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The slow dynamics of nearly stationary patterns in a FitzHugh-Nagumo model are studied using a phase
dynamics approach. A Cross-Newell phase equation describing slow and weak modulations of periodic sta-
tionary solutions is derived. The derivation applies to the bistable, excitable, and Turing unstable regimes. In
the bistable case stability thresholds are obtained for the Eckhaus and zigzag instabilities and for the transition
to traveling waves. Neutral stability curves demonstrate the destabilization of stationary planar patterns at low
wave numbers to zigzag and traveling modes. Numerical solutions of the model system support the theoretical
findings.

PACS number�s�: 05.45.�a, 45.70.Qj, 47.54.�r, 82.20.Mj

I. INTRODUCTION

Studies of stationary patterns in activator-inhibitor sys-
tems have focused primarily on localized structures such as
pulses and spots in excitable and bistable media �1–8�, and
periodic patterns near a Turing bifurcation �9–11�. Localized
structures have instabilities to traveling patterns, breathing
motion, and transverse deformations �2,12–14�. Periodic pat-
terns have been analyzed near the onset of a Turing instabil-
ity and also near the codimension-2 point of a Turing insta-
bility and a Hopf bifurcation �15–19�. But very few studies
have explored instabilities of periodic �nonlocal� stationary
patterns in excitable and bistable media, or of periodic sta-
tionary patterns far beyond the Turing instability �20,21�.
The latter case includes pattern formation studies on the
chlorite iodide malonic acid �CIMA� chemical reaction
�17,22,23�.

In this paper we study instabilities of stationary periodic
patterns by deriving a Cross-Newell phase equation �24–26�.
The derivation is not restricted to the immediate neighbor-
hood of a Turing instability and applies to periodic patterns
with space-scale separation that arise far from onset or in
excitable and bistable media. The Cross-Newell equation
was originally derived in the context of fluid dynamics and
has recently been applied in a laser system �27�.

We choose to study the FitzHugh-Nagumo �FHN� equa-
tions, a canonical model for activator-inhibitor systems,

�u

�t
�u�u3�v��2u , �1�

�v
�t

���u�a1v�a0��	�2v .

Here, u is the activator and v the inhibitor. The parameters
a0 and a1 can be chosen so that the FHN model �1� repre-
sents an excitable medium, a bistable medium, or a system
with a Turing instability �13�. All three cases support station-
ary periodic solutions for 	 sufficiently large.

In Sec. II we derive a phase equation describing weak
modulations of a periodic stripe pattern in the FHN model. In
Sec. III we evaluate stability thresholds for Eckhaus and zig-
zag instabilities and for a transition from stationary to trav-
eling patterns. These thresholds suggest a number of spatial
or spatiotemporal behaviors that we test in Sec. IV with nu-
merical solutions of Eqs. �1�.

II. PHASE EQUATION

Let u0(
;k)�u0(
�2�;k), v0(
;k)�v0(
�2�;k) be
a stationary periodic solution of Eqs. �1� with phase 
 and
wave number k. We consider weak spatial modulations of
this periodic pattern and assume that these modulations have
a length scale L that is much larger than the wavelength 1/k .
The ratio of the length scales ��1/(kL) can then be used as
a small parameter to write modulated solutions as an
asymptotic expansion about the periodic solution,

u�
 ,R,T ��u0�
;k ���u1�
 ,R,T ���2u2�
 ,R,T ��••• ,

v�
 ,R,T ��v0�
;k ���v1�
 ,R,T ���2v2�
 ,R,T ��••• ,
�2�

where R��r and T��2t are slow space and time variables.
The phase 
 in Eq. �2� is an undetermined function of space
and time and k��k���“
� is the local wave number. Our
objective is to derive an equation for the slow phase,
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�R,T �ª�
�r,R,T �.

In terms of this phase the local wave vector is

k�R,T ��“R
 .

Inserting the expansions �2� in Eqs. �1� we find at order unity

u0�u0
3�v0�k2

�2u0

�
2
�0, �3a�

��u0�a1v0�a0��	k2
�2v0

�
2
�0, �3b�

where k2�k•k. At order � ,

� k2
�2

�
2
�1�3u0

2� u1�v1�D�u0

�

, �4a�

�u1�� 	k2
�2

�
2
��a1� v1�D�v0

�

, �4b�

where

D�
�


�T
�“R•k�2k•“R . �5�

Projecting the right hand side of Eq. �4� onto (�
u0 ,
���1�
v0), the solution of the adjoint problem, produces
the phase equation

�
�


�T
��“R•�kB �,

where

�����
u0�2����1���
v0�2�, �6�

B�����
u0�2��	��1���
v0�2�. �7�

In these equations �(•)�ª(1/2�)�0
2�(•)d
 .

