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Breathing Spots in a Reaction-Diffusion System
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A quasi-2-dimensional stationary spot in a disk-shaped chemical reactor is observed to bifurcate to an
oscillating spot when a control parameter is increased beyond a critical value. Further increase of the
control parameter leads to the collapse and disappearance of the spot. Analysis of a bistable activator-
inhibitor model indicates that the observed behavior is a consequence of interaction of the front with
the boundary near a parity breaking front bifurcation. [S0031-9007(96)00591-1]

PACS numbers: 82.20.Mj, 47.54.+r, 82.40.Ck
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Oscillations in spatially extended chemical systems
often the result of underlying oscillating dynamics of t
local chemical kinetics [1]. In systems with nonunifor
spatial structures, oscillations may also be driven bydif-
fusion. Spiral waves and breathing spots in excitable a
bistable media are examples of oscillatory behaviors wh
the local kinetics without diffusion converge to statio
ary uniform states, while spatial structures undergo os
lations. Chemical spirals have been observed and stu
for more than two decades [2], but breathing spots have
been previously observed although they have been fo
in numerical and analytical studies of activator-inhibi
models [3,4].

Figure 1 shows an example of the breathing spots
served in our study of a ferrocyanide-iodate-sulfite (F
reaction [5] in a quasi-2-dimensional reactor. The brea
ing motion arises as a control parameter is increased an
initially stable circular front (the spot boundary) becom
unstable. Further increase in control parameter eventu
leads to the front rebounding from the cell boundary a
propagating inward until the spot collapses and disappe
The breathing motion is interpreted as transitions betw
left and right propagating fronts near a parity break
front bifurcation [6]. The rebound phenomenon lead
to spot collapse is attributed to crossing the front bifur
tion as the control parameter is increased. We will fi
describe the experimental system and then present th
servations and the interpretation of the results in term
a model reaction-diffusion system.

The chemical patterns form in a thin gel layer that allo
reaction and diffusion processes but prevents convec
The apparatus is similar to that used by Lee and Swin
[7]. A polyacrylamide gel layer (25 mm diameter, 0.3 m
thick) is in contact with a well-stirred reservoir (2.8 m
volume) that is continuously fed with reagents of the F
reaction. Reagents are fed first to a premixer (1.0 ml v
ume) in two streams, one with H2SO4 and NaIO3 and the
other with Na2SO3 andK4FesCNd6 ? 3H2O. The output
of the premixer is fed to a stirred reservoir that is in cont
with the gel layer. The reservoir diameter is 22 mm; th
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the outer 1.5 mm width edge of the gel is not in cont
with the reservoir. The entire system is immersed in
water bath maintained atT ­ 30 ±C. The side of the
gel opposite the chemical reservoir is a window throu
which the gel is illuminated with blue light (400–440 nm
and the patterns are viewed using a video camera.
system is studied in a range in which the homogeneous
reaction has two stable states, one with lowpH (about 4)
and the other with highpH (about 7) [5,7]. In the observe
patterns the black and white regions correspond to the
and highpH states, respectively [7].

We will now describe experiments that yield oscilla
ing spots. At low flow rates the gel reactor is uniform
black; at high flow rates, uniformly white [7]. When th
system is switched on at intermediate flow rates, a bl
spot emerges in the center of the reactor. The spot is
tially irregular but evolves to a circular spot centered
the reactor. Above a critical flow rate (about 150 mlyh
for the reagent concentrations used; see Fig. 1), the ci
lar spot oscillates in size as it approaches its asympt

FIG. 1. An oscillating circular spot at (a) minimal size an
(b) maximal size. (c) Time evolution of the spot diamet
The input concentrations to the reservoir in contact w
the gel reactor arefH2SO4g ­ 3.35 mM, fIO3

2g ­ 75.0 mM,
fSO3

22g ­ 89 mM, andfK4FesCNd6 ? 3H2Og ­ 20 mM. The
flow rate is 179 mlyh.
© 1996 The American Physical Society
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FIG. 2. Time evolution of the cross section of a sp
(a) Sinusoidal oscillations just beyond the onset of instab
(F ­ 160 mlyh). (b) Relaxation oscillations far beyond th
instability onset (F ­ 200 mlyh). (c) The square of the spo
oscillation amplitude as a function of flow rate.

stationary state. Beyond a higher critical value of the fl
rate (158 mlyh), the circular spot becomes unstable a
begins to oscillate in size, as Fig. 2 illustrates. The os
lations are nearly sinusoidal just beyond the onset of
stability [Fig. 2(a)], while well beyond onset they becom
relaxational [Fig. 2(b)]. Measurements of the amplitu
A of the oscillation as a function of flow rate indicate th
the transition is a Hopf bifurcation:A2 increases linearly
with distance above transition, as shown in Fig. 2(c).

