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Front propagation and pattern formation in anisotropic bistable media
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The effects of diffusion anisotropy on pattern formation in bistable media are studied using a FitzHugh-
Nagumo reaction-diffusion model. A relation between the normal velocity of a front and its curvature is
derived and used to identify distinct spatiotemporal patterns induced by the diffusion anisotropy. In a wide
parameter range anisotropy is found to have an ordering effect: initial patterns evolve into stationary or
breathing periodic stripes parallel to one of the principal axes. In a different parameter range, anisotropy is
found to induce spatiotemporal chaos confined to one space dimension, a state we term “stratified chaos.”

PACS numbegps): 05.45—-a, 82.20.Mj

[. INTRODUCTION faces that undergo structural changes due to adsorbate-
induced phase transitions. Examples include CO oxidation
Broken rotational symmetry is a common feature in a va-on P{110) [20,21], P{100 [22], and P¢210 [23]. Another
riety of physical, chemical, and biological contexts, includ-example is the NO and Heaction on a strongly anisotropic
ing liquid crystals[1], catalytic surface reaction®], and Rh(110 surface[10-13.
cardiac tissu¢3-5]. It is responsible for pattern formation The coexistence of counterpropagating fronts has been re-
phenomena not encountered in isotropic syst@hsuch as ferred to as “dynamic bistability”(see[24] and references
ordered arrays of topological defe¢®8], anisotropic phase therei and has been attributed to a front bifurcation that
turbulence[9], reaction-diffusion waves with sharp corners takes a single stable front into a pair of counterpropagating
[10-12, and wave fragments traveling along a preferred ori-stable frontd25]. A similar bifurcation has also been found
entation[13]. in bulk chemical reaction26,27 and liquid crystald28],
Catalytic surface reactions provide good case models foand is known as a nonequilibrium Ising-Blo¢NIB) bifur-
studying the effects of broken rotational symmetry on patterrcation [29—32. The NIB bifurcation designates the border
formation in reaction-diffusion systems. Experiments can bdine between uniform states or stationary patterns and travel-
carried out at steady-state conditions, allowing the study oing waves[30,31,33. The fronts may also be unstable to
asymptotic dynamics, and the systems are genuinely twgeerturbations in the transverse directiG@ong the fronk
dimensional, facilitating the comparisons of experimentsThe coupling of a transverse instability with the NIB bifur-
with simulations and analysis of two-dimensional models.cation in isotropic media may produce complex spatiotem-
The broken rotational symmetry comes from the inherenporal phenomena involving spontaneous nucleation of spiral
anisotropy of the crystal surface structure or from preferredvaves followed by domain breakup4-37.
alignment of imperfections on the surface. The amount of In this paper we study front dynamics and pattern forma-
anisotropy may change due to surface phase transitions thtbn in a two-dimensional bistable reaction-diffusion system
occur during the reactiofil4—17. The chemical kinetics in  with anisotropic diffusion. The system has both a NIB bifur-
catalytic reactions may exhibit excitability of a uniform state cation and transverse instability of planar fronts. We study
or bistability of two uniform states pertaining to different the angular dependence of front properties by deriving rela-
adsorbate coverages. In the latter case fronts separating difens between the normal front velocity and its curvature.
ferent uniform states are common spatial structures. These relations are used to extract information about the
The simplest catalytic system is CO oxidation ofdR). = number, velocity, and stability of planar front solutions. We
Theoretical analysis and recent experimeli8,19 using focus on cases where fronts propagating in different direc-
photoelectron emission microscogyEEM) found a unique tions have different properties. For example, fronts propagat-
direction and speed of front propagation. In general, howing in the x direction may be unstable to transverse pertur-
ever, the direction of front propagation may not be uniquebations, while those traveling in the direction are stable.
Coexistence of fronts propagating in opposite directions ha¥he information from the velocity-curvature relations is then
been observed in catalytic CO oxidation on platinum sur-used to motivate a search in parameter space for new pattern
formation mechanisms. Numerical solutions of the reaction-
diffusion system are used to identify these new patterns. We