The quantities B and � contain information about various
instabilities of the periodic stripe pattern. The condition
(d/dk)�kB(k)��0 implies the onset of an Eckhaus instabil-
ity and the condition B�0 the onset of a zigzag instability
�25�. In Appendix A we show that the condition ��0 indi-
cates a transition to traveling waves.

To implement these conditions we need to solve Eqs. �3�
for the periodic solution (u0 ,v0). For parameter values that
satisfy �/	ª��1 an approximate solution can be computed
as shown in Appendix B. Using this solution to calculate �
and B, as shown in Appendix C, gives the following expres-
sions:

��
2�2

3�k
�

v�

q�k�
��������� ,���,

�8�

B�
2�2

3�k
�

v�

q�k��
��������� ,���,

������
2���

k
, �9�

v�������v�������0, �10�

where ���/	 ,����	 ,v��(�1�a0)/q2, q2�a1�1/2,

��x ��coth qx�csch qx , �11�

and

���� ,�����1� 1
2 �1�a0�q��csch q��

� 1
2 �1�a0�q��csch q�� . �12�

The quantities �� and �� denote the widths of domains
with high and low values of u and v , respectively. The width
is measured with respect to the spatial coordinate z
�(��/k)
 �see Appendix B�. Given k, Eqs. �9� and �10� can
be solved for ��(k) and ��(k). Using these solutions in
Eq. �8� graphs of � and kB as functions of k can be produced.

III. STABILITY THRESHOLDS

Explicit forms for �(k) and B(k) are available in the sym-
metric case, a0�0, where ���������/k:

��k ��
1

�k�cq3 � 1�
�c

�
f ��q��/k � � ,

�13�

B�k ��
1

�k�cq3 � 1�
�c

��
f ��q��/k �� ,

where �c�3/2�2q3 and

f �x ���1�x csch x ��coth x�csch x �. �14�

Figure 1 shows graphs of �(k) and kB(k) for a bistable
medium obtained with Eqs. �13� �thick lines� and with Eqs.
�6� and �7� using numerically calculated solutions u0 ,v0
�circles�. A very good agreement is obtained within the va-
lidity range of the analysis, k�O(��)�1. For k�O(1) the
deviations become large. In particular, the minimum of
kB(k), which designates the Eckhaus instability threshold, is
not reproduced by the analytical form �13�.

The instability to traveling waves occurs at ��0 or at

���c
2 f 2��q��/k �	�1. �15�

The zigzag instability occurs at B�0 or at

���c
2 f 2��q��/k �	 . �16�

The condition (d/dk)(kB)�0 for the Eckhaus instability be-
comes

d f

dx �
x��q��/k

�0.

Consider first the limit k→0 in which the periodic pattern
approaches an array of isolated front structures. In this limit
f (�q��/k)→1 and the condition for the onset of traveling
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waves becomes ���c
2	�1. This is precisely the nonequilib-

rium Ising-Bloch �NIB� bifurcation point, where a stationary
front loses stability to a pair of counterpropagating fronts.
The condition for the zigzag instability becomes ���c

2	 .
This is the threshold for the transverse front instability �28�.

The neutral stability curves for a bistable medium corre-
sponding to Eqs. �15� and �16� are shown in Figs. 2�a� and
2�b� for fixed 	 and � , respectively. They imply that high
wave number stationary planar patterns are stabilized against
zigzag and traveling wave instabilities. Notice that for 	
�1 the neutral stability curves ��0 and B�0 coincide �see
Eqs. �15� and �16� or Fig. 2�b��. For 	�1, upon decreasing
the wave number at constant � , a high wave number pattern
is destabilized to a zigzag pattern, whereas for 	�1 the de-
stabilization is to traveling waves. Similar neutral stability
curves are found for the nonsymmetric case, a0�0, for ex-
citable media, and for systems �far� beyond the Turing insta-
bility.