Beyond a yet larger flow rate (260 mlyh), a shrinking
spot does not stop shrinking at a minimum size but inst
continues to shrink until the spot disappears. As the s
collapses, a new black ring emerges near the outer ed
the reactor, creating two new fronts, as Fig. 3(d) illustra
The inner front travels inward while the outer front initial
travels towards the boundary but then rebounds and tra
inward. The ring then collapses to a black spot that shri
and disappears. The space-time diagram in Fig. 3
shows that this whole process is periodic.

We interpret these observations as interactions of
chemical front with the reactor boundary in the vicin
of a parity breaking front bifurcation. The parity bro
ken front states correspond to a black state invadin
white state (black-white front) and a white state inva
ing a black state (a white-black front). Although the tw
fronts connect the same states, they differ in their in
structures and consequently in their direction of propa
.
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FIG. 3. Periodic emergence of black rings near the bound
leading to spot collapse near the center of the reactor. (
(c) The dynamics of a single period, viewed at 80, 85, a
93 min, respectively; the time origin is arbitrary. (d) Th
space-time evolution of a cross section of the reactor ima
The flow rate is 280 mlyh.

tion. To develop this interpretation we consider a mod
of a bistable reaction-diffusion system that exhibits p
tern phenomenology similar to that observed in the F
reaction [8], and is simpler for analysis than the Gásp
Showalter model for this reaction [5]. The model equ
tions in one space dimension are

ut ­ u 2 u3 2 y 1 uxx , (1a)

yt ­ esu 2 a1y 2 a0d 1 dyxx , (1b)

where the subscriptsx and t denote partial derivatives
For a fixeda1 . 1 there is a parameter range where t
system is bistable; it has two coexisting stable station
uniform statessu1, y1d and su2, y2d. The parametera0
will be associated with the flow rateF, and the two states
su1, y1d andsu2, y2d with the white (highpH) and black
(low pH) states, respectively.

For a0 ­ 0 and fixedd the system (1) exhibits a pitch
fork front bifurcation [also known as the nonequilibrium
Ising-Bloch (NIB) bifurcation] as the parametere is de-
creased past a critical value,ec. For e . ec there is
a single, stationary front solution connectingsu1, y1d at
x ­ 2` to su2, y2d at x ­ `. At e ­ ec the station-
ary front solution becomes unstable and a pair of coun
propagating front solutions with velocitiesc ~ 6

p
ec 2 e

appear. These are the parity broken front states co
sponding to the black-white (c , 0) and the white-black
(c . 0) fronts. Whena0 fi 0 the pitchfork bifurcation be-
comes imperfect, i.e., unfolds into a saddle node bifur
tion where, ate ­ ecsa0d, a stable-unstable pair of fron
solutions appears in addition to the stable front solut
that already exists.

The front bifurcation can also be traversed by varyi
other parameters, in particular by increasinga0 , 0. We
will investigate the effect of a no-flux boundary on th
dynamics of a front asa0 is increased. Using a singula
perturbation approach witheyd as a small parameter, w
191
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derive a relation between the front velocity,c, and the
distance from the front to the boundary,d. The Hopf
bifurcation observed in the experiment will be associa
with thec-d relation becoming multivalued.

In a moving coordinate system (1) becomes

uzz 1 cuz 1 u 2 u3 2 y ­ 0 , (2a)

dyzz 1 cyz 1 esu 2 a1y 2 a0d ­ 0 , (2b)

wherexf std is the position of the narrow front structur
z ­ x 2 xfstd, and c ­ Ùxf is the front velocity. The
boundary conditions aresu, yd ! su2, y2d asz ! ` and
suz , yzd ­ s0, 0d at z ­ 2d, whered is the distance from
the front to the boundary. In obtaining (2) we assume t
the front velocityÙxf ­ c is small so that the explicit time
dependence in the moving frame can be neglected.
front velocity can be controlled by varyinga1; increasing
a1 leads to lower velocities.

We first solve Eqs. (2) in the front, or “inner,” regio
Letting m ­ eyd ! 0 at finite h ­

p
ed, we obtain the

equationuzz 1 cuz 1 u 2 u3 2 yf ­ 0, subject to the
boundary conditionsu ! u1syf d as z ! 2` and u !
u2syf d as z ! `. Here, yf is the value ofy at the
front, and u6syfd are the largest and smallest roots
u 2 u3 2 yf ­ 0. Solving the inner problem yields

yf ­ 2

p
2

3
c . (3)