*Electronic address: baer@mpipks-dresden.mpg.de do not use the velocity-curvature relations to evolve front
TElectronic address: aric@lanl.gov lines in time as was done in other conte)®8—4(Q. In our
URL:http://math.lanl.gov/ aric case the proximity to the NIB bifurcation requires treating
*Electronic address: ehud@bgumail.bgu.ac.il the normal front velocity as an independent dynamical vari-
SElectronic address: thiele@nolineal.pluri.ucm.es able. We further elaborate on this point in Sec. VI.
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lll. VELOCITY-CURVATURE RELATIONS

We study the effects of diffusion anisotropy by deriving
velocity-curvature relations for nearly planar fronts. The
derivation uses a singular perturbation approach and is valid
for A :=\/e/ 5<1. Relations of this kind have proved invalu-
able for qualitative prediction of pattern formation processes
in isotropic systems such as spot replication and spiral wave
nucleation[34—-36,42,43

We transform to an orthogonal coordinate syst@ms)
that moves with the front, wheneis a coordinate normal to
- the front ands is the arclength. We denote the position vec-
0.00 0.05 0.10 tor of the front byX(s,t)=(X,Y), and define it to coincide

€ with the u=0 contour. The unit vectors tangent and normal
to the front are given by

FIG. 1. The NIB bifurcation and planar-front transverse insta-
bility boundaries in thee-6 parameter plane for a symmetriay
=0) and isotropic model. The thick curve is the NIB bifurcation,

Oc(e)= ngle. The thin curves are the boundaries for the transverse . . .
instability of Ising, &,(¢), and Bloch,ds(e), fronts. Whens>s, ~ Where #(s.t) is the angle that makes with thex axis. A

(5> &) planar Ising(Bloch) fronts are unstable to transverse per- POINEX=(x,y) in the laboratory frame can be expressed as
turbations. Other parametems;=2.0 andd=0.

§=cos#X+singy, f=—sinfX+coshy,

x=X(s,t)+rf.
Il REACTION-DIFFUSION MODEL This gives the following relation between the laboratory co-
Phenomenological models with parameters deduced frorfirdinates(x, y, 9 and the coordinates, r, 7) in the moving
experimental data have been developed for several surfademe:
reactions including CO oxidation on platinum surfa¢ég].

The rate equations involve adsorption, desorption, dissocia- x=X(s,t)—rsiné(s,7),

tion, and reaction terms. The spatial coupling is provided by

surface diffusion of some adsorbed species, where anisotropy y=Y(s,t) +r cosb(s,),

of diffusion, intrinsic or induced by adsorbate coverages, is

taken into account. Many qualitative features of models of t=r. 2

this kind are captured by FitzHugh-NagunfeHN) models i ) . _ ) o
describing bistable medi@9,31,32. The specific model we With this coordinate change, partial spatial derivatives

choose to study is transform according to
5 J 9 J
gu 1 3 Jr1 V2 +d¢9u 5=—sm00—r+60050£,
- T Ut 5 Viutdag),
J 0 i +Gsing i 3
—=Cc0S0— sing—
Jv ’
—r=u—aw—ag+V, (1) % I Js
where
whereu is the activator and the inhibitor. The parameter; G=(1+rk)*

is chosen so that Eq$l) represent a bistable medium with

two stationary and uniform stable states, an “up” state,ang g, the front curvature, is given by
(uy,vy), and a “down” state, (_,v_). Front solutions

connect the two states. Figure 1 shows a diagram of front 90
solutions in the parameter plane spanneddyy) for a sym- K== "2g"
metric (a,=0) and isotropic §=0) system. Fok/5<1 the

NIB bifurcation boundary is given by=6c(€)=7n?/e, of  The Laplacian becomes

7=7ne, where n=\€s, 7.=3/22q° and g’=a,+1/2

[31]. The single stationary frortan “Ising” front) that ex- 9? d G

ists for > 7. loses stability to a pair of counterpropagating vZ= or2 +xkG ar +G 95 95 + 952 (4)
fronts (“Bloch” fronts) at = 7.
Also shown in Fig. 1 are boundaries for transverse instaThe time derivative transforms according to
bilities, 6= 6,(€)= e/ 72 and 6= (€)= 5./ /e, for Ising
and Bloch fronts, respectively. Above these linés; d, g, Ja d d

planar fronts are unstable to transverse perturbafi@®.84. at or Cn(g_r + Sg* ®)
All three lines meet at the codimension 3 poiat: nﬁ, o
=1,38,=0. where
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. ar i , y Moy dug
e (6) Ui=vn= Vot =t S
2

is the front velocity in a direction normal to the front line. —(1+dsir? 0)kG (?—ZO—dGsin 20 52(92' )

