PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999

Multiphase patterns in periodically forced oscillatory systems
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Periodic forcing of an oscillatory system produces frequency locking bands within which the system fre-
quency is rationally related to the forcing frequency. We study extended oscillatory systems that respond to
uniform periodic forcing at one quarter of the forcing frequelfibie 4:1 resonangeThese systems possess
four coexisting stable states, corresponding to uniform oscillations with successive phase shiftsldging
an amplitude equation approach near a Hopf bifurcation to uniform oscillations, we study front solutions
connecting different phase states. These solutions divide into two graufrents separating states with a
phase shift ofr and 7/2 fronts separating states with a phase shiftrt. We find a type of front instability
where a stationaryr front “decomposes” into a pair of travelingr/2 fronts as the forcing strength is
decreased. The instability is degenerate for an amplitude equation with cubic nonlinearities. At the instability
point a continuous family of pair solutions exists, consistingr(i fronts separated by distances ranging from
zero to infinity. Quintic nonlinearities lift the degeneracy at the instability point but do not change the basic
nature of the instability. We conjecture the existence of similar instabilities in highet Pesonancesn(
=3,4,...) where stationaryr fronts decompose inta traveling /n fronts. The instabilities designate
transitions from stationary two-phase patterns to travelingpRase patterns. As an example, we demonstrate
with a numerical solution the collapse of a four-phase spiral wave into a stationary two-phase pattern as the
forcing strength within the 4:1 resonance is increa$8d063-651X99)06705-7

PACS numbgs): 05.45-a, 82.40.Bj, 82.40.Ck, 47.20.Ma

[. INTRODUCTION exist 7/2 fronts separating oscillating domains with a phase
shift of 7/2. The multiplicity of front solutions increases
Periodic forcing of an oscillatory system produces a mul-with the order of the band. The 6:1 band has three types of
tiplicity of uniform stable phase states. The simplest situatiorfronts: 7 fronts, 2#/3 fronts, andsw/3 fronts. The 8:1 band
arises within the 2:1 frequency locking band where the syshas four types of fronts«, 37/4, /2, andw/4), and so on.
tem oscillates at one half of the forcing frequency. In thatln addition to adding new types of fronts, as the band order is
case “two-phase” patterns appear, involving alternating do-increased the number of front solutions of a given type also
mains that oscillate with a phase shift af [1-3]. The increases.
boundaries between nearby domains, hereaftéonts, may In this paper we report on an instability af fronts, oc-
undergo a parity breaking bifurcation, rendering a stationargurring within the 4:1 band. Upon decreasing the forcing
front unstable and giving rise to a pair of counterpropagatingstrength, a stationary front loses stability and decomposes
fronts [4]. This instability, the so-called nonequilibrium into a pair of travelingm/2 fronts. The instability is demon-
Ising-Bloch bifurcation(NIB) bifurcation, designates a tran- strated in Fig. 2. The decomposition into a pair of traveling
sition from standing two-phase patterns to traveling two-m/2 fronts is accompanied by the appearance of an interme-
phase patterngb—7]. The instability is demonstrated in Fig. diate (gray) domain whose phase of oscillation is shifted by
1 as a gray-scale map in the space-time plane. Recent expett/2 with respect to the adjacent white and black domains.
ments on a photosensitive Belousov-Zhaboting&¥) reac-  Like the NIB bifurcation, thew-front instability within the
tion, periodically illuminated, have also revealed a transitiord:1 band designates a transition from stationary patterns to
to labyrinthine patterns within the 2:1 band, suggesting tharaveling waves. The significant difference is that the two-
possible existence of a transverse instabilitymofronts [8]. phase stationary patterns give place to travefmg-phase
The situation becomes more complicated within the 4:lpatterns. This feature of the 4:1 resonance is related to a
band, which has four stable phase states shifted@ywith  peculiar property of ther front instability to be discussed in
respect to one anothg®]. In addition tor fronts, there also  Sec. Ill. The = front decomposition instability appears to
exist in higher 21:1 bands as well. We analyze in detail the
4:1 resonance case and bring numerical evidence for the ex-
*Electronic address: aric@lanl.gov istence of this type of instability in the 6:1 and 8:1 reso-
"Electronic address: ehud@bgumail.bgu.ac.il nances. A brief account of some of the results to be reported
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FIG. 1. The NIB bifurcation in the 2:1 resonance: space-time FIG. 2. The decomposition instability in the 4:1 resonance:
plots showing an unstable stationasyfront (Ising) evolving into  Space-time plot§solutions of Eq(1)] showing the decomposition
left (a) and right (b) traveling o fronts (Bloch) beyond the NIB  of an unstabler front into a pair of/2 fronts traveling to the left

