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Front propagation and pattern formation in anisotropic bistable media
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The effects of diffusion anisotropy on pattern formation in bistable media are studied using a FitzHugh-
Nagumo reaction-diffusion model. A relation between the normal velocity of a front and its curvature is
derived and used to identify distinct spatiotemporal patterns induced by the diffusion anisotropy. In a wide
parameter range anisotropy is found to have an ordering effect: initial patterns evolve into stationary or
breathing periodic stripes parallel to one of the principal axes. In a different parameter range, anisotropy is
found to induce spatiotemporal chaos confined to one space dimension, a state we term ‘‘stratified chaos.’’

PACS number~s!: 05.45.2a, 82.20.Mj
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I. INTRODUCTION

Broken rotational symmetry is a common feature in a
riety of physical, chemical, and biological contexts, inclu
ing liquid crystals@1#, catalytic surface reactions@2#, and
cardiac tissue@3–5#. It is responsible for pattern formatio
phenomena not encountered in isotropic systems@6# such as
ordered arrays of topological defects@7,8#, anisotropic phase
turbulence@9#, reaction-diffusion waves with sharp corne
@10–12#, and wave fragments traveling along a preferred o
entation@13#.

Catalytic surface reactions provide good case models
studying the effects of broken rotational symmetry on patt
formation in reaction-diffusion systems. Experiments can
carried out at steady-state conditions, allowing the study
asymptotic dynamics, and the systems are genuinely t
dimensional, facilitating the comparisons of experime
with simulations and analysis of two-dimensional mode
The broken rotational symmetry comes from the inher
anisotropy of the crystal surface structure or from prefer
alignment of imperfections on the surface. The amount
anisotropy may change due to surface phase transitions
occur during the reaction@14–17#. The chemical kinetics in
catalytic reactions may exhibit excitability of a uniform sta
or bistability of two uniform states pertaining to differe
adsorbate coverages. In the latter case fronts separating
ferent uniform states are common spatial structures.

The simplest catalytic system is CO oxidation on Pt~111!.
Theoretical analysis and recent experiments@18,19# using
photoelectron emission microscopy~PEEM! found a unique
direction and speed of front propagation. In general, ho
ever, the direction of front propagation may not be uniq
Coexistence of fronts propagating in opposite directions
been observed in catalytic CO oxidation on platinum s
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faces that undergo structural changes due to adsorb
induced phase transitions. Examples include CO oxida
on Pt~110! @20,21#, Pt~100! @22#, and Pt~210! @23#. Another
example is the NO and H2 reaction on a strongly anisotropi
Rh~110! surface@10–12#.

The coexistence of counterpropagating fronts has been
ferred to as ‘‘dynamic bistability’’~see@24# and references
therein! and has been attributed to a front bifurcation th
takes a single stable front into a pair of counterpropaga
stable fronts@25#. A similar bifurcation has also been foun
in bulk chemical reactions@26,27# and liquid crystals@28#,
and is known as a nonequilibrium Ising-Bloch~NIB! bifur-
cation @29–32#. The NIB bifurcation designates the bord
line between uniform states or stationary patterns and tra
ing waves@30,31,33#. The fronts may also be unstable
perturbations in the transverse direction~along the front!.
The coupling of a transverse instability with the NIB bifu
cation in isotropic media may produce complex spatiote
poral phenomena involving spontaneous nucleation of sp
waves followed by domain breakup@34–37#.

