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Abstract

Understanding the structure and dynamics of plant communities in water-limited systems often calls for the identification of ecosystem

engineers—key species that modify the landscape, redistribute resources and facilitate the growth of other species. Shrubs are excellent

examples; they self-organize to form patterns of mesic patches which provide habitats for herbaceous species. In this paper we present a

mathematical model for studying ecosystem engineering by woody plant species in drylands. The model captures various feedbacks

between biomass and water including water uptake by plants’ roots and increased water infiltration at vegetation patches. Both the

uptake and the infiltration feedbacks act as mechanisms for vegetation pattern formation, but have opposite effects on the water

resource; the former depletes the soil-water content under a vegetation patch, whereas the latter acts to increase it. Varying the relative

strength of the two feedbacks we find a trade-off between the engineering capacity of a plant species and its resilience to disturbances. We

further identify two basic soil-water distributions associated with engineering at the single patch level, hump-shaped and ring-shaped,

and discuss the niches they form for herbaceous species. Finally, we study how pattern transitions at the landscape level feedback to the

single patch level by affecting engineering strength.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Landscapes of water-limited systems are mosaics of
patches that differ in resource concentration, biomass
production and species richness. Two processes affecting
their structure and dynamics have attracted considerable
attention during the past decade, ecosystem engineering
(Jones et al., 1994, 1997; Olding-Smee et al., 2003) and self-
organized patchiness (Rietkerk et al., 2004). Ecosystem
engineers are key species that modify the abiotic environ-
e front matter r 2006 Elsevier Ltd. All rights reserved.
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ment, redistribute resources and facilitate the growth of
other species. A well studied example is provided by shrubs
that concentrate soil water and form fertile patches where
annuals, grasses and other species can grow (Boeken and
Shachak, 1994; Pugnaire and Luque, 2001). Self-organized
patchiness is a pattern formation phenomenon whereby
positive water-biomass feedbacks at the level of a single
patch result in vegetation patterns at the landscape level. A
striking example of this phenomenon is banded vegetation
on hill slopes (Valentin et al., 1999).
Progress in understanding self-organized patchiness has

largely been due to the development of mathematical
models of vegetation growth (Lefever and Lejeune, 1997;
Klausmeier, 1999; von Hardenberg et al., 2001; Okayasu
and Aizawa, 2001; Rietkerk et al., 2002; Shnerb et al.,
2003). The input information used in formulating these
models is at the level of a single plant-patch, while the
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predictive power extends to the patchwork created at the
landscape level. These models reproduce various biomass
patterns observed in the field (Rietkerk et al., 2004), predict
the possible coexistence of different stable patterns under
given environmental conditions, and identify a generic
sequence of basic pattern states along the rainfall gradient
(von Hardenberg et al., 2001; Meron et al., 2004).

Despite the relative success in reproducing biomass
patchiness, current models (Rietkerk et al., 2004) provide
very limited information about the dynamics and the spatial
distributions of the soil-water resource, and thus about
engineering. In general, the water resource is coupled to the
plant biomass through various feedback processes including
reduced evaporation by shading (‘‘shading feedback’’),
increased infiltration at vegetation patches (‘‘infiltration
feedback’’) and water uptake by plants’ roots (‘‘uptake
feedback’’). The first two processes act to concentrate the
water resource at vegetation patches, thus acting as positive
feedbacks. The water-uptake process acts to deplete the water
resource, and in this sense can be regarded as a negative
feedback. Current models (Okayasu and Aizawa, 2001;
Rietkerk et al., 2002) take into account all three feedbacks
but overlook an important ingredient of the water uptake
process: root-system augmentation in response to biomass
growth. This ingredient induces positive feedback relation-
ships between biomass and water, for it acts to increase the
amount of soil water available to the plant by probing larger
soil volumes. To capture this effect, it is necessary to model
explicitly the non-locality of water uptake: uptake at a given
spatial point is also due to distant plants whose roots extend
to that point. Root-system augmentation affects the soil-
water distribution as well as the capability of plants to
withstand water stress, and is therefore an essential
component in modeling plants as ecosystem engineers.

In this paper we present and study a mathematical model
for vegetation growth in water-limited systems that
captures root-system augmentation through non-local
terms in the model equations. We first use the model to
study biomass patterns along aridity gradients and
reproduce results obtained with earlier models. We then
study ecosystem engineering, addressing aspects such as
resilience to disturbances, engineering niches and the
effects of spatial patterning at the landscape level. A brief
account of the model to be presented here has been given in
Gilad et al. (2004).

2. Background

Ecosystem dynamics at the landscape level involve a
multitude of interacting species with many traits in respect
to resource acquisition and distribution. Some species,
however, have greater impacts than others in the sense that
their introduction or removal can dramatically alter the
ecosystem’s behavior. One example are ‘‘keystone species’’
(Power et al., 1996), whose roles in energy flow and
nutrient cycling can affect the trophic web structure of the
system. Recently, another type of key species, named
‘‘ecosystem engineers’’ (Jones et al., 1994, 1997; Olding-
Smee et al., 2003), has been identified. Unlike keystone
species, which directly affect the biotic component,
ecosystem engineers affect the physical environment,
thereby changing resource distributions and, as a result,
species diversity and ecosystem functioning (Odling-Smee,
1988; Jones et al., 1994, 1997; Shachak and Jones, 1995;
Gurney and Lawton, 1996; Perry, 1998; Laland et al., 1999;
Shachak et al., 2005).
Processes of resource distribution are normally combi-