bifurcation. (a) or to the right(b). The pairs ofm/2 fronts enclose grey colored
domains whose oscillation phases are shiftedrf® with respect to
here has appeared in R¢10]. the black and white domains. Parameters in Bg: ©=1.0, v

We consider an extended system that is close to a Hopf0-02, 7,=0.3.

bifurcation and externally forced with a frequency about four

times larger than the Hopf frequency. The set of dynamical Il. FRONT SOLUTIONS
fields u describing the spatio-temporal state of the system
(e.g., set of concentrations in the BZ reacjioan be written
asu=UgA exp(w;t/4)+c.c+ ... ,whereuyis constantAis
a slowly varying complex amplitudey; is the forcing fre- _nilp _|R[2 *3

guency, and the ellipses denote smaller contributions. The B=B+ By |BI"B+7,B*". ©
equation for the amplitudé can be written in the following
standard form(after rescaling and shifting afy by a con-
stant phase[11-14:

First we study the gradient version of E@), which is
obtained by settingy=a=B=0:

Equation (3) has four stable phase states fox§,<1
shown by solid circles in Fig. B.;=*\ andB.;= =i\,
where A=1/\/1—vy,. Front solutions connecting pairs of
A= (u+iv)A+(1+ia)A,,— (1—iB)|APA+ y,A*S, these states divide into two groups,fronts and/2 fronts.
(1)  Them fronts, shown in Fig. 3 as solid lines, are given by

where the subscripts and z denote partial derivatives with B_,_..1=B,;tanhx,
respect to time and space, and all the parameters are real.
The proximity to the Hopf bifurcation impliega <1. We will B_, .., =B, tanhx. (4)

also be using the following form of Eql) obtained by res-
caling time, space, and amplitude @sp7, X=yu/2z, and  The /2 fronts are shown in Fig. 3 by the dashed curves. For
B=A/u: the particular parameter valug = 1/3 they have the simple

forms
Bi=(1+ivg)B+3(1+ia)Byy—(1—ipB)|B|?’B+ y,B*3,

1 /3 i )
B+1A+i:§ 5[1+|—(1—|)tanhx],

wherevy=v/u.
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' : : A. Gradient system
1.0 2 L We begin with the gradient versiof8). Introducing the
new variables,
Im(A) A r
U=RgB)+Im(B) V=RgB)—Im(B), (8
0.0 @F »
1\, S we rewrite Eq.(3) as
1ol I 1 2 . d
1.0 2 5 Ui=U+ 35U gUs—5(U2=3Vv3)U, (9a)
-1.0 0.0 1.0 1 2 d
Re (A) V=Vt 5 Vi §V3— E(v2—3U2)v, (9b)
FIG. 3. Phase portrait in the complex plane of solutions to Eq.
(3). The dots represent the four spatially uniform phase-locked so\-"’here
lutions. The solid lines are the-front solutions and the dashed _
lines are therr/2 fronts. The thin lines in the circle are the phase d=y,—1/3.

portrait showing the collapse of & front into two 7/2 fronts. . . . .
At the instability point,y,= 1/3, the two equations decouple

(sinced=0) and admit solutions of the form

1 /3
Bi_>+1:§\[§[1—i+(l+i)tanhx], U=01Bg(X—Xy)
= 01Bo(X=X1),

Bii.—1=—B_i_ 41, VZO'ZBO(X—Xz), (10)
B 1. i=—Byi_4i- (5) where By(x) = V(3/2)tanhx, o;,==*1, andx; andx, are

Additional front solutions follow from the invariance of Eq. @/Pitrary constants. An intuitive understanding of this family
(3) under reflectionx— —x. For example, the symmetric of solutions can be obtained by expressing these solutions
counterparts 0B, ,(x) andB,,_._;(X) areB,;_..(X) back in terms of the complex ar_nphtuc_Ba For o1=—o0>
=B, ..1(—x) andB_,_ ,1(X)=B. . (—X) =1, for example, the solutiofiL0) is equivalent to

I— —l— ——1 .