In this paper we study front dynamics and pattern form
tion in a two-dimensional bistable reaction-diffusion syste
with anisotropic diffusion. The system has both a NIB bifu
cation and transverse instability of planar fronts. We stu
the angular dependence of front properties by deriving re
tions between the normal front velocity and its curvatu
These relations are used to extract information about
number, velocity, and stability of planar front solutions. W
focus on cases where fronts propagating in different dir
tions have different properties. For example, fronts propag
ing in the x direction may be unstable to transverse pert
bations, while those traveling in they direction are stable.
The information from the velocity-curvature relations is th
used to motivate a search in parameter space for new pa
formation mechanisms. Numerical solutions of the reacti
diffusion system are used to identify these new patterns.
do not use the velocity-curvature relations to evolve fro
lines in time as was done in other contexts@38–40#. In our
case the proximity to the NIB bifurcation requires treati
the normal front velocity as an independent dynamical va
able. We further elaborate on this point in Sec. VI.
366 ©2000 The American Physical Society
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II. REACTION-DIFFUSION MODEL

Phenomenological models with parameters deduced f
experimental data have been developed for several sur
reactions including CO oxidation on platinum surfaces@41#.
The rate equations involve adsorption, desorption, disso
tion, and reaction terms. The spatial coupling is provided
surface diffusion of some adsorbed species, where anisot
of diffusion, intrinsic or induced by adsorbate coverages
taken into account. Many qualitative features of models
this kind are captured by FitzHugh-Nagumo~FHN! models
describing bistable media@29,31,32#. The specific model we
choose to study is

]u

]t
5

1

e
~u2u32v !1

1

d F¹2u1d
]2u

]y2G ,
]v
]t

5u2a1v2a01¹2v, ~1!

whereu is the activator andv the inhibitor. The parametera1
is chosen so that Eqs.~1! represent a bistable medium wit
two stationary and uniform stable states, an ‘‘up’’ sta
(u1 ,v1), and a ‘‘down’’ state, (u2 ,v2). Front solutions
connect the two states. Figure 1 shows a diagram of fr
solutions in the parameter plane spanned by~e, d! for a sym-
metric (a050) and isotropic (d50) system. Fore/d!1 the
NIB bifurcation boundary is given byd5dF(e)5hc

2/e, or
h5hc , where h5Aed, hc53/2&q3, and q25a111/2
@31#. The single stationary front~an ‘‘Ising’’ front ! that ex-
ists for h.hc loses stability to a pair of counterpropagatin
fronts ~‘‘Bloch’’ fronts ! at h5hc .

Also shown in Fig. 1 are boundaries for transverse ins
bilities, d5d I(e)5e/hc

2 and d5dB(e)5hc /Ae, for Ising
and Bloch fronts, respectively. Above these lines,d.d I ,B ,
planar fronts are unstable to transverse perturbations@35,34#.
All three lines meet at the codimension 3 point:e5hc

2, d
51, a050.

FIG. 1. The NIB bifurcation and planar-front transverse ins
bility boundaries in thee-d parameter plane for a symmetric (a0

50) and isotropic model. The thick curve is the NIB bifurcatio
dF(e)5hc

2/e. The thin curves are the boundaries for the transve
instability of Ising, d I(e), and Bloch,dB(e), fronts. Whend.d I

(d.dB) planar Ising~Bloch! fronts are unstable to transverse pe
turbations. Other parameters:a152.0 andd50.
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III. VELOCITY-CURVATURE RELATIONS

We study the effects of diffusion anisotropy by derivin
velocity-curvature relations for nearly planar fronts. T
derivation uses a singular perturbation approach and is v
for lªAe/d!1. Relations of this kind have proved invalu
able for qualitative prediction of pattern formation process
in isotropic systems such as spot replication and spiral w
nucleation@34–36,42,43#.

We transform to an orthogonal coordinate system~r, s!
that moves with the front, wherer is a coordinate normal to
the front ands is the arclength. We denote the position ve
tor of the front byX(s,t)5(X,Y), and define it to coincide
with the u50 contour. The unit vectors tangent and norm
to the front are given by

ŝ5cosu x̂1sinu ŷ, r̂52sinu x̂1cosu ŷ,

whereu(s,t) is the angle thatŝ makes with thex axis. A
point x5(x,y) in the laboratory frame can be expressed

x5X~s,t !1r r̂ .

This gives the following relation between the laboratory c
ordinates~x, y, t! and the coordinates~s, r, t! in the moving
frame:

x5X~s,t !2r sinu~s,t!,

y5Y~s,t !1r cosu~s,t!,

t5t. ~2!