nations of biotic factors, associated with ecosystem
engineers, and abiotic factors. One abiotic factor con-
tributing to water redistribution in drylands is dust and
sediment deposition in rocky watersheds (Yair and
Shachak, 1987). The higher water infiltration rates in
deposition patches induce source-sink water flow relation-
ships and enrich the water content in these patches. Biotic
factors include cyanobacteria that form partially imperme-
able biogenic crusts, limiting infiltration of rainfall and
favoring surface runoff generation, and plants, particularly
shrubs, that act as sinks for the surface-water flow. The
accumulation of litter and dust under the shrub forms a
mound with high infiltration capacity, which not only
absorbs direct rainfall but also intercepts the runoff water
generated by the soil crust. Reduced evaporation under the
shrub canopy further contributes to local water accumula-
tion. The water-enriched patch and the accumulated dust
and litter create an island of fertility (Charley and West,
1975) under the shrub canopy, characterized by higher
concentration of water, nutrient and organic matter as
compared with the surrounding crusted soil.
At the landscape level self-organization processes gen-

erating spatial patch patterns may take place. Depending
on environmental conditions (rainfall, topography, grazing
stress, etc.) and species traits, different vegetation patterns
have been observed, including band, labyrinth, spot, and
gap patterns (Valentin et al., 1999; Rietkerk et al., 2002,
2004; Meron et al., 2004). The self-organization of
vegetation in water-limited systems to form spatial patterns
has been attributed to an instability (Cross and Hohenberg,
1993; Murray, 1993) of uniform vegetation which has been
produced by several independent models (Lefever and
Lejeune, 1997; von Hardenberg et al., 2001; Okayasu and
Aizawa, 2001; Rietkerk et al., 2002; Gilad et al., 2004). The
mechanism of the instability is based on positive-feedback
relationships between biomass and water. One realization
of such a feedback is the increased infiltration of surface
water at vegetation patches discussed above. Another
realization of a positive water-biomass feedback is root-
system augmentation; the larger the biomass the bigger the
root system and the more soil water the roots can take up.
This feedback, which is crucial for understanding ecosys-
tem engineering, is not captured by earlier mathematical
models. Another aspect of vegetation patterns that escaped
attention in earlier theoretical studies is how pattern
dynamics at the landscape level affect water distribution
at the single patch level.
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Fig. 1. The infiltration rate I ¼ AðBþQf Þ=ðBþQÞ as a function of

biomass density B. When the biomass is diminishingly small ðB5QÞ the

infiltration rate approaches the value of Af. When the biomass is large

ðBbQÞ the infiltration rate approaches A. The infiltration contrast

between bare and vegetated soil is quantified by the parameter f, where

0pfp1; when f ¼ 1 the contrast is zero and when f ¼ 0 the contrast is

maximal. Small f values can model biological crusts which significantly

reduce the infiltration rates in bare soils. Disturbances involving crust

removal can be modeled by relatively high f values. The parameters used

are given in Table 1.
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3. The model

We introduce a model for a single plant species where the
limiting resource is water. A ‘‘patch’’ in the context of the
model is defined to be an area covered by the plant, which
generally differs in its water content from the surrounding
bare soil. The model contains three dynamical variables:
(a) the biomass density variable, BðX;TÞ, representing the
plant’s biomass above ground level in units of ðkg=m2Þ, (b)
the soil-water density variable, W ðX;TÞ, describing the
amount of soil water available to the plants per unit area of
ground surface in units of ðkg=m2Þ, and (c) the surface
water variable, HðX;TÞ, describing the height of a thin
water layer above ground level in units of (mm). Rainfall
and topography are introduced parametrically; thus
vegetation feedbacks on climate and soil erosion are
assumed to be negligible. The model equations are:

BT ¼ GBBð1� B=KÞ �MBþDBr
2B,

W T ¼ IH �Nð1� RB=KÞW � GW W þDWr
2W ,

HT ¼ P� IH þDHr
2ðH2Þ þ 2DHrH � rZ þ 2DHHr2Z,

ð1Þ

where the subscript T denotes the partial time derivative,
X ¼ ðX ;Y Þ and r2 ¼ q2X þ q2Y . In the biomass equation the
quantity GB represents the biomass growth rate, the
parameter K is the maximum standing biomass, the
parameter M is the rate of biomass loss (due to mortality
and various disturbances such as grazing), and the term
DBr

2B represents seed dispersal. In the soil-water equation
the quantity I represents the infiltration rate of surface
water into the soil, the parameter N is the soil-water
evaporation rate, the parameter R describes the reduction
in soil-water evaporation rate due to shading, the quantity
GW represents the soil water consumption rate, and the
term DWr

2W describes soil-water transport in non-
saturated soil (Hillel, 1998). Finally, in the surface-water
equation the parameter P is the precipitation rate, ZðXÞ is a
topography function describing the ground surface height
for non-flat topographies, and the parameter DH represents
the phenomenological bottom friction coefficient between
the surface water and the ground surface.

While the equations for B and W are purely phenom-
enological (resulting from modeling processes at the single
patch scale), the equation for H was motivated by shallow
water theory. The shallow water approximation is based on
the assumption of a thin layer of water where pressure
variations are very small and the motion becomes almost
two-dimensional (Weiyan, 1992).

The infiltration and uptake feedback processes are
modeled in the equations through the explicit forms of
the infiltration rate term I and the growth and consumption
rate terms GB and GW . The infiltration feedback is modeled
by assuming a monotonously increasing dependence of I

on biomass; the bigger the biomass the higher the
infiltration rate and the more soil water available to the
plants. This form of the infiltration feedback mirrors the
fact that in many arid regions infiltration is low far from
vegetation patches due to the presence of the biogenic
crust. Conversely, the presence of shrubs destroys the
cyanobacterial crust and favor water infiltration. The
uptake feedback is modeled by assuming a monotonously
increasing dependence of the root-system size on biomass;
the bigger the biomass the more extended the root system
and the bigger amount of soil water the roots take up from
the soil.
The explicit dependence of the infiltration rate of surface

water into the soil on the biomass density is chosen as
(Walker et al., 1981; HilleRisLambers et al., 2001):