Consider now the nongradient syst€). The main effect
of the nongradient terms is to make thé2 fronts traveling.
The nongradient terms have no effect on th&onts, which
remain stationary. To see this we assume a traveling soluti

B(X;X1,X2) =B+ 1(X=X1) +Big1i(X—Xz) —A\.

0\rll\/hen |X,—X4|—c0 this form approaches a pair of isolated

B(x—ct) of Eq. (2) and project this equation on the transla- w/2 fronts:
; , .
tional modeB’. For 7 fronts we obtain B~B_, . 1(X—=X{), X~X,
c(B{?)=0, By(z)=A\tanhz, 6
(B?) ol2) z ®
implying c=0 (the brackets denote integration over the
whole line. For =/2 fronts with y,= 1/3, we find B~B,1..+i(X=Xz), X=X
A Whenx,—x;=0 it reduces to ther frontB_;_, . ;. Defining
lc|=—3 [(vo+ 2N2B)(BL)+ 2 B(B3BLY =2 (vo+ B), a “center-of-mass” coordinat¢ and an order parametgr
(Bo%) @) by

_1 —l(y
where A=/3/2. A perturbation analysis aroung,=1/3 £=20tx), x=2067X),

shows that expressiof¥) for the speed remains valid for

small deviations ofy, from 1/3. the one-parameter family of solution$B(x;¢,x)|x e R},

where B(x;Z,x) =B(X;X;,X,), representsmw/2-front pairs
. A =-FRONT INSTABILITY with distances g ranging from zero to infinity.
For |y,—1/3=|d| <1, the weak coupling between Egs.
The 7 fronts (4) are similar to the Ising front in the 2:1 (9a) and (9b) induces slow drift along the solution family
band but as we will see shortly the instability they undergo isB(x;x; ,X,). We now write a pair solution as
not a pitchfork bifurcation like the NIB. It is rather a degen-

erate instability leading to asymptotic solutions that are not U=01Bo[x—Xq(t)]+u,
smooth continuations of the unstable stationarfronts in a
sense to be made clear in the following. A stability analysis V=0,Bo[Xx—Xa(t)]+v, (11

of the = fronts indicates that they lose stability @4=1/3.
To analyze the instability, we study E) near that critical whereu andv are corrections of orded. Inserting these
value. forms in Egs.(9) we obtain,
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H1u=01X;Bo(x—x1) — 3doy[BI(X—X,)

—3B3(X—X2)1Bo(X—Xy), (12)
Hov = 0pX,BY(X— Xp) — 3d o[ BE(X—X5)
—3Bj(x—x1)Bo(X—X2), (13)

where H; ,= —1— 3%/ 9x?+2B3(x— X1 ). Projecting the
right-hand side of Eq(12) onto B,(x—X4), the zero eigen-
mode ofHIzHl, and setting to zero we obtain,

X1=— i—;df:dxtanr(x—xl)secﬁ(x—xl)tanr?(x—xz).
(14)

A similar solvability condition for Eq(13) leads to

_ i—gd J:dxtan}"(x— Xp)sech(X—X,)tantf(x—x;).
(15

X2:

Expressing these equations in terms{adnd y, we find
(=0, (16)

x=—%dJ(x), (17

where
J(X)zf dztanhz secRztant?(z+2y). (18

Evaluation of the integral in Eq18) yields
J(x)=l(a)=6(a t-a 3 +(1-3a ?G(a),

1+a
G(a)=(1-a ?)n 1

wherea=tanh 2. Note that Eqs(16) and(17) are valid to
all orders iny and to linear order aroungl,=1/3.