With this coordinate change, partial spatial derivativ
transform according to

]

]x
52sinu

]

]r
1G cosu

]

]s
,

]

]y
5cosu

]

]r
1G sinu

]

]s
, ~3!

where

G5~11rk!21,

andk, the front curvature, is given by

k52
]u

]s
.

The Laplacian becomes

¹25
]2

]r 2 1kG
]

]r
1G

]G

]s

]

]s
1G2

]2

]s2 . ~4!

The time derivative transforms according to

]

]t
5

]

]t
2Cn

]

]r
1 ṡ

]

]s
, ~5!

where

-
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Cn52
]r

]t
~6!

is the front velocity in a direction normal to the front line
The time derivative of the arclength,ṡ, is generally nonzero
due to stretching of the curved front line@40,44#.

Using these derivative transformations in Eqs.~1! we ob-
tain

05u2u32v2lhS ]u

]t
2Cn

]u

]r
1 ṡ

]u

]s D
1l2F ~11d cos2 u!

]2u

]r 2 1kG~11d sin2 u!
]u

]r

1dG sin 2u
]2u

]r ]s
1F~u;]s!G ,

05u2a1v2a02S ]v
]t

2Cn

]v
]r

1 ṡ
]v
]s D1

]2v
]r 2

1kG
]v
]r

1G
]G

]s

]v
]s

1G2
]2v
]s2 , ~7!

whereF(u;]s) consists of terms involving partial derivative
of u with respect tos only.

Sincel!1 we distinguish between an inner region whe
]u/]r;O(l21) and]v/]r;O(1), andouter regions where
both ]u/]r and ]v/]r are of order unity. Consider first th
inner region. Introducing a stretched normal coordinatez
5r /l we obtain

05u2u32v1~11d cos2 u!
]2u

]z2 1lF2h
]u

]t

1hVn

]u

]z
2h ṡ

]u

]s
1kG~11d sin2 u!

]u

]z

1dG sin 2u
]2u

]z]sG1O~l2!, ~8!

whereVn5Cn /l. Since]v/]z5l]v/]r;O(l) we can as-
sume thatv5v f is constant in the stretched coordinate s
tem. We identifyv f with the value ofv at r 50.

Expandingu andv f as

u5u01lu11l2u21¯ ,

v f5v f 01lv f 11l2v f 21¯ ,

we find at order unity the stationary front solution

u052tanhS z

I ~u!&
D , v f 050,

where

I ~u!5A11d cos2 u.

At order l we find the equation
-

Lu15v f 12hVn

]u0

]z
1h

]u0

]t
1h ṡ

]u0

]s

2~11d sin2 u!kG
]u0

]z
2dG sin 2u

]2u0

]z]s
, ~9!

where

L5I ~u!2
]2

]z2 1123u0
2. ~10!

The dependence ofu0 on s andt comes through the depen
dence onu. Thus,

]u0

]s
52

kd sin 2u

2I 2 z
]u0

]z
,

and]u0 /]t}z]u0 /]z as well. Projecting the right-hand sid
of Eq. ~9! on the translational mode]u0 /]z ~zero eigenmode
of L5L†) we find

Cn52
3

h&
I ~u!v f2

11d

dI ~u!2 k, ~11!

where we used the relationsv f5lv f 11O(l2) and Cn
5lVn . We also approximatedG'1 assuming curvature is
at most of order unity. Note that the termsh]u0 /]t and
h ṡ]u0 /]s are orthogonal to the translational mode a
therefore do not contribute to Eq.~11!. Equation~11! shows
how the normal front velocity is affected by the system
anisotropy.