The time derivative of the arclength, is generally nonzero
due to stretching of the curved front lifé0,44.
Using these derivative transformations in E(9.we ob-  where

tain
92 5
oo 5 N (ﬁu c au o au L=|(0)2(?—22+1—3u0. (10
SUTUTUEAT 5 e s
24 U The dependence afy on s and 7 comes through the depen-
+)2 (1+dcog ) —7 + «G(1+dsin’ ) —— dence ond. Thus,

dug kdsin26 dug

2
—_—— 7 —
Js 2172 9z’

_ Ju
+dGsin 20m+F(u,aS)

anddug/drxzdugldz as well. Projecting the right-hand side
of Eq. (9) on the translational mod&ug/dz (zero eigenmode

— +
¢ ar? of £=LT) we find

O=u—av—ap— —+5—
WA g ar  as

Jdv Jv Jv ) 9%v

Jv G dv )
+ — tG— —+G2 3 1+d
«G ar G s ds G 952 @ Ch=———I1(0)v;

N TC L

whereF (u;ds) consists of terms involving partial derivatives

of u with respect tcs only. where we used the relations;=\v¢;+O(N?) and C,
Sincex <1 we distinguish between an inner region where=AV,. We also approximateG~1 assuming curvature is

aular~O(N~1) anddv/dr ~O(1), andouter regions where at most of order unity. Note that the termgiug/Jr and

both u/ar and dv/ar are of order unity. Consider first the 7SJUg/ds are orthogonal to the translational mode and

inner region. Introducing a stretched normal coordinate therefore do not contribute to EQL1). Equation(11) shows
=r/\ we obtain how the normal front velocity is affected by the system’s

anisotropy.
£ We consider now the outer regions to the left and to the
A right of the inner, front region whereju/dr~dv/or
~O(1). Theanalysis of these region@long the lines of

2
—u—ud— 29 7Y
O=u—u*-v+(1l+dco 0){922+)\

Ju  du . au Ref. [35]) will result in a second relation betwedl,, and
+ Vi nS o+ KG(1+dsin? 0) — v. Going back to the unstretched systém, we find at
, leading order equations
J°u
; 2
+dGsin20——|+O(\?), (tS) O=u—-u®-v,
whereV,=C,/\. Sincedv/dz=N\dv/dr~O(\) we can as- _ v 9% )
sume thab =v; is constant in the stretched coordinate sys- O=u—a;p—apt Cn(y_r+ o2 +xG ET (12)
tem. We identifyv; with the value ofv atr=0.
Expandingu andv as where we neglected time dependence in the moving frame
) and arclength dependence. This approximation is not valid
U=UptAug+A“up+---, when front transitions take place as they involve explicit
5 time dependence af in the moving frame. It is also not
vi=viotAvet N vt valid when spiral waves form because of the non-negligible
] ) ] ) variations along the arclength. For suitallg values(typi-
we find at order unity the stationary front solution cally about five or largérthe roots of Eq(12) can be linear-
ized aroundv=0. The extreme roots are then (v)==*=1
B z _ —v/2. Using these forms in Eq12) we find the following
Uo= —tan oz U boundary value problem for a front approaching the
(uy , v )[(u_,v_)] state ag — —oo(r— +®):
where 2
Y (Cot kG) o+ q?v . =0
—— kG)——q°v v4+=0,
1(9)=+/1+d cog 6. gre " ar *