I ¼ A
BðX;TÞ þQf

BðX;TÞ þQ
, (2)

where A, Q and f are constant parameters. Two distinct
limits of this term (illustrated in Fig. 1) are noteworthy.
When B! 0, this term represents the infiltration rate in
bare soil, I ¼ Af . When BbQ it represents infiltration rate
in fully vegetated soil, I ¼ A. The parameter Q represents a
reference biomass beyond which the plant approaches its
full capacity to increase the infiltration rate. The difference
between the infiltration rates in bare and vegetated soil
(hereafter the ‘‘infiltration contrast’’) is quantified by the
parameter f, defined to span the range 0pfp1. When f51
the infiltration rate in bare soil is much smaller than the
rate in vegetated soil. Such values can model bare soils
covered by biological crusts (Campbell et al., 1989; West,
1990). As f gets closer to 1, the infiltration rate becomes
independent of the biomass density B, representing non-
crusted soil where the infiltration is high everywhere. Thus,
the parameter f measures the strength of the positive
feedback due to increased infiltration at vegetation patches.
The smaller f the stronger the feedback effect.
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Table 1

A list of parameters of the model, their units and their numerical values

Parameter Units Description Value/range

K kg/m2 Maximum standing biomass 1

Q kg/m2 Biomass reference value beyond 0.05

which infiltration rate under a patch

approaches its maximum

M yr�1 Rate of biomass loss due to mortality 1.2

and disturbances

A yr�1 Infiltration rate in fully vegetated soil 40

N yr�1 Soil water evaporation rate 4

E ðkg=m2Þ
�1 Root’s augmentation per unit biomass 3.5

L ðkg=m2Þ
�1 yr�1 Biomass growth rate 0.032

per unit soil water

G ðkg=m2Þ
�1 yr�1 Soil water consumption rate 20

per unit biomass

DB m2/yr Seed dispersal coefficient 6:25� 10�4

DW m2/yr Transport coefficient for soil water 6:25� 10�2

DH m2=yr ðkg=m2Þ
�1 Bottom friction coefficient between 0.05

surface water and ground surface

S0 m Minimal root-system size 0.125

ZðXÞ mm Topography function

P kg=m2 yr�1 Precipitation rate ½0; 1000�

R – Evaporation reduction due to shading 0.95

f – Infiltration contrast between bare soil 0.1

and vegetated soil

The parameters values are set to represent shrubs, using Sternberg and Shoshany (2001), Hillel (1998), Rietkerk et al. (2002).
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The growth rate GB has the following non-local form:

GBðX;TÞ ¼ L
Z
O

GðX;X0;TÞW ðX0;TÞdX0,

GðX;X0;TÞ ¼
1

2pS2
0

exp �
jX� X0j2

2½S0ð1þ EBðX;TÞÞ�2

� �
, ð3Þ

where L represents the plant’s growth rate per unit amount
of soil water, the Gaussian kernel GðX;X0;TÞ represents the
root system and the integration is over the entire domain
O.1 According to this form, the biomass growth rate
depends not only on the amount of soil water at the plant
location X, but also on the amount of soil water in the
neighborhood, X0, spanned by the plant’s roots. Root
augmentation in response to biomass growth is modeled by
the width, S0ð1þ EBðX;TÞÞ, of the Gaussian function in
Eq. (3) which provides a measure of the root-system size.
The parameter E quantifies the root augmentation per unit
biomass, beyond a minimal root-system size S0. It
measures the strength of the positive uptake feedback due
to root augmentation; the larger E the stronger the
feedback effect.

The soil water consumption rate at a point X is similarly
given by

GW ðX;TÞ ¼ G
Z
O

GðX0;X;TÞBðX0;TÞdX0, (4)
1The kernel G is normalized such that for B ¼ 0 the integration over an

infinite domain equals unity.
where G measures the soil water consumption rate per unit
biomass. The soil water consumption rate at a given point
ðXÞ is due to all plants (located in neighboring points X0)
whose roots extend to this point. Note that
GðX0;X;TÞaGðX;X0;TÞ.
The parameter values used in this paper are summarized

in Table 1. They are chosen to describe shrub species and
are taken or deduced from (Hillel, 1998; Sternberg and
Shoshany, 2001; Rietkerk et al., 2002). The model solutions
described here are robust and do not depend on delicate
tuning of any particular parameter. The precipitation
parameter represents mean annual rainfall in this paper
and assumes constant values. This approximation is
justified for species, such as woody shrubs, whose growth
time-scales are much larger than the time-scale of rainfall
variability.
It is advantageous to study the model equations using

non-dimensional variables and parameters, for it eliminates
dependent parameters and reveals the possible equivalence
of different parameters in controlling the states of the
system. Rescaling the model variables and parameters as in
Table 2, we obtain the following non-dimensional form of
the model equations:

bt ¼ Gbbð1� bÞ � bþ dbr
2b,

wt ¼ Ih� nð1� rbÞw� Gwwþ dwr
2w,

ht ¼ p�Ihþ dhr
2ðh2
Þ þ 2dhrh � rzþ 2dhhr2z, ð5Þ

where t and x ¼ ðx; yÞ are the non-dimensional time and
spatial coordinates, r2 ¼ q2x þ q2y and x0 ¼ ðx0; y0Þ.
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Table 2

Relations between non-dimensional variables and parameters and the

dimensional ones appearing in the dimensional form of the model

equations (1)–(4)