IV. COMPARISONS WITH NUMERICAL SOLUTIONS

We have computed numerical solutions of Eqs. �1� to test
the stabilization of zigzag and traveling wave instabilities at
high wave numbers. Figure 3 shows a low wave number
zigzag pattern and a high wave number planar pattern com-
puted for the same parameter values. This behavior is well
known in other contexts �29�. The zigzag instability is a
mechanism by which the system locally increases the wave
number. Figure 4 shows coexistence of a low wave number
traveling wave and a high wave number stationary pattern.
These numerical results are for a bistable system but similar
results are found for excitable and Turing unstable systems.
Coexistence of stationary and traveling waves has been
found in experiments on the CIMA reaction �17,23� and ana-
lyzed using different theoretical approaches �20,30,31,21�.

We have also tested the condition for the Eckhaus insta-
bility in a bistable system using numerical computations of �
and B. Choosing wave numbers k�kc where kc corresponds
to the minimum of kB , we found that initial periodic patterns

collapse either to uniform states or to a lower wave number
pattern through phase slips. Figure 5 demonstrates these two
cases. Similar conclusions hold for excitable systems. An
unstable Turing pattern, on the other hand, always converges
to a lower wave number pattern since the single uniform
state is unstable.

V. CONCLUSION

We have shown that the Cross-Newell phase equation
provides a powerful tool for studying instabilities of station-
ary periodic patterns in activator-inhibitor systems. The
equation contains information not only on the Eckhaus and
zigzag instabilities, but also on the destabilization of station-
ary periodic patterns to traveling waves. The same equation
applies to bistable, excitable, and Turing unstable systems.
Equations of that kind should prove useful in identifying
parameters and initial conditions where zigzag and Eckhaus
instabilities couple to traveling wave modes. Such coupling
may lead to complex spatiotemporal behavior analogous to
the coupling of the NIB front bifurcation to a transverse front
instability �28,32�

FIG. 1. Typical functions �(k) and kB(k) for a bistable me-
dium. The curves represent the functions of Eqs. �13�. The circles
are numerically computed solutions using Eqs. �6� and �7�. The
point kB�0 indicates the boundary between stable stationary
stripes and zigzag patterns. At ��0 the pattern becomes unstable to
traveling waves. Parameters: a1�4, a0�0, ��0.001, 	�2.0.

FIG. 2. The neutral stability boundaries for the zigzag instability
(B�0; thick curve� and traveling wave instability (��0; thin
curve� in �a� the �-k parameter plane, and �b� the 	-k parameter
plane. To the left of the B�0 curve, planar periodic patterns are
unstable to zigzag patterns. To the left of the ��0 curve, planar
periodic patterns are unstable to traveling waves. Parameters: a1

�2, a0�0, ��0.01, 	�2.
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APPENDIX A: THE MEANING OF �Ä0

We show here that the condition ��0 defines the critical
value of � at which traveling solutions bifurcate from the
stationary solution. We look for traveling solutions
u(
),v(
) of Eqs. �1�, where 
�kx��t , that bifurcate from
the stationary solution branch ��0 at some ���c . Near the
bifurcation where ��1 we can expand the traveling solu-
tions as power series in � around the stationary solution
u0 ,v0:

u�
��u0�
���u1�
��••• ,

v�
��v0�
���v1�
��••• . �A1�

Expanding � as

���c��1��••• �A2�

and using these expansions in Eqs. �1�, we find at order �

� k2
�2

�
2
�1�3u0

2� u1�v1��u0�,

�cu1�� 	k2
�2

�
2
��a1� v1��v0���1�u0�a1v0�a0�.

FIG. 3. Coexistence of zigzag and planar patterns. The dark
areas indicate regions of u�0 and the light regions u�0. At higher
wave numbers �a� the planar stripe solution is stable. At low wave
numbers �b� the planar solution is unstable and forms a zigzag
pattern. Parameters: a1�2, a0�0, ��0.05, 	�2.

FIG. 4. Coexistence of traveling waves and stationary waves. At
high wave number �a� the patterns are stationary and at low wave
number �b� they travel. Parameters: a1�2, a0�0, ��0.03, 	�2.
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Projecting the right hand side onto (u0� ,��c
�1v0�) gives

�c�
�v0�

2�

�u0�
2�

, �A3�

where we used Eq. �3b� and switched to the notation of a
prime for the derivative with respect to the single argument

 . Using the definition �6� of � and Eq. �A3� we find

��� 1�
�c

� � �u0�
2�. �A4�

Thus, ��0 implies ���c or the onset of traveling solutions.