At order A we find the equation v(r=0)=v¢, v(—®)=v,, r<o, (13
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(920+C+G(90 2+2 —0 (a) 30
o2 (nK)a_qu qv-=0,
v(r=0)=v¢, v(+w)=v_, r>0, (14 .
3
where
*1-ap )
ve=——7—, Q=a;t5. (15)
q 2
For simplicity we would like to approximat&~1 again. (b) e
SinceG multiplies now the derivativév/dr whose variation )
scale is of order unity we must requifa|<1. With this
approximation Eqs(13) and(14) admit the solutions L ’_\
v(r)=(vi—v,)expoir+v,., r<o, s ' -1 N 1 ' 3
v(r)=(vi—v_)exposr+v_, r>0, (16) 1
-3 |
where
Cp+k (Ch+ k)2 }
012= — n2 * n4 +q2. (17) (c) e
By construction, the outer solutiof16) is continuous ar 19 P
=0. Demanding continuity of the derivative/dr atr=0 - . .
as well gives the second relation betwe@nanduy, -3 1A ! 8
C,+t«k a i
n 0 (18) 3 |

V= — - —.
! P(Ct ) 2+ag2 o
FIG. 2. Typical velocity-curvature relations of E(L9). (a) In

Eliminatingv; by inserting Eq(18) into Eq.(11) gives an  the “Bloch regime” where both planar front solutions exist and are
implicit relation between the normal velocity of the front and stable to transverse perturbatioss 1.2. (b) Near the front bifur-

its curvature cation where two planar front solutions exist but are unstable to
transverse perturbations. The solution branches terminate near small
1+d 31(6)(Cpt k) 31(H)a values of the curvature, 6=1.5.(c) In the “Ising regime” only a
Cht 5 K= + 5. single (in this case transversely unstablglanar front exists,8
2 2 2
o1(9) 7v29°V(Cht+ k) +4q 7v2q 19 =2.5. Other parameters; = 2.0, a,=0.0, e=0.04.

Co=0 and the two Bloch front solutions

il 2(0)— 72, (20)

Alternatively, we can eliminat€,, by inserting Eq(11) into

Eq. (18) to get an implicit relation between; and .
Typical velocity-curvature relations obtained as solutions Co==

of Eq. (19 for a given @ value are shown in Fig. 2. The

number of intersection points with the=0 axis indicates , ) , ,

the number of planar front solutions. Positive slopes at thesfP" 7< 7c! (6), wherez, is the NIB bifurcation point for the

points indicate instabilities to transverse perturbations. TerlSOtropic system and we recall that= Jes. We have used

mination points of lower or upper branches close to khe here the notatiorC, for the velocity of a planar front. The

=0 axis indicate proximity to the NIB bifurcation and a anisotropy shifts the bifurcation point by the factosl

likelihood for spontaneous front transitions, that is, dynamics1er

transitions between the two branches leading to reversals in ani

the direction of front propagatiof85—37,43. These transi- 76" 10)= 1l (0). (21)

tions can be induced by curvature variations, as Fig. 2 sug- ) S

gests, as well as by other perturbations like front interactions the €& plane the front bifurcation line is given by

Relations between the front velocity and its distance to a 2

nearby front or a boundary can be similarly derijé&). 5= .= 9 ﬂ (22)

“OF g e

SEIP

IV. STABILITY OF PLANAR FRONTS . .
The stability of the Ising and Bloch fronts to transverse per-

Equation(19) can be used to study the effects of anisot-turbations can be studied by linearizing E¢9) around «
ropy on the stability properties of planar fronts. We begin=0. This yields relations of the form
with the NIB bifurcation. Consider the symmetric model
with ag=0. Settingxk=0 we find the Ising front solution C,=Cy— Dk, (23
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FIG. 3. The NIB bifurcation and planar-front transverse insta- _FIG. 4. The NIB bifurcation and planar-front transverse insta-
bility boundaries in thes-& parameter plane for the symmetriao( Pty boundane_s in the_is-ﬁ parameter plane for the_ nonsymmetric
=0) and anisotropicd#0) case. The dashed lines are for the case(207 0) and anisotropicd+0) case. The dashed lines are for the
of planar fronts propagating in the direction (¢=/2) and the ~Case of planar fronts propagating in thedirection (f==/2) and
solid lines are for planar fronts propagating in thelirection (9 the solid lines are for planar fronts propagating in hdirection
=0). The thick curves are the front bifurcation and the thin lines(¢=0). The thick curves are the front bifurcation and the thin lines
are the transverse instability boundaries of Ising and Bloch fronts@re the transverse instability boundaries of Ising and Bloch fronts.
Note that the transverse instability boundaries for Bloch fronts inParametersa; =2.0,a,=-0.1,d=1.0.
the x andy directions coincide. Parameteis;=2, a,=0, d=1.