We consider now the outer regions to the left and to
right of the inner, front region where]u/]r;]v/]r
;O(1). The analysis of these regions~along the lines of
Ref. @35#! will result in a second relation betweenCn and
v f . Going back to the unstretched system~7!, we find at
leading order equations

05u2u32v,

05u2a1v2a01Cn

]v
]r

1
]2v
]r 2 1kG

]v
]r

, ~12!

where we neglected time dependence in the moving fra
and arclength dependence. This approximation is not v
when front transitions take place as they involve expli
time dependence ofv in the moving frame. It is also no
valid when spiral waves form because of the non-negligi
variations along the arclength. For suitablea1 values~typi-
cally about five or larger! the roots of Eq.~12! can be linear-
ized aroundv50. The extreme roots are thenu6(v)561
2v/2. Using these forms in Eq.~12! we find the following
boundary value problem for a front approaching t
(u1 ,v1)@(u2 ,v2)# state asr→2`(r→1`):

]2v
]r 2 1~Cn1kG!

]v
]r

2q2v1q2v150,

v~r 50!5v f , v~2`!5v1 , r ,0, ~13!
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]2v
]r 2 1~Cn1kG!

]v
]r

2q2v1q2v250,

v~r 50!5v f , v~1`!5v2 , r .0, ~14!

where

v65
612a0

q2 , q25a11
1

2
. ~15!

For simplicity we would like to approximateG'1 again.
SinceG multiplies now the derivative]v/]r whose variation
scale is of order unity we must requireuku!1. With this
approximation Eqs.~13! and ~14! admit the solutions

v~r !5~v f2v1!exps1r 1v1 , r ,0,

v~r !5~v f2v2!exps2r 1v2 , r .0, ~16!

where

s1,252
Cn1k

2
6A~Cn1k!2

4
1q2. ~17!

By construction, the outer solution~16! is continuous atr
50. Demanding continuity of the derivative]v/]r at r 50
as well gives the second relation betweenCn andv f ,

v f52
Cn1k

q2A~Cn1k!214q2
2

a0

q2 . ~18!

Eliminatingv f by inserting Eq.~18! into Eq.~11! gives an
implicit relation between the normal velocity of the front an
its curvature

Cn1
11d

dI ~u!2 k5
3I ~u!~Cn1k!

h&q2A~Cn1k!214q2
1

3I ~u!a0

h&q2 .

~19!

Alternatively, we can eliminateCn by inserting Eq.~11! into
Eq. ~18! to get an implicit relation betweenv f andk.

Typical velocity-curvature relations obtained as solutio
of Eq. ~19! for a given u value are shown in Fig. 2. Th
number of intersection points with thek50 axis indicates
the number of planar front solutions. Positive slopes at th
points indicate instabilities to transverse perturbations. T
mination points of lower or upper branches close to thek
50 axis indicate proximity to the NIB bifurcation and
likelihood for spontaneous front transitions, that is, dynam
transitions between the two branches leading to reversa
the direction of front propagation@35–37,43#. These transi-
tions can be induced by curvature variations, as Fig. 2 s
gests, as well as by other perturbations like front interactio
Relations between the front velocity and its distance to
nearby front or a boundary can be similarly derived@45#.

IV. STABILITY OF PLANAR FRONTS

Equation~19! can be used to study the effects of anis
ropy on the stability properties of planar fronts. We beg
with the NIB bifurcation. Consider the symmetric mod
with a050. Settingk50 we find the Ising front solution
s

se
r-

c
in

g-
s.
a

-

C050 and the two Bloch front solutions

C056
2q

h
Ahc

2I 2~u!2h2, ~20!

for h,hcI (u), wherehc is the NIB bifurcation point for the
isotropic system and we recall thath5Aed. We have used
here the notationC0 for the velocity of a planar front. The
anisotropy shifts the bifurcation point by the factor 1<I
<11d

hc
anis~u!5hcI ~u!. ~21!

In the e-d plane the front bifurcation line is given by

d5dF5
9

8q6

I 2~u!

e
. ~22!

The stability of the Ising and Bloch fronts to transverse p
turbations can be studied by linearizing Eq.~19! aroundk
50. This yields relations of the form

Cn5C02Dk, ~23!

