (0,0) atz = —d, whered is the distance from -03 ,

the front to the boundary. In obtaining (2) we assume that 0.3 (c) -

the front velocityx; = ¢ is small so that the explicit time

dependence in the moving frame can be neglected. The C ool X

front velocity can be controlled by varying ; increasing (

a; leads to lower velocities. 1
We first solve Egs. (2) in the front, or “inner,” region. —0:31 , , , i

Letting u = €/6 — 0 at finite n = +/e5, we obtain the 0 10 20 30 40

equationu,, + cu, + u — u® — vy = 0, subject to the d

boundary conditions: — asz— —» andu — . .
y s (vr) < ! FIG. 4. The dynamics of fronts near a boundary. The thick

u(vy) asz — . Here, vy is the value ofv at the lines represent the front distance from the boundaryand
front, andu-(vy) are the largest and smallest roots of front speed, ¢, computed from the numerical solution of

u — u® — vy = 0. Solving the inner problem yields Egs. (1). The thin lines are the solutions to Egs. (3) and (4).
_ (a) Far into the single front regime, a front approaching from
_ _ﬁ 3 large x values stops at a fixed distance from the boundary;

v T e () 4 =02 €= 0.025. (b) Near the front bifurcation the-d

relation is multivalued and the front begins oscillating; =
Another relation betweerr and v, is obtained by —0.1, € =0.0025. (c) After crossing the front bifurcation

solving the equations in the regions to the left and to"€ upper branch of the-d relation exists for alld and

he ri “ " : . __the approaching front rebounds and propagates away from the
the right _Of the front, the o_uter regions. Resgallng boundary to infinity;ao = —0.01, € = 0.0025. In all three

the coordinate system accordingdo= ,/xz and letting  casesq, = 5 ands = 2.0.

n — 0 gives [4]

The monotonic velocity relation and the corresponding
trajectory in Fig. 4(a) describe the approach of a black-
white front from the far right (large) to the boundary at
v + < v — ¢*(v — v_) =0, >0, x = xy — d. The solution converges to a stationary front

n at somed = dy. The negative slope dt,d) = (0, dp)
implies stability of the stationary solution. We associate
with this scenario the formation of a black spot observed
at low flow rates in the experiment.

As aq is increased, the slope of thed relation at
(c,d) = (0,dy) increases in absolute value and at a criti-

v§;+%v§—q2(v—v+)=0, <0,

with the boundary conditiona/(0) = vy, v(®) = v,
and v, (—/md) = 0. Here,¢*> =a; + 1/2 andvs =
(=1 — ap)/q>. Solving this boundary value problem and
matching the derivatives af at { = 0 we find

1T ¢\ —adss cal point,ap. = —1 + 2¢°\/2€8/3, diverges to infinity.
R ) tag+ (1= —e . (4 Beyonday. the slope is positive and the-d relation is

multivalued in some range of distances from the boundary
wherea = \/c? + 4€dq>. [Fig. 4(b)]. The critical pointag. corresponds to the
Equating (3) and (4) gives an implicit relation between onset of oscillatory front motion, and explains the Hopf
andd. Inthelimitd — <« this relation reproduces the front bifurcation to a breathing spot observed in the experiment.
bifurcation line [4], which we may write agy = ags(€). The oscillations can be regarded as periodic transitions
Figure 4(a) shows a graph of tleed relation far into the between left and right propagating fronts represented by
single front regime; Fig. 4(b), near the front bifurcation; the upper and lower branches of thed relation in
and Fig. 4(c), beyond the bifurcation. The figures alsdFig. 4(b) [9]. The dynamics actually do not follow these
show trajectories representing the front dynamics as olbranches because we have neglected the explicit time
tained by direct numerical solution of Egs. (1). dependence of the and v fields in the moving frame.
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Near the bifurcation,v; becomes an active degree of find that, despite the oscillations in the gel, th in
freedom responsible for transitions between the frontshe reservoir is time independent. This suggests that the
[10]. The present analysis, however, accurately predictprimary mechanism leading to the oscillating spots is
(within 3% fora; = 5) the onset of breathing motion and not global coupling but the one presented in this Letter:
describes the dynamics far from the front bifurcation [sednteractions of the front with the boundary near a parity
Figs. 4(a) and 4(c)]. breaking bifurcation.
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