0=0 and #==/2, paying attention to(i) the nature of
whereC, is one of the three front solutiori@n Ising front  planar-front solutions(Ising or counter-propagating Bloch
and a pair of Bloch fronts The conditionD=0 gives the fronts), (ii) the stability to transverse perturbatiorsi,) the
transverse instability threshold of the planar front solution injikelihood of front transitiongreversals
question. For the symmetric systemy=0) we obtain The parameter space of interest here is ¢h@plane at
8° (1+d)? two values of the asymmetry parametep, reprgsenting
5= 5|=i 5 € (24) weak and strong asymmetries. The front bifurcation and the
9 170 transverse instability boundaries in taé plane for the sym-
metric case §,=0) are shown in Fig. 3. Breaking the sym-

for the Ising front, and metry (a,<0) removes the degeneracy of the two Bloch

fronts (and their transverse instability boundajiesd leads

_ s _ 3 yi+td to the diagram shown in Fig. 4. In the following, numerical
B 2v2q° Je solutions of Eq.(1) will be analyzed for parameters at each

of the four points in this diagranf, B, G andD.
for the Bloch fronts. Notice that the transverse instability ~Shown in Fig. 5 areC, vs « curves for pointA in the
threshold for Bloch frontgin the symmetric cageare inde-  diagram. Both thex andy directions support pairs of counter-
pendent of the anglé. Figure 3 shows the NIB bifurcation propagating Bloch fronts bounded away from the NIB bifur-
line and the transverse instability lines f@ét=0 (solid cation. The negative slopes of the Bloch front branches indi-
curves and for#= /2 (dashed curvesassuming a symmet- cate stability to transverse perturbations in both directions.

ric system,ay=0. As a result stable traveling waves previd5]. Figure 6
In the nonsymmetric cas@g+ 0) it is still possible to get
a relatively simple analytical expression for the threshold of ‘“ 10 7

the NIB bifurcation, 3" #). This threshold occurs when
the k=0 line is tangent to the cubiC,— « curve that solves
Eqg. (19). We first solve for the value of, at this point by
deriving Eq. (19) with respect toC, and settingdx/dC,
= k=0. Using this value ofC, in Eq. (19) with k=0 gives
the threshold

72" 0) = 7l (0)(1—aZ?)32 (26)

Figure 4 shows a diagram of front solutions for the nonsym-
metric casethe counterpart of Fig. 3 foag#0).

V. FRONT DYNAMICS AND ASYMPTOTIC PATTERNS -10 | N

. Anisotropy may intrf)dlﬂce me_chanisms for pattern forma-  FIG. 5. Velocity vs curvature relation for the poiAtin Fig. 4.
tion that do not exist in isotropic system. We explore newThe solid(dashed curves pertain to fronts propagating in t€x)
mechanisms usin@, vs « curves in orthogonal directions, direction. Parameterst; =2.0,a,=—0.1, e=0.03, 5=0.8.
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FIG. 6. Formation of an anisotropic spiral wave of Et). with
the parameters chosen at poiatin Fig. 4. Shaded regions are
up-state domains. Thictthin) lines areu=0 (v=0) contours. The
v=0 line always lags behind the=0 line. \‘

?“%;{”

shows an initial vortex structure evolving into a rotating spi-

ral wave of elliptic shape due to the different propagation

speeds at orthogonal directions. ﬁ
At the other extreme, poirB, both thex andy directions

support Ising planar fronts, as implied by t@e vs « curves FIG. 8. Formation of a striped pattern with the parameters cho-

shown in Fig. 7. Fronts propagating in both directions aresen at poinB in Fig. 4. Fronts propagating in theandy directions

unstable to transverse perturbations, but in one direcgion, are both unstable to transverse perturbations but the instability is

the instability is stronger. Choosing a stripe as an initial conStronger in they direction.

dition the strong transverse instability of fronts propagating

in the y direction leads to fingering and eventually to a sta-an isotropic system these initial conditions produce labyrin-

tionary periodic pattern oriented parallel to thieaxis. The thine patterns provided the transverse instability of the Ising

convergence toward a periodic stripe pattern is shown in Figfront is strong enough.