FIG. 2. Typical velocity-curvature relations of Eq.~19!. ~a! In
the ‘‘Bloch regime’’ where both planar front solutions exist and a
stable to transverse perturbations,d51.2. ~b! Near the front bifur-
cation where two planar front solutions exist but are unstable
transverse perturbations. The solution branches terminate near
values of the curvaturek, d51.5. ~c! In the ‘‘Ising regime’’ only a
single ~in this case transversely unstable! planar front exists,d
52.5. Other parameters:a152.0, a050.0, e50.04.
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370 PRE 62MARKUS BÄR, ARIC HAGBERG, EHUD MERON, AND UWE THIELE
whereC0 is one of the three front solutions~an Ising front
and a pair of Bloch fronts!. The conditionD50 gives the
transverse instability threshold of the planar front solution
question. For the symmetric system (a050) we obtain

d5d I5
8q6

9

~11d!2e

I 6~u!
, ~24!

for the Ising front, and

d5dB5
3

2&q3

A11d

Ae
, ~25!

for the Bloch fronts. Notice that the transverse instabil
threshold for Bloch fronts~in the symmetric case! are inde-
pendent of the angleu. Figure 3 shows the NIB bifurcation
line and the transverse instability lines foru50 ~solid
curves! and foru5p/2 ~dashed curves! assuming a symmet
ric system,a050.

In the nonsymmetric case (a0Þ0) it is still possible to get
a relatively simple analytical expression for the threshold
the NIB bifurcation,hc

anis(u). This threshold occurs whe
thek50 line is tangent to the cubicCn2k curve that solves
Eq. ~19!. We first solve for the value ofCn at this point by
deriving Eq. ~19! with respect toCn and settingdk/dCn
5k50. Using this value ofCn in Eq. ~19! with k50 gives
the threshold

hc
anis~u!5hcI ~u!~12a0

2/3!3/2. ~26!

Figure 4 shows a diagram of front solutions for the nonsy
metric case~the counterpart of Fig. 3 fora0Þ0).

V. FRONT DYNAMICS AND ASYMPTOTIC PATTERNS

Anisotropy may introduce mechanisms for pattern form
tion that do not exist in isotropic system. We explore n
mechanisms usingCn vs k curves in orthogonal directions

FIG. 3. The NIB bifurcation and planar-front transverse ins
bility boundaries in thee-d parameter plane for the symmetric (a0

50) and anisotropic (dÞ0) case. The dashed lines are for the ca
of planar fronts propagating in thex direction (u5p/2) and the
solid lines are for planar fronts propagating in they direction (u
50). The thick curves are the front bifurcation and the thin lin
are the transverse instability boundaries of Ising and Bloch fro
Note that the transverse instability boundaries for Bloch fronts
the x andy directions coincide. Parameters:a152, a050, d51.
f

-

-

u50 and u5p/2, paying attention to~i! the nature of
planar-front solutions~Ising or counter-propagating Bloc
fronts!, ~ii ! the stability to transverse perturbations,~iii ! the
likelihood of front transitions~reversals!.

The parameter space of interest here is thee-d plane at
two values of the asymmetry parameter,a0 , representing
weak and strong asymmetries. The front bifurcation and
transverse instability boundaries in thee-d plane for the sym-
metric case (a050) are shown in Fig. 3. Breaking the sym
metry (a0,0) removes the degeneracy of the two Blo
fronts ~and their transverse instability boundaries! and leads
to the diagram shown in Fig. 4. In the following, numeric
solutions of Eq.~1! will be analyzed for parameters at eac
of the four points in this diagram,A, B, C, andD.