Quantity Scaling

b B=K

w LW=N

h LH=N

q Q=K

n N=M

a A=M

Z EK

g GK=M

p LP=MN

db DB=MS2
0

dw DW=MS2
0

dh DH N=MLS2
0

z LZ=N

r R

t MT

x X=S0
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Fig. 2. Bifurcation diagrams for homogeneous stationary solutions of the

model equations (Eqs. (5)–(8)) showing the biomass B vs. precipitation p

(panel D) and aridity a (panel E) for plane topography. The solution

branches B and E denote, respectively, the bare-soil and uniform

vegetation solutions. Solid lines represent linearly stable solutions, dashed

lines represent solutions which are unstable to homogeneous perturba-

tions, and dotted line represents solutions which are stable to homo-

geneous perturbations but unstable to non-homogeneous ones. Also

shown are the basic vegetation patterns along the precipitation gradient,

spots (panel A), stripes (panel B) and gaps (panel C), obtained by

numerical integration of the model equations. Dark shades of gray

represent high biomass density. The same sequence of patterns but in a

reverse order appears along the aridity axis. The domain size in panels

(A)–(C) is 10� 10m2. The bifurcation points in panels D and E are:

pc ¼ 1:00, p1 ¼ 0:91, p2 ¼ 8:21, ac ¼ 1:00, a1 ¼ 1:10, a2 ¼ 0:12. The

parameters used are given in Table 1.
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The infiltration term is given by

I ¼ a
bðx; tÞ þ qf

bðx; tÞ þ q
, (6)

the growth rate term Gb is written as

Gbðx; tÞ ¼ n
Z
O

gðx;x0; tÞwðx0; tÞdx0,

gðx;x0; tÞ ¼
1

2p
exp �

jx� x0j2

2ð1þ Zbðx; tÞÞ2

� �
, ð7Þ

and similarly, the soil water consumption rate can be
written as

Gwðx; tÞ ¼ g
Z
O

gðx0;x; tÞbðx0; tÞdx0. (8)

In obtaining Eqs. (5) we eliminated four dependent
parameters ðK ;M ;L;S0Þ. The non-dimensional form of the
precipitation parameter

p ¼
LP

MN
, (9)

proves the equivalence of decreasing the precipitation rate,
P, to increasing the mortality (grazing) rate, M, or the
evaporation rate, N, in traversing the basic instabilities of
the system. The non-dimensional precipitation p can be
used to define an aridity parameter, a ¼ p�1. This form
extends an earlier definition (Lefever and Lejeune, 1997) by
adding the two parameters P and M.

4. Landscape states along aridity gradients

The model has two homogeneous stationary solutions
representing bare soil and uniform coverage of the soil by
vegetation. Their existence and linear stability ranges for
plane topography are shown in the bifurcation diagrams
displayed in Fig. 2. In Fig. 2D the bifurcation parameter is
the dimensionless precipitation p. In Fig. 2E the bifurca-
tion parameter is chosen to be the aridity parameter, a.
Since a ¼MN=LP, the latter form qualitatively represents
the dependence of the homogeneous solutions and their
linear stabilities on the mortality rate M or the evaporation
rate N. The linear stability analysis leading to this diagram
is described in Appendix A.
The bare soil solution, denoted in Fig. 2 byB, is given by

b ¼ 0;w ¼ p=n and h ¼ p=af . It is linearly stable for
popc ¼ 1 and it loses stability at p ¼ 1 to uniform
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Fig. 3. Development of vegetation bands traveling uphill from an unstable uniform vegetation state, obtained by numerical integration of the model

equations (Eqs. (5)–(8)) at P ¼ 600mm=yr. The different panels (A)–(D) shows snapshots of this process at different times (t is in years). Dark shades of

gray represent high biomass density. The bands are oriented perpendicular to the slope gradient and travel uphill with typical speed of a few centimeters

per year. The parameters used are given in Table 1, the domain size is 5� 5m2 and the slope angle is 151.

3Resilience in this paper is defined as the ability of a system to recover

E. Gilad et al. / Journal of Theoretical Biology 244 (2007) 680–691 685
perturbations.2 The uniform vegetation solution, denoted
by E, exists for p41 in the case of a supercritical
bifurcation and for p4p1 (where p1o1) in the case of a
subcritical bifurcation. It is stable, however, only beyond
another threshold, p ¼ p24p1. As p is decreased below p2

the uniform vegetation solution loses stability to non-
uniform perturbations in a finite wave number (Turing
like) instability (Cross and Hohenberg, 1993). These
perturbations grow to form large amplitude patterns. The
following sequence of basic patterns has been found at
decreasing precipitation values for plane topography (see
panels A–C in Fig. 2): gaps, stripes and spots. The sequence
of basic landscape states, uniform vegetation, gaps, stripes,
spots and bare soil, as the precipitation parameter is
decreased, has been found in earlier vegetation models
(Lefever et al., 2000; von Hardenberg et al., 2001; Okayasu
and Aizawa, 2001; Rietkerk et al., 2002; Gilad et al., 2004).

Any pair of consecutive landscape states along the
rainfall (precipitation) gradient has a range of bistability
(coexistence of two stable states): bistability of bare soil
with spots, spots with stripes, stripes with gaps, and gaps
with uniform vegetation. Bistability of different landscape
states has at least three important implications: (i) it
implies hysteresis, which has been used to elucidate the
irreversibility of desertification phenomena (Rietkerk and
van de Koppel, 1997; Rietkerk et al., 1997; von Hard-
enberg et al., 2001; Scheffer et al., 2001), (ii) it implies
vulnerability to desertification by disturbances involving
biomass removal, and (iii) it increases landscape diversity
as patterns involving spatial mixtures of two distinct
landscape states become feasible.