8. Changing the orientation of the initial stripe does not af- The pattern found at poir@ is more intricate. The corre-

fect the nature of the asymptotic pattern; stripes are parallgipondingC, vs « curves are shown in Fig. 9. Thedirection

to they axis. supports a transversely stable Ising front whereasytde
Notice that the weaker transverse instability of frontsrection supports a pair of Bloch fronts. Starting with a dis-

propagating in thex direction is suppressed due to front in- ordered isotropic pattern the system evolves into a state we

teractiong46]. Similar behavior is expected when the differ- term stratified chaos. Strong irregular dynamics is confined

ence in transverse instability strengths is greater or when ® they direction as indicated by the numerical solutions

front propagating in the direction is transversely stable. In shown in Fig. 10. Segments oriented in that direction grow at

FIG. 7. Velocity vs curvature relation for the poiBtin Fig. 4. FIG. 9. Velocity-curvature relation for the poi6itin Fig. 4. The
The solid(dashedl curves pertain to fronts propagating in théx) solid (dashedl curves pertain to fronts propagating in théx) di-
direction. Parameterst;=2.0,a,=—0.1, €=0.03, 6=5.0. rection. Parameterst;=2.0,a,=—0.1,€=0.039,5=1.7.
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FIG. 10. Development of stratified chaos in Ef) with param-
eters chosen at poi@ in Fig. 4.

their tips and either merge into larger segments or emit trav-
eling blobs that grow new tips. In the direction a nearly
regular periodic structure is maintained. To quantify the ir-
regular character of the dynamics in thelirection as com-
pared with the regula_r charact_er n thedl_rectlon we have FIG. 12. Close up of repeated blob formation. Shaded regions
computed the normalized spatial two-point correlation func-are up-state domains. Thiéthin) curves arai—0 (u = 0) contours
tions, Cy(r) andC,(r), for the u field in both thex andy ' :

di . Th lation f . . b Thewv =0 contour always lags behind tlie=0 contour. The tip of
iIrections. ese correlation functions are given by a stripe segmenta) grows outward(b)—(c). A pinching dynamic

begins(d), which leads to blob formatiofe) traveling along they
direction(f). The blob formation leaves a shortened stripe segment

(Au(x,y+r)Au(x,y))

Cyr)= ,
A1) (A U(X,Y)2> (e) whose tip grows outward agaif) and the process repeats. The
parameters are the same as in Fig. 10.
(Au(x+r,y)Au(x,y))
Cy(r)=

(Au(x,y)%) ’ direction to a Bloch front in thg direction. In thex direction

ir of front hi thigwhite” invadi
where Au(x,y)=u(x,y)—(u), and the bracket$) denote ?palr of fronts approaching one anotiitwhite” invading

space and time averaging. Figure 11 shows the results %1grey” fronts in Fig. 12) repel and form stationary or
these computations. Correlations in theirection decay to reathing stripes. In thg direction a pair of approaching

zero on a length scale much smaller than the system size,f‘r':lonts collapse and the domains following them merge.

feature characteristic to spatiotemporal chaotic systems. Ilfgig'nle a sigmhent tlpkgrcfxwkllngblnlto a bulge asn Z'gséa)].'z
contrast, correlations in thedirection oscillate with constant (b), 12(c). At the neck of the bulge, propagation directions

amplitude. This observation may be used to define stratified€viating from thex axis develop and front collapse may
chaos as a state that displays finite correlation length in on@CcUr- This leads to the detachment of a traveling blob as
direction(y) and infinite correlation length in the otheér). shown in Figs. 1@&i), 12(e). The reader is referred to Ref.