APPENDIX B: APPROXIMATE STATIONARY SOLUTION

For ���/	�1 a singular perturbation approach can be
used to approximate the stationary solution u0(
),v0(
).
Rescaling the space coordinate as z�(��/k)
 , Eqs. �3� be-
come

u0�u0
3�v0��u0��0,

u0�a1v0�a0�v0��0,

where the prime now denotes the derivative with respect to z.
Since the small parameter � multiplies the second derivative
term u0� , two types of spatial regions can be distinguished:
outer regions where u0(z) varies on a scale of order unity
and the term �u0� is negligible, and inner regions where
u0(z) varies on a very short scale of order �� and the term
�u0� cannot be neglected. In these regions, however, v0

hardly changes.
The analysis of the inner regions leads to the solutions

u0��tanh



�2k
, v0�0. �B1�

These solutions represent front structures separating two
types of outer regions: domains of high activator values, u
�u�(v0) �‘‘up state’’�, and domains of low activator values
u�u�(v0) �‘‘down state’’�, where u�(v0) are the extreme
roots of u0�u0

3�v0�0. We look for periodic stationary so-
lutions with wavelength ������� , where �� and ��

are the widths of up and down states, respectively. Consider
now a down state spanning the spatial range ����z�0
followed by an up state spanning the range 0�z��� . The
equations for v at these outer regions are

v0��q2�v0�v���0, ����z�0, �B2�

with the boundary conditions v0(���)�v0(0)�0, and

v0��q2�v0�v���0, 0�z��� , �B3�

with the boundary conditions v0(0)�v0(��)�0. In obtain-
ing these equations we approximated u�(v0)��1�v0/2.
This approximation is particularly good for bistable media
with a0 small and a1 relatively large. These values restrict v0
to a small range around v0�0. For excitable media and sys-
tems undergoing Turing instability, a large value of 	 might
be needed to keep v0 small.

The solutions to Eqs. �B2� and �B3� are

v0�
v�

sinh q��
�sinh qz�sinh q�z������v� , �B4�

for ����z�0, and

v0�
v�

sinh q��
�sinh q�z�����sinh qz��v� , �B5�

for 0�z��� . To determine �� for a given � we match
the derivatives of v0 at the front positions,

v0��0���v0��0��, v0������v0������.

FIG. 5. Time evolution of a periodic pattern in the region of
Eckhaus instability. The high wave number pattern is unstable and
converges to either one of the uniform states �a� or a lower wave
number pattern �b�. Parameters: a1�2, a0�0, 	�2; top: ��0.01,
bottom: ��0.1.

PRE 61 6475PHASE DYNAMICS OF NEARLY STATIONARY . . .



This leads to the relation

v���q����v���q����0,

where �(x) is given by Eq. �11�.

APPENDIX C: CALCULATION OF � AND B

The quantities � and B are given by Eqs. �6� and �7�.
Consider first the integral

�u0��
�2��
1

2��0

2�

u0��
�2d
 .

It has a contribution from two inner regions at z�0 and z
��� where u0 is given by Eq. �B1�, and a contribution from
two outer regions, ����z�0 and 0�z��� , where u0
��1�v0/2 and u0�1�v0/2 with v0 given by Eq. �B4� and
Eq. �B5�, respectively. �Recall that z�(��/k)
 .�

The contribution from the two inner regions is

�u0��
�2� inner�
1

2�k2�inner
sech4� 


�2k
� d


�
1

�2�k
�

��

�

sech4x dx�
2�2

3�k
.

We have used here the fact that k�O(��)�1. The integral
over a narrow inner region is transformed into an integral
over a wide region after stretching the 
 variable to the x
�
/�2k variable. The contribution from the two outer re-
gions is

�u0��
�2�outer�
��

8�k � �
���

0

v0�z ��2dz��
0

��

v0�z ��2dz � ,

where we used in the two outer regions u0(z)��� 1
2 v0(z)�.

Altogether,

�u0��
�2��
2�2

3�k
�

��

8�k � �
���

0

v0�z ��2dz

��
0

��

v0�z ��2dz � . �C1�

The second term on the right hand side of Eq. �C1� is small
�since ���1) and will not contribute to the leading order
forms of � and B.

Consider now the integral

�v0��
�2��
1

2��0

2�

v0��
�2d
 .

The contribution from the inner regions to this integral is
negligible for ��1. Thus

�v0��
�2��
��

2�k � �
���

0

v0�z ��2dz��
0

��

v0�z ��2dz � .

�C2�

Using the solutions �B4� and �B5� in the integrals �C1�
and �C2� and using the expressions for � and B we obtain the
expressions �8�.
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