Shown in Fig. 5 areCn vs k curves for pointA in the
diagram. Both thex andy directions support pairs of counte
propagating Bloch fronts bounded away from the NIB bifu
cation. The negative slopes of the Bloch front branches in
cate stability to transverse perturbations in both directio
As a result stable traveling waves prevail@35#. Figure 6

-

e

s.
n

FIG. 4. The NIB bifurcation and planar-front transverse ins
bility boundaries in thee-d parameter plane for the nonsymmetr
(a0Þ0) and anisotropic (dÞ0) case. The dashed lines are for th
case of planar fronts propagating in thex direction (u5p/2) and
the solid lines are for planar fronts propagating in they direction
(u50). The thick curves are the front bifurcation and the thin lin
are the transverse instability boundaries of Ising and Bloch fro
Parameters:a152.0, a0520.1, d51.0.

FIG. 5. Velocity vs curvature relation for the pointA in Fig. 4.
The solid~dashed! curves pertain to fronts propagating in they(x)
direction. Parameters:a152.0, a0520.1, e50.03,d50.8.
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shows an initial vortex structure evolving into a rotating s
ral wave of elliptic shape due to the different propagat
speeds at orthogonal directions.

At the other extreme, pointB, both thex andy directions
support Ising planar fronts, as implied by theCn vs k curves
shown in Fig. 7. Fronts propagating in both directions
unstable to transverse perturbations, but in one directiony,
the instability is stronger. Choosing a stripe as an initial c
dition the strong transverse instability of fronts propagat
in the y direction leads to fingering and eventually to a s
tionary periodic pattern oriented parallel to they axis. The
convergence toward a periodic stripe pattern is shown in
8. Changing the orientation of the initial stripe does not
fect the nature of the asymptotic pattern; stripes are par
to they axis.

Notice that the weaker transverse instability of fron
propagating in thex direction is suppressed due to front i
teractions@46#. Similar behavior is expected when the diffe
ence in transverse instability strengths is greater or whe
front propagating in thex direction is transversely stable. I

FIG. 6. Formation of an anisotropic spiral wave of Eq.~1! with
the parameters chosen at pointA in Fig. 4. Shaded regions ar
up-state domains. Thick~thin! lines areu50 (v50) contours. The
v50 line always lags behind theu50 line.

FIG. 7. Velocity vs curvature relation for the pointB in Fig. 4.
The solid~dashed! curves pertain to fronts propagating in they(x)
direction. Parameters:a152.0, a0520.1, e50.03,d55.0.
-

e

-
g
-

g.
-
el

a

an isotropic system these initial conditions produce labyr
thine patterns provided the transverse instability of the Is
front is strong enough.

The pattern found at pointC is more intricate. The corre
spondingCn vs k curves are shown in Fig. 9. Thex direction
supports a transversely stable Ising front whereas they di-
rection supports a pair of Bloch fronts. Starting with a d
ordered isotropic pattern the system evolves into a state
term stratified chaos. Strong irregular dynamics is confin
to the y direction as indicated by the numerical solutio
shown in Fig. 10. Segments oriented in that direction grow

FIG. 8. Formation of a striped pattern with the parameters c
sen at pointB in Fig. 4. Fronts propagating in thex andy directions
are both unstable to transverse perturbations but the instabilit
stronger in they direction.

FIG. 9. Velocity-curvature relation for the pointC in Fig. 4. The
solid ~dashed! curves pertain to fronts propagating in they(x) di-
rection. Parameters:a152.0, a0520.1, e50.039,d51.7.
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372 PRE 62MARKUS BÄR, ARIC HAGBERG, EHUD MERON, AND UWE THIELE
their tips and either merge into larger segments or emit tr
eling blobs that grow new tips. In thex direction a nearly
regular periodic structure is maintained. To quantify the
regular character of the dynamics in they direction as com-
pared with the regular character in thex direction we have
computed the normalized spatial two-point correlation fu
tions, Cy(r ) and Cx(r ), for the u field in both thex and y
directions. These correlation functions are given by

Cy~r !5
^Du~x,y1r !Du~x,y!&

^Du~x,y!2&
,

Cx~r !5
^Du~x1r ,y!Du~x,y!&

^Du~x,y!2&
,

where Du(x,y)5u(x,y)2^u&, and the bracketŝ& denote
space and time averaging. Figure 11 shows the result
these computations. Correlations in they direction decay to
zero on a length scale much smaller than the system siz
feature characteristic to spatiotemporal chaotic systems
contrast, correlations in thex direction oscillate with constan
amplitude. This observation may be used to define strati
chaos as a state that displays finite correlation length in
direction ~y! and infinite correlation length in the other~x!.