The basic landscape states persist on slopes with two
major differences: stripes, which form labyrinthine patterns
on a plane, reorient perpendicular to the slope direction to
form parallel bands, and the patterns travel uphill (typical
speeds for the parameters used in this paper are of the
order of centimeters per year). Fig. 3 shows the develop-
ment of bands traveling uphill from an unstable uniform
vegetation state. Traveling bands on a slope have been
found in earlier models as well (Thiéry et al., 1995; Lefever
2The bifurcation is subcritical (supercritical) depending whether the

quantity 2Zn=½nð1� rÞ þ g� is greater (lower) than unity.
and Lejeune, 1997; Dunkerley, 1997; Klausmeier, 1999;
von Hardenberg et al., 2001; Okayasu and Aizawa, 2001;
Rietkerk et al., 2002; Gilad et al., 2004). Another difference
is the coexistence of multiple band solutions with different
wave numbers in wide precipitation ranges (Yizhaq et al.,
2005). The landscape states on plane and slope topogra-
phies predicted by this and earlier models are consistent
with field observations (Valentin et al., 1999; Rietkerk
et al., 2004; Lejeune et al., 2004).

5. Ecosystem engineering

Throughout this paper we define engineering as the
capacity of a plant species to concentrate soil water beyond
the level pertaining to bare soil. The concentration process
can be due to an increased infiltration rate at the plant
patch, or due to runoff interception by the soil mound the
plant forms. To simulate the former process we need to
choose small f values. To simulate the latter process a
topography function ðzÞ that mimics soil mounds should be
chosen. For simplicity we study the former process.

5.1. The engineering–resilience trade-off

We study engineering by varying the parameters f and Z
(the non-dimensional form of E) that controls the
infiltration feedback and the uptake feedback (due to root
augmentation), respectively. We look for conditions that
maximize the engineering capacity and ask what is the price
the system has to pay for attaining high engineering. The
results are summarized in Fig. 4 and indicate the existence
of a trade-off between the engineering capacity of a plant
and its resilience to disturbances3; conditions that favor
ecosystem engineering, resulting in water-enriched patches
or micro-habitats, imply low resilience, and conditions that
favor high resilience imply weak or no engineering.
Shown in Fig. 4 are spatial profiles of b, w and h for a

single patch of the ecosystem engineer at decreasing values
from a disturbance. It differs from the concept of ‘‘linear stability’’ in that

the disturbance can be strong and lead the system through a long transient

of different states before the system recovers.
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Fig. 4. Spatial profiles of the variables b, w and h as affected by the

parameters that control the main positive biomass-water feedbacks, f

(infiltration feedback) and Z (uptake feedback). The profiles are cross-

sections of two-dimensional simulations of the model equations

(Eqs. (5)–(8)). In all panels, the horizontal dotted lines denote the soil-

water level at bare soil. Strong infiltration feedback and weak uptake

feedback (panel C) leads to high soil-water concentration reflecting strong

engineering. Strong uptake feedback results in soil-water depletion and no

engineering, irrespective of the infiltration-feedback strength (panels A,D).

While the species characterized by Z ¼ 2 is the best engineer under

conditions of strong infiltration contrast (panel C), it leads to low system

resilience; the engineer along with the micro-habitat it forms completely

disappear when the infiltration contrast is strongly reduced, e.g. by crust

removal (panel F). A species with somewhat stronger uptake feedback

ðZ ¼ 3:5Þ still acts as an ecosystem engineer (panel B) and also survives

disturbances that reduce the infiltration contrast (panel E), thereby

retaining the system’s resilience. Parameter values are given in Table 1

with P ¼ 75mm=yr. Panels (A) and (D) span a horizontal range of 14m

while all other panels span 3.5m. The vertical range in all panels is

½0; 1�kg=m2 for the biomass density, and ½0; 187:5�kg=m2 for the soil-water

density.

45

30

15

0.450.30.20.10

M
ax

. s
oi

l w
at

er
 [k

g/
m

2 ] η = 2
η = 3.5

fc fe
f

Fig. 5. Maximal soil-water densities under ecosystem-engineer patches for

two different engineer species, Z ¼ 2 (dashed curve) and Z ¼ 3:5 (solid

curve), as functions of the infiltration contrast, quantified by f. At low

values of f (e.g. in the presence of a soil crust) both species concentrate the

soil-water resource under their patches beyond the soil-water level of bare

soil (horizontal dotted line), thereby creating water enriched micro-

habitats for other species (see Fig. 4). The engineer species with Z ¼ 2

outperforms the Z ¼ 3:5 species, but does not survive low infiltration

contrasts (resulting e.g. from crust removal); as f exceeds a threshold

value, f c ¼ 0:15, the engineer’s patch dries out and the micro-habitat it

forms is irreversibly destroyed. The Z ¼ 3:5 species, on the other hand,

survives low infiltration contrasts and while its engineering capacity

disappears above a second threshold f e ¼ 0:38, the engineering capacity is

regained as the infiltration contrast builds up (e.g. by crust recovery).

Parameter values are given in Table 1 with P ¼ 75mm=yr.
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of Z, representing species with different root augmentation
properties, and for two extreme values of f. The value f ¼

0:1 models high infiltration rates under engineer’s patches
and low infiltration rates in bare soil, which may result
from a biological crust covering the bare soil. The value
f ¼ 0:9 models high infiltration rates everywhere. This case
may describe, for example, un-crusted sandy soil. Engi-
neering effects resulting in soil water concentration appear
only in the case of (i) low infiltration in bare soil, (ii)
engineer species with limited root augmentation capabil-
ities, Z ¼ 3:5; Z ¼ 2 (panels B and C in Fig. 4). The soil
water density under an engineer’s patch in this case exceeds
the soil-water density level of bare soil (shown by the
dotted lines), thus creating opportunities for species that
require this extra amount of soil water to colonize the
water-enriched patch.