A typical blob formation process occurring in tielirec-  [47] for further details about stratified chaos.
tion is illustrated in Fig. 12. The mechanism for this process We conclude this section with the introduction of a fourth

relies strongly on the transition from an Ising front in the dynamical behaviofpointD in Fig. 4. TheC, vs « relation
pertaining to this case is shown in Fig. 13. In thdirection,
R e et bt the system has an Ising front, which is stable to transverse
1 perturbations and is close to the NIB bifurcation. In the
direction the system has Bloch fronts one or both of which
oA are unstable to transverse perturbations. The transverse insta-
bility in the y direction leads to finger growth and stripe
formation parallel to the axis similar to the behavior found
at pointB in Fig. 8, but the proximity to the NIB bifurcation
- in the x direction allows for breathing stripdsee Fig. 14
100 200 i 300 400 500 The breathing motion involves repeated transitions between
the counterpropagating Bloch fronts that are near the NIB
FIG. 11. Correlation function€,(r) (dashed curveandC,(r) bifurcation. The breathing amplitude is constant in time as
(solid curve. shown in Fig. 15.
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FIG. 15. Stripe width vs time for the breathing stripe solution.

The curve represents oscillations in the width of a single stripe in

FIG. 13. Velocity-curvature relation for the poiB Fig. 4. The ~ the simulation of of Fig. 14.

solid (dashed curves pertain to fronts propagating in théx) di-

rection. Parametersy; =2.0,a,= — 0.1, €=0.018,6=3.0. phenomena that can be attributed to the effect of anisotropic
diffusion. These include in particular observed phenomena
VI. CONCLUSION such as rectangular and triangular front shapes with sharp

We have explored a few examples @f, vs « relations corners and traveling wave fragmepi®,12,13,48-5D We
po . P K X also did not study in detail the effects of front interactions or

and used them to identify parameter values where anlso'[r0p|¥Iteractions with boundaries on pattern dynarit front

plays a dominant role in pattern dynamics. One remarkable P y €Y.,

outcome is the ordering effect anisotropy has leading to per_eversal or vortex nucleatignRelations between the veloci-

riodic stationary stripe or periodic breathing stripe pattern§ies of interact.ing frontsc, and the distar_lcgs between them,_
(pointsB andD in Fig. 4). Another result is the transition of & ¢an be derived using an approach similar to that used in

regular stripes to stratified chaos in parameter ranges whef£rving C,, vs « relations[45]. _ _
the angular dependence of front dynamics involves a change A relation between the normal velocity of a front and its
from an Ising front to Bloch fronts. An example where an- Curvature can be used to evolve front lines in tif38] to
isotropy has a trivial effect on pattern dynamics has alsgimulate patterns such as spiral waves. This approach cannot
been demonstrated: the elliptically shaped spiral wave in the applied to the velocity-curvature relations derived in Sec.
regime of transversely stable Bloch fronts. Il because of the multivalued nature of these relations near
We did not carry out a systematic study exploring allthe NIB bifurcation. The appropriate approach consists of
possible realizations df,, vs « curves in orthogonal direc- coupled evolution equations for the curvature and the normal
tions: Ising fronts vs Bloch fronts, stability vs instability to front velocity, which capture dynamic transitions between
transverse perturbations, different connectivities of the threecounterpropagating Bloch fronts. Such an approach has been
front solution branches in the Bloch regime at high curvaturejeveloped for isotropic media in Refid7,43 but has not
values, etc. A study of that kind may reveal many moreyet been extended to anisotropic systems.
The anisotropy considered here pertains to diffusion rates.
J u) Similar effects on pattern formation might be expected in
systems with anisotropic advection caused by flows or elec-
tric fields[8] or in spatially heterogeneous systems with bro-
ken rotational symmetry. Examples for the latter are forma-
tion of waves with sharp corners in the Belousov-
Zhabotinsky reaction with heterogeneous distribution of
“ catalyst[51,52, elongated spirals and targets in heteroge-

neous medi@53], or the production of ordered stripes in thin
films of polymer mixtures on a striped substrate when a ho-
( d N mogeneous substrate leads to labyrinthine patterns and coars-

ening[54].
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FIG. 14. Breathing stripes with parameters chosen at (iiint
Fig. 4 starting with the same initial conditions as in Fig. 8. After the
initial transient formation of the stripes, the width of the stripes
oscillates in time. The frames aretat 74,76,78,80.
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