Another relation betweenc and yf is obtained by
solving the equations in the regions to the left and
the right of the front, the “outer” regions. Rescalin
the coordinate system according toz ­

p
m z and letting

m ! 0 gives [4]

yz z 1
c
h

yz 2 q2sy 2 y1d ­ 0, z , 0 ,

yz z 1
c
h

yz 2 q2sy 2 y2d ­ 0, z . 0 ,

with the boundary conditionsys0d ­ yf , ys`d ­ y2,
and yz s2p

m dd ­ 0. Here,q2 ­ a1 1 1y2 and y6 ­
s61 2 a0dyq2. Solving this boundary value problem an
matching the derivatives ofy at z ­ 0 we find

yf ­ 2
1
q2

∑
c
a

1 a0 1

µ
1 2

c
a

∂
e2adyd

∏
, (4)

wherea ­
p

c2 1 4edq2.
Equating (3) and (4) gives an implicit relation betweenc

andd. In the limitd ! ` this relation reproduces the fron
bifurcation line [4], which we may write asa0 ­ a0bsed.
Figure 4(a) shows a graph of thec-d relation far into the
single front regime; Fig. 4(b), near the front bifurcatio
and Fig. 4(c), beyond the bifurcation. The figures a
show trajectories representing the front dynamics as
tained by direct numerical solution of Eqs. (1).
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FIG. 4. The dynamics of fronts near a boundary. The th
lines represent the front distance from the boundary,d, and
front speed, c, computed from the numerical solution o
Eqs. (1). The thin lines are the solutions to Eqs. (3) and (
(a) Far into the single front regime, a front approaching fro
large x values stops at a fixed distance from the bounda
a0 ­ 20.2, e ­ 0.025. (b) Near the front bifurcation thec-d
relation is multivalued and the front begins oscillating;a0 ­
20.1, e ­ 0.0025. (c) After crossing the front bifurcation
the upper branch of thec-d relation exists for alld and
the approaching front rebounds and propagates away from
boundary to infinity;a0 ­ 20.01, e ­ 0.0025. In all three
cases,a1 ­ 5 andd ­ 2.0.

The monotonic velocity relation and the correspondi
trajectory in Fig. 4(a) describe the approach of a bla
white front from the far right (largex) to the boundary at
x ­ xf 2 d. The solution converges to a stationary fro
at somed ­ d0. The negative slope atsc, dd ­ s0, d0d
implies stability of the stationary solution. We associa
with this scenario the formation of a black spot observ
at low flow rates in the experiment.

As a0 is increased, the slope of thec-d relation at
sc, dd ­ s0, d0d increases in absolute value and at a cr
cal point,a0c ­ 21 1 2q3

p
2edy3, diverges to infinity.

Beyonda0c the slope is positive and thec-d relation is
multivalued in some range of distances from the bound
[Fig. 4(b)]. The critical pointa0c corresponds to the
onset of oscillatory front motion, and explains the Ho
bifurcation to a breathing spot observed in the experime

The oscillations can be regarded as periodic transiti
between left and right propagating fronts represented
the upper and lower branches of thec-d relation in
Fig. 4(b) [9]. The dynamics actually do not follow thes
branches because we have neglected the explicit t
dependence of theu and y fields in the moving frame.
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Near the bifurcation,yf becomes an active degree o
freedom responsible for transitions between the fron
[10]. The present analysis, however, accurately predi
(within 3% for a1 ­ 5) the onset of breathing motion and
describes the dynamics far from the front bifurcation [s
Figs. 4(a) and 4(c)].

Beyond the front bifurcation,a0 . a0bsed, the upper
branch in thec-d relation extends to infinity, i.e., exists
for all distancesd. As Fig. 4(c) demonstrates, this type o
c-d relation results in the rebound of a front approachin
the boundary along the lower branch (black-white fron
and the escape to infinity along the upper branch (whi
black front). This behavior together with the circula
geometry of the experimental apparatus explains
rebound and collapse of black spots observed at high fl
rates. Possible instabilities to transverse perturbatio
[7,8] are damped in the present experiment by hi
curvature (small spots) and by the interaction with th
circular reactor boundary (large spots). The observat
of traveling rings in the same parameter range as
collapsing spots (Fig. 3) provides further evidence f
this interpretation since crossing the front bifurcation
associated with the appearance of traveling waves [
The periodic production of waves near the bounda
might be due to heterogeneities, which become signific
near the oscillatory regime at high flow rates, or glob
coupling effects. The latter possibility is not highly
probable as discussed below.

We have been able to explain breathing spots
terms of dynamic front transitions near a parity breakin
front bifurcation. The generic nature of this bifurcatio
suggests that similar behavior can be expected in ot
systems with fronts. Breathing spots can also arise fro
global coupling, as found by Middya and Luss in mod
equations [11]. Indeed, we find that decreasing t
strength of a global coupling term added to (1a) leads
a scenario similar to that observed: stationary, oscillatin
and collapsing spots. In our experiment global couplin
can arise from diffusion of chemicals from the gel bac
into the stirred reservoir. To test whether such coupli
is significant, we monitor thepH in the reservoir. We
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find that, despite the oscillations in the gel, thepH in
the reservoir is time independent. This suggests that
primary mechanism leading to the oscillating spots
not global coupling but the one presented in this Lett
interactions of the front with the boundary near a par
breaking bifurcation.
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