While a weak uptake feedback enhances the engineering
ability, it reduces the resilience of the ecosystem engineer
(and all dependent species) to disturbances. Fig. 4F shows
the response of an engineer species with the highest
engineering ability to concentrate water (Z ¼ 2, Fig. 4C)
to a disturbance that strongly reduces the infiltration
contrast ðf ¼ 0:9Þ. In the following we refer to crust
removal, but other disturbances that reduce the infiltration
contrast, such as erosion of bare soil, will have similar
effects. The engineer, and consequently the micro-habitat it
forms, disappear altogether for two reasons: (i) surface
water infiltrates equally well everywhere and the plant
patch is no longer effective in trapping water, (ii) the
engineer’s roots are too short to collect water from the
surrounding area.
Resilient ecosystem engineers are obtained with strong

infiltration feedbacks and moderate uptake feedbacks
ðZ ¼ 3:5Þ as Fig. 4E shows. Removal of the crust (by
increasing f) destroys the micro-habitats (soil-water density
is smaller than the bare-soil’s value) but the engineer
persists. Once the crust recovers the ecosystem engineer
resumes its capability to concentrate water and the micro-
habitats recover as well. It is also of interest to comment
that when the uptake feedback is too strong, the plant
persists but it no longer functions as an ecosystem engineer
(Fig. 4A,D).
Fig. 5 provides another view of the engineering–resi-

lience trade-off. Shown in this figure are two graphs of the
maximum soil-water density under an engineer patch as a
function of the coverage of the surrounding crust, which is
parameterized by f. A plant with high engineering strength
ðZ ¼ 2Þ has low resilience to disturbances that reduce the
infiltration contrast (increase f), e.g. crust removal. As f

increases past a critical value f c the engineer patch
disappears altogether, leaving behind a bare soil with no
water enriched patches and no ability for the system to
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recover (arrow pointing downwards). In contrast, a plant
with lower engineering strength ðZ ¼ 3:5Þ survives severe
reduction of the infiltration contrast. The engineering effect
no longer exists for f4f e, but once the disturbances
disappear and the infiltration contrast builds up again,
engineering resumes.

5.2. Engineering niches

The next question we address is what forms of
engineering at the single patch level can be expected, and
what types of niches or micro-habitats they create? Model
simulations suggest the existence of two basic engineering
forms as shown in Fig. 6: a hump-shaped form, where the
maximum of the soil-water distribution occurs at the center
of the patch, and a ring-shaped form, where the soil-water
maximum is along the circumference of the patch. The
ring-shaped form is associated with bigger biomass patches
and can be obtained from a hump-shaped form by
increasing the precipitation rate or the infiltration contrast.
This results in outward expansion of the biomass patch and
increased competition over the water resource at the patch
center, followed by soil-water depletion.

The two soil-water distributions represent different
niches for herbaceous species. Species in need for abundant
sunlight will favor ring-shaped distributions along which
y

w

x x

x x
(A) (B)

Fig. 6. Two typical spatial distributions of soil water at the scale of a

single patch, obtained with different infiltration rates in bare soil. The

upper panels show two-dimensional soil water distributions (dark shades

of gray represent high soil-water densities), while the lower panels show

the corresponding one-dimensional cross-sections along the patch center.

In the range of intermediate to low infiltration rates (panel A, f ¼ 0:1) the
soil-water density is maximal at the center of the patch, whereas at very

low infiltration rates (panel B, f ¼ 0:01) the maximum is shifted to the

edge of the patch. Similar soil water distributions can be obtained at

different precipitation values. The soil-water distributions were obtained

by numerical integration of the model equations (Eqs. (5)–(8)) at

P ¼ 75mm=yr, with domain size of 5� 5m2. All other parameters are

given in Table 1.
the shading is weak. Species sensitive to grazing, on the
other hand, will prefer hump-shaped distributions where
the water-rich regions are protected by the engineer
canopies.

5.3. Local engineering by global pattern changes

The water-biomass feedbacks induce intraspecific com-
petition at the single patch scale which leads to spatial
patterning (or self-organized patchiness; Rietkerk et al.,
2004) at the landscape scale. Are there landscape processes
that feedback to the level of a single patch? Studies of the
model indeed suggest that such processes can exist; global
landscape transitions from one vegetation pattern to
another can affect engineering at the single patch level.
The example we study pertains to vegetation patterns on

a slope, and to a parameter regime where a stable banded
pattern coexists with a stable spotted pattern. The banded
pattern is locally disturbed by removing the biomass of a
small band segment as shown in Fig. 7A. This disturbance
induces a chain process downhill that culminates in a
transition to a spotted pattern as Figs. 7B–D show. The
biomass removal at the uppermost band allows for more
runoff to accumulate at the band segment just below it. As
a result this segment grows faster, draws more water from
its surrounding and induces vegetation decay at the nearby
band segments. The decay of the vegetation in the nearby
segments allow for more runoff to accumulate at the next
band downhill. The whole process continues repeatedly
until the whole pattern transforms into a spot pattern.
The lower panels in Fig. 7 show the soil-water

distributions along the transects denoted by the dashed
lines in the upper panels. The transition to spots is
accompanied by increased engineering; the soil-water
density under a spot is significantly higher than the density
under a band. The mechanism of this behavior can be
understood as follows. The spot pattern self-organizes to
form an hexagonal pattern. As a result each spot
experiences a bare area uphill which is twice as large as
the bare area between successive bands, and therefore
absorbs more runoff. In addition, the higher biomass
density of spots (due to water uptake from all directions)
increases the infiltration contrast.

6. Discussion

We present here a spatially explicit mathematical model
for plants as ecosystem engineers. Earlier models of
vegetation pattern formation (Rietkerk et al., 2004)
consider water uptake as a local negative-feedback process
between biomass and water. The present model goes one
step further in capturing the non-local nature of the water-
uptake process and the augmentation of the root system in
response to (over-ground) biomass growth. This aspect of
the water-uptake process implies positive feedback rela-
tionships between biomass and water which can be
understood as follows. As the biomass grows, the root
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Fig. 7. A pattern transition at the landscape level from bands to spots affects engineering at the single patch level. The transition is induced by a local

clear-cutting disturbance (leftmost band in panel A), and is shown in panels A–D by displaying snapshots of biomass patterns (darker gray shades

correspond to higher biomass density) at successive times (t is in years). The patterns were obtained by solving numerically Eqs. (5)–(8) at a fixed

precipitation value where both band and spot patterns are stable. The initial cut of the uppermost band induces a chain response culminating in an

hexagonal spot pattern. The lower panels show soil water profiles along the transects denoted by the dashed lines in the corresponding upper panels. The

soil-water density under spots is higher than the density under bands despite the fixed environmental conditions. Domain size is 5� 5m2, P ¼ 240mm=yr,
slope angle is 151 and all other parameters are given in Table 1.
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system extends its size and probes new soil regions. Water
uptake from these regions further accelerates the biomass
growth.