The equation for the order parametéi) can be written
in the gradient form

dv

X:_ai

27

X
V= 1_6d J(z)dz (19

Figure 4 shows the potenti®(y) for d>0 (y,>1/3) and
d<0. There is only one extremum poigt=0 of V. Ford
>0 it is @ minimum andy converges to zero. Pairs af/2
fronts with arbitrary initial separatiorn,—x; attract one an-
other and eventually collapse to a singtefront (x;=X, or

x=0). In practice, the collapse process is noticeable only for
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FIG. 4. The potentiaM(x). (a) For d>0 the extremum aj
=0 is a minimum andy converges to 0(b) For d<O the extre-
mum is a maximum ang diverges to+ .

Figure 3 shows the decomposition process affaont in the
complexB plane. Starting with th& _,_, ,;  front, repre-
sented by the thick solid phase portrait, the time evolution
(thin solid phase portraitss toward the fixed poinB; and
the dashed phase portraits representing the pait’®fronts
B,.i_..iandB,;_, ;. Because of the parity symmetgy—

— X, an appropriate perturbation of the initiBl.,_,,; =
front could have led the dynamics toward the pRir;_, _;
andB_; ,_;. Notice that ford=0, (=0, y=0, and we
recover the two-parameter family of pair solutiddiéx; Z, x)
with arbitrary { and y. This degeneracy of solutions dt
=0 is lifted by higher-order terms in the amplitude equation
(1) as will be discussed in Sec. Il C below.

B. Nongradient system

The results described above can easily be extended to the
nongradient syster?) for small«, B8, andv,. The equations
for U andV are

1 2 3 d 2 2
Ui=U+ 5 Uy 3U%= 5(U2-3VA)U

@ B

vV 5 Vi E(U2+v2)v,

1 2 d
Vi=V+ =V,,— = V3— =(V2-3U?)V

relatively small separations. Fat<<0 the extremum point 2 3 2

x=0 is a maximum and diverges to+o. A 7 front de- N 3

composes into a pair of_/2 fr_onts, which repel one another. —voU— EUXX_ E(U2+V2)U. (20)
This process is shown in Fig. 2 for the nongradient system

(2). In the gradient case both and 7/2 fronts are stationary
(in the absence of interactionsSince the potentiaV(y)
becomes practically flat at finitg values, the pair ofr/2

Assumingd, «, B, andy, are of the same order of magni-
tude we write a solution in the forif11), insert in Eqs(20),

fronts do not seem to depart from one another at long timesand obtain,
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FIG. 6. Decomposition of ar front into threen/3 fronts in the
—0.001 - ! 6:1 resonance band. Parameters in @8): y=0.9, u,=—1.0,
me=—1.0. All other parameters are zero.

(c): o Solvability conditions lead to equations far and {. The
equation fory remains unchanged. That is, H47) is valid
0.001 7 for the nongradient equatio2) as well. The equation fof
becomes
V o
1028=voF ,(x)+ aF (x) + BF 5(x), (23
-0.001 -
where
-2 6 2 FV:_%G(a)_%a 11
X Fo=31(a),
FIG. 5. The effects of the higher-order teréiB|?B,, on the 1 s -2 9.2
decomposition instability within the 4:1 resonance. The potential Fp=3a “(1-3a %) —za “G(a).

(27) deforms from a single well to a single barrier gs is de- . .

creased pasy,. . In the intermediate range two scenarios are pos-'\IOtICe t_hath' Fa, andFB are odd funct.lons ok a”_d do
sible: (a) For 5>0, the y=0 solution loses stability in a pitchfork N0t vanish wher=0. \3Nhen|)(|—>00, the right-hand side of
bifurcation aty,, to a pair of solutions that move ta . Param-  Ed. (23) converges to; (vo+ B), the speed of ar/2-front
eters:6=1.0, ©=0.01, y,=0.339,0.337,0.336,0.335,0.338) For  solution of Eq.(2). The odd symmetries d¥,, F,, andF,
5<0, they=0 solution remains stable while the= = solutions  imply that they =0 solution(representing ar front) remains
acquire stability and lose stability only below,.. Parameters: stationary ¢{=0) in the nongradient case as well, and that

|5| =1.0, ,LLZO.O]., ‘y4:0.334,0.332,0.331,0.330,0.328. In both sce- the two pairs ofw/2 fronts X= + o0 propagate in opposite
narios the deformations from a single well to a single barrier occurgjrections.