Both the water-uptake feedback (as modeled here) and
the infiltration feedback, independently of one another,
lead to similar vegetation patterns at the landscape level.
However, they imply different engineering and resilience
properties. Dominance of the infiltration feedback leads to
strong engineering and low resilience, whereas dominance
of the uptake feedback leads to no engineering (or
‘‘negative’’ engineering; Jones et al., 1997) and high
resilience.

The trade-off between engineering and resilience, as the
relative strength of the two feedbacks changes, is significant
for understanding the stability and functioning of water-
limited ecosystems on micro (patch) and macro (watershed)
spatial scales (Shachak et al., 1998). The soil-moisture
accumulation at an engineer patch accelerates litter
decomposition and nutrient production, and culminates
in the formation of fertility islands. Watershed-scale
disturbances that are incompatible with the resilience of
dominant engineer species can destroy the engineer patches
and the fertility islands associated with them, thereby
damaging the stability and functioning of the ecosystem.

We further found that environmental conditions that
affect the engineer patch size can modify the soil-water
distribution under the engineer’s patch and thus the micro-
habitat it creates. We demonstrated a transition from a
hump-shaped distribution to a ring-shaped distribution by
increasing the infiltration contrast (decreasing f), but
similar transitions can be obtained in the model by
changing other parameters, e.g. increasing the precipitation
rate, P, decreasing the evaporation rate, N, or decreasing
the grazing stress, M.
We also studied possible effects of pattern transitions at
the landscape level on engineering at the single patch level.
We found that a global transition from vegetation bands to
spots on a slope can result in stronger local engineering,
suggesting that studies of single-patch dynamics should not
be confined to the patch level alone. This effect is tightly
related to the hexagonal structure of the spot pattern (any
spot has six neighbor spots), where the distance between
any adjacent spots along the slope direction is about twice
as large as the distance between two adjacent bands. In
heterogeneous systems (containing e.g. rocky or eroded soil
parts) the spot pattern will generally appear disordered, but
the basic principle leading to enhanced engineering still
holds because of the reduced patch connectivity in spotted
patterns as compared with banded patterns and the
resulting higher runoff accumulation at vegetation patches.
We restricted our analysis to the rather artificial

circumstances of homogeneous systems with respect to
soil properties, topography, rainfall, evaporation, mortal-
ity, etc. We did so to highlight the roles of self-organizing
patterns of biomass and soil water in breaking the spatial
symmetry of the system and in creating habitats. Hetero-
geneous factors, as well as temporal rainfall variability, can
be incorporated into the model by introducing time and
space dependent parameters.
The model in its present form takes into account the

major feedbacks between vegetation and water but leaves
out a few other feedbacks. The atmosphere affects
vegetation through the precipitation and evaporation rate
parameters, but the vegetation is assumed to have no
feedback on the atmosphere. Organic nutrients effects are
parameterized by the biomass growth rate, but litter
decomposition (Moro et al., 1997) that feedbacks on
nutrient concentrations is not considered. Finally, ground
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topography, parameterized by the function zðxÞ, affects
runoff and water concentration, but topography changes
due to soil erosion by water flow are neglected. These
simplifications restrict the circumstances the model applies to.

Another limitation of the model is the elimination of the
soil depth dimension which restricts the variety of roots
effects the model can capture. Thus, engineering by
hydraulic lifts (Caldwell et al., 1998) is not captured by
the model. Finally, plant recruitment and growth are
lumped together in a single biomass equation with a
diffusion term modeling local seed dispersal. This modeling
form rules out long-distance dispersion, e.g. by wind, water
flow or animals, and seed predation, e.g. by insects or birds
(Nathan and Casagrandi, 2004).

While extensions of the model to include the factors
discussed above are interesting and significant, they may
require considerable modifications of the model. A more
direct extension of the model, that is already underway, is
the inclusion of additional biomass variables representing
herbaceous species which benefit from the habitats created
by the ecosystem engineer. Each additional species is
modeled by a biomass equation similar to that of the
engineer but differing in the values of various species
parameters such as growth rate, mortality and maximum
standing biomass. Including in the model a second biomass
variable, representing an herbaceous species, can be used to
study transitions between competition and facilitation
along aridity gradients (Pugnaire and Luque, 2001), and
to possibly shed light on observational conflicts (Maestre et
al., 2005). Including two herbaceous species can be used to
study trade-offs and species-coexistence mechanisms asso-
ciated with self-organized heterogeneities induced by
patterns of the ecosystem engineer.
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Appendix A. Linear stability analysis

We study here the linear stability of stationary homo-
geneous solutions of the model equations (5) to non-
uniform infinitesimal perturbations, confining ourselves to
plane topography. Denoting a stationary homogeneous
solution by the column vector U0 ¼ ðb0;w0; h0Þ

T, we
consider a perturbed solution in the form

Uðx; tÞ ¼ U0 þ dUðx; tÞ, (A.1)

where

dUðx; tÞ ¼ aðtÞeik�x þ c:c:; (A.2)

and k is the wave vector of the perturbation. In (A.1) and
(A.2), U ¼ ðb;w; hÞT, dU ¼ ðdb; dw; dhÞT, a ¼ ðab; aw; ahÞ