within a small range ofy, of order u<1. For comparison, an
equivalent figure for the degenerate cage=Q) is shown in(c).
The only intermediate form between a single well and a single
barrier is a flat potentiay=0, ocurring aty=1/3. According to Eq(17) the asymptotic solutions just below
va=1/3, thewr/2-front pairs agy|— o, are not smooth con-
. L ) tinua_tions 01_‘ the stationaryr front at y4=__1/3_ (the x=0
Hyu=01X1Bo(X—X1) = 3do[ Bo(X—X1) solution. This abrupt nature of the instability is related to a
ARy _ _ _ degeneracy of solutions gt = 1/3. At this parameter value a
3Bo(x=X2) [Bo(X—x1) + v9r2Bo(x—Xz) whole family of solutions exists describing/2-front pairs

C. The effect of higher-order terms

+2ao,BY(X—Xp) + 2 Boa[ B5(X—X1) with distancegx,—x;|=2]| x| ranging from zero to infinity.
) In the nongradient case these pair solutions propagate at
+Bo(X—X2) IBg(X—X2), (21)  speeds given by Eg23). The degeneracy of solutions is

lifted by higher-order terms in Eq2).
Consider the gradient version of the amplitude equation,

= gox-B (X — _1 20y
Hou = 02XaBolx=xz) =3 doal Bolx o) BB+ 1B, [B?B+ 7,8*°+ uH(B,B* 10, (24)
—3B3(x—X1)]Bo(X—X,) — Bo(X—X
ol 1) 1Bol 2) = vo71Bol v whereH(B,B*;d,) includes higher-order terms liK8|B,
—LaoBj(x—x;)— 2 B[ B3 (x—X1) |B|?B,, etc. The factoru reflects the fact that fifth-order

) terms in the amplitude equation are smaller by a fagtor
+BG(X—X2)[Bo(X—=X1). (22 <1 than the lower-order terms. The effect of these terms is
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0.0 - r
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FIG. 7. Decomposition of ar front into four 7/4 fronts in the
8:1 resonance band. Parameters in §): yg=0.75, us=—0.5,
pe=—0.5, ug=—1.0. All other parameters are zero.

generally weak, but becomes important ngar=1/3. Con-
sider, for example, the effect of the terahB|?B,,. Equa-
tions (9) include now the contributions

38U+ VAU, and 3u8(U%+V?)V,,,

respectively. The corresponding contributions to Ed®)
and(13) are

300

200

100

0 2 4 6 8 1012

0 2 4 6 8 1012
X X

FIG. 8. Decomposition of ar front into threes/3 fronts in the
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FIG. 9. Numerical solution of a two-dimensional version of Eq.
(2) showing the collapse of a rotating four-phase spiral wave into a
stationary two-phase pattern. The left columriA$ and the right
column arg@) in the x-y plane.(a) The initial four-phase spiral
wave (computed withy,<1/3). (b) The spiral core, a four-point
vertex, splits into two three-point vertices connected by &ont.

(c) A two-phase pattern develops as the three-point vertices further
separate(d) The final stationary two-phase pattern. Parameters:
v4=0.6, 1,=0.1, a=B=0, x=[0,64], y=[0,64].

3 w01 Bi(X—Xy1) + Bj(X—X2) 1Bg(X—Xy)
and

311805 B(X—X1) + B(X— %) IB(X—Xo).
The equation for the order parameter will now read

x=—5%dI(x)+25uK(x), (25)

where

K(x)= fidztanhzsecﬁztanf?(ﬁ 2x). (26

The integral(26) is elementary but the expression is lengthy
and we do not display it here. The second term on the right-
hand side of Eq(25), whose origin is the fifth-order term
|B|?B,«, cannot be neglected in a neighborhood ofy,
=1/3. Depending on the sign éftwo scenarios are possible
as y, is decreased. In both cases the 0 (#-front) solu-
tion is destabilized aty,.=1/3+8ux6/21. When §>0 the

x =0 solution is destabilized to a new pair of solutigns in

a pitchfork bifurcation. Foty|<1 the solutions assume the
approximate values, y.~ *+21/4/1—d/d,, where d,
=vya.— 1/3. Whenv, is further decreased, the two stable

6:1 resonance band. The figures show space-time plots of numericgPlutionsy.. move to=« on ay, range of ordefu. When

solutions of Eq.(28) with parametersyg=0.9, u,=—1.0, ug=
—1.0, vo=0.1. All other parameters are zero.

6< 0 bistability of they=0 solution and they= =0 solu-
tions first develop. Asy, is further decreased the=0 so-
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lution becomes metastable until it completely loses its stabilposition in the complexB plane of am front within the 6:1
ity at y4.. Figure 5 shows the potential band into threer/3 fronts. Figure 7 shows the decomposition
of a 7 front within the 8:1 band into four/4 fronts.
dz 27) Figure 8 shows a space-time plot of the decomposition
' instability within the 6:1 band. The initial unstabte front
) ] ] decomposes into threg/3 fronts, traveling to the left or to
associated with Eq25) for both scenarios. the right depending on initial conditions. Along with this
The two scenarios are related by the symmetry —d,  process two intermediate phase states appear between the

o0— — 5, t—>_t, Of Eq (25) The fiI‘St Scenario (f>0) Origina' Wh|te and b|ack phases_
amounts to a pitchfork bifurcation from a stalfe=0 solu-

tion to a pair of stabler. solutions that move to infinity as
v4 is decreased. The second scena@s<(Q) amounts to a

~9(x3
V—gf EdJ(Z)—(s,LLK(Z)

V. IMPLICATIONS ON PATTERN FORMATION

backward pitchfork bifurcation from an unstabje=0 solu- The #-front instability in the 4:1 band has a pronounced
tion to a pair of unstablg . solutions that move to infinity effect on patterns. Despite the coexistence of four uniform
as vy, is increased. phase states and the stability @2 fronts, asymptotic four-

The higher-order ternB|?B,,, and similarly other high- phase patterns appear only below thefront instability
order terms, lift the degeneracy of the lower-order syst®m point y,=1/3. The reason is the attractive interactions be-
aty,=1/3. For6>0 and in a smally, range of ordejx near  tween /2 fronts wheny,>1/3 and the collapse inter
1/3, the instability becomes similar to the NIB bifurcation in fronts. Thus, fory,>1/3 two-phase patterns prevail. These
the 2:1 resonance. But apart from the behavior in this smalpatterns form standing waves singefronts are stationary.
parameter range, the overall behavior does not change: a For vy,<1/3 the interaction between/2 fronts is repulsive
front decomposes into a pair a2 fronts asy, is decreased. and four-phase patterns prevail. These patterns travel since

/2 fronts propagate.

IV. 7-FRONT INSTABILITIES IN HIGHER RESONANCES Figure 9a) shows a stably rotating four-phase spiral wave

) . ) for v,<<1/3. Figures th), 9(c), and 9d) show the collapse of

_ We have found numerical evidence for the existence ofyis’spiral wave into a stationary two-phase patterryass

similar r-front instabilities within the 6:1 and 8:1 bands. jycreased past 1/3. The collapse begins at the spiral core
These findings suggest the following generalization: within,here therr/2-front interactions are the strongest. As pairs of
the 2n:1 band >1) a7 front may lose stability by de- /> fronts attract and collapse into fronts, the core splits
composing inton r/n fronts. Consider the equation into two vertices that propagate away from each other leav-

Bi= 1B+ (1+ivg)B+ g B|2B+ ug|B|*B ing behind a two-phase pattern.
+ug|B|°B+ y4B* 3+ y6B* >+ ygB* . (29) ACKNOWLEDGMENTS
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