T

and ‘‘c.c.’’ stands for the complex conjugate. Substitution
of the perturbed solution (A.1) into the model equations (5)
gives

ðdbÞt ¼ GbjU0þdUðb0 þ dbÞ½1� ðb0 þ dbÞ�

� ðb0 þ dbÞ þ dbr
2ðdbÞ,

ðdwÞt ¼ IjU0þdUðh0 þ dhÞ � n½1� rðb0 þ dbÞ�ðw0 þ dwÞ

� GwjU0þdUðw0 þ dwÞ þ dwr
2ðdwÞ,

ðdhÞt ¼ p�IjU0þdUðh0 þ dhÞ þ dhr
2½ðh0 þ dhÞ2�, (A.3)

where the infiltration term (see Eq. (6)) reads

IjU0þdU ¼
b0 þ qf þ db

b0 þ qþ db

¼
b0 þ qf

b0 þ q
þ

qð1� f Þ

ðb0 þ qÞ2
dbþ Oðdb2

Þ, ðA:4Þ

and Oðdb2
Þ represents terms of order two and higher in db.

In order to evaluate the terms GbjU0þdU and GwjU0þdU
we expand the kernels, as defined in Eq. (7), up to first
order in db:

gðx;x0Þ ¼ g0ðx;x0Þ þ g1ðx;x0ÞdbðxÞ þ Oðdb2
Þ,

gðx0;xÞ ¼ g0ðx0;xÞ þ g1ðx0;xÞdbðx0Þ þ Oðdb2
Þ, ðA:5Þ

where

g0ðx;x0Þ ¼ g0ðx0;xÞ ¼ gðx; x0Þjb¼b0 ¼
1

2p
e�jx�x

0 j2=2s2 ,

g1ðx;x0Þ ¼ g1ðx0;xÞ ¼
q
qb
½gðx; x0Þ�

����
b¼b0

¼
Z

2ps3
jx� x0j2e�jx�x

0 j2=2s2 . ðA:6Þ

Here, s � 1þ Zb0 and jx� x0j2 ¼ ðx� x0Þ2 þ ðy� y0Þ2.
Substituting these forms and the perturbed solution in

(7), we obtain up to first order

GbjU0þdU ¼ n
Z

gðx;x0Þwðx0Þdx0

� n
Z
½g0ðx;x0Þ þ g1ðx;x0ÞdbðxÞ�½w0 þ dwðx0Þ�dx0

¼ nw0

Z
g0ðx;x0Þdx0 þ n

Z
g0ðx;x0Þdwðx0Þdx0

þ nw0dbðxÞ

Z
g1ðx; x0Þdx0, ðA:7Þ

where the integration is over the entire domain. Solving the
integrals in Eq. (A.7) results in the following expression for
GbjU0þdU,

GbjU0þdU ¼ nw0s2 þ ns2e�k2s2=2dwðxÞ þ 2nZsw0dbðxÞ,

(A.8)
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where k ¼ jkj is the perturbation’s wave number. Applying
the same procedure to GwjU0þdU using Eq. (8) we get

GwjU0þdU ¼ gb0s2 þ gse�k2s2=2½1þ Zb0ð3� s2k2
Þ�dbðxÞ.

(A.9)

Substituting Eqs. (A.4), (A.8) and (A.9) into Eq. (A.3),
keeping terms to first order only, and using the fact that the
stationary homogeneous solutions satisfy

0 ¼ nb0ð1� b0Þð1þ Zb0Þ
2w0 � b0, (A.10)

0 ¼ ah0
b0 þ qf

b0 þ q
� nð1� rb0Þw0 � gw0b0ð1þ Zb0Þ

2, (A.11)

0 ¼ p� ah0
b0 þ qf

b0 þ q
, (A.12)

we obtain the following system of linear ordinary
differential equations for the perturbation amplitudes aðtÞ:

da

dt
¼ JðkÞa, (A.13)

where JðkÞ 2 R3�3 is the Jacobian matrix whose elements
are given by

J11 ¼ snw0 1� 2b0 þ Zb0ð3� 4b0Þ½ � � 1� dbk2,

J12 ¼ nb0ð1� b0Þs2e�k2s2=2,
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Fig. 8. Growth-rate curves for non-homogeneous spatial perturbations of

the uniform vegetation solution of the model equations Eqs. (5)–(8)

(denoted by E in Fig. 2), around the point p ¼ p2. When p4p2 all wave

numbers have negative growth rates and any perturbation decays. At p ¼

p2 a critical wave number becomes marginal; perturbations having this

wave number neither grow nor decay. When pop2 there exists a band of

wave numbers with positive growth rates; the uniform solution is unstable

and perturbations characterized by the critical wave number grow faster

than all others.
J13 ¼ 0,

J21 ¼ ah0
qð1� f Þ

ðb0 þ qÞ2
þ rnw0

� gw0se�k2s2=2½1þ Zb0ð3� s2k2
Þ�,

J22 ¼ � nð1� rb0Þ � gb0s2 � dwk2,

J23 ¼ a
b0 þ qf

b0 þ q
,

J31 ¼ � ah0
qð1� f Þ

ðb0 þ qÞ2
,

J32 ¼ 0,

J33 ¼ � a
b0 þ qf

b0 þ q
� 2dhh0k

2. ðA:14Þ

Assuming exponential growth for the perturbation ampli-
tudes, aðtÞ ¼ að0Þelt, we obtain the eigenvalue problem

JðkÞa ¼ la, (A.15)

whose solution gives dispersion relations of the form
l ¼ lðkÞ. These relations provide information about the
stability of stationary homogeneous solutions, for the
growth rate of a perturbation characterized by a wave
number k is given by the largest real part of lðkÞ. Fig. 8
shows growth rate curves calculated for a uniform
vegetation state around the instability point p ¼ p2 of this
state.
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