A typical blob formation process occurring in they direc-
tion is illustrated in Fig. 12. The mechanism for this proce
relies strongly on the transition from an Ising front in thex

FIG. 10. Development of stratified chaos in Eq.~1! with param-
eters chosen at pointC in Fig. 4.

FIG. 11. Correlation functionsCx(r ) ~dashed curve! andCy(r )
~solid curve!.
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direction to a Bloch front in they direction. In thex direction
a pair of fronts approaching one another~‘‘white’’ invading
‘‘grey’’ fronts in Fig. 12! repel and form stationary o
breathing stripes. In they direction a pair of approaching
fronts collapse and the domains following them merg
Imagine a segment tip growing into a bulge as in Figs. 12~a!,
12~b!, 12~c!. At the neck of the bulge, propagation directio
deviating from thex axis develop and front collapse ma
occur. This leads to the detachment of a traveling blob
shown in Figs. 12~d!, 12~e!. The reader is referred to Re
@47# for further details about stratified chaos.

We conclude this section with the introduction of a four
dynamical behavior~point D in Fig. 4!. TheCn vs k relation
pertaining to this case is shown in Fig. 13. In thex direction,
the system has an Ising front, which is stable to transve
perturbations and is close to the NIB bifurcation. In they
direction the system has Bloch fronts one or both of wh
are unstable to transverse perturbations. The transverse i
bility in the y direction leads to finger growth and strip
formation parallel to they axis similar to the behavior found
at pointB in Fig. 8, but the proximity to the NIB bifurcation
in the x direction allows for breathing stripes~see Fig. 14!.
The breathing motion involves repeated transitions betw
the counterpropagating Bloch fronts that are near the N
bifurcation. The breathing amplitude is constant in time
shown in Fig. 15.

FIG. 12. Close up of repeated blob formation. Shaded regi
are up-state domains. Thick~thin! curves areu50 (v50) contours.
The v50 contour always lags behind theu50 contour. The tip of
a stripe segment~a! grows outward~b!–~c!. A pinching dynamic
begins~d!, which leads to blob formation~e! traveling along they
direction~f!. The blob formation leaves a shortened stripe segm
~e! whose tip grows outward again~f! and the process repeats. Th
parameters are the same as in Fig. 10.
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VI. CONCLUSION

We have explored a few examples ofCn vs k relations
and used them to identify parameter values where anisot
plays a dominant role in pattern dynamics. One remarka
outcome is the ordering effect anisotropy has leading to
riodic stationary stripe or periodic breathing stripe patte
~pointsB andD in Fig. 4!. Another result is the transition o
regular stripes to stratified chaos in parameter ranges w
the angular dependence of front dynamics involves a cha
from an Ising front to Bloch fronts. An example where a
isotropy has a trivial effect on pattern dynamics has a
been demonstrated: the elliptically shaped spiral wave in
regime of transversely stable Bloch fronts.

We did not carry out a systematic study exploring
possible realizations ofCn vs k curves in orthogonal direc
tions: Ising fronts vs Bloch fronts, stability vs instability t
transverse perturbations, different connectivities of the thr
front solution branches in the Bloch regime at high curvat
values, etc. A study of that kind may reveal many mo

FIG. 14. Breathing stripes with parameters chosen at pointD in
Fig. 4 starting with the same initial conditions as in Fig. 8. After t
initial transient formation of the stripes, the width of the strip
oscillates in time. The frames are att574,76,78,80.

FIG. 13. Velocity-curvature relation for the pointD, Fig. 4. The
solid ~dashed! curves pertain to fronts propagating in they(x) di-
rection. Parameters:a152.0, a0520.1, e50.018,d53.0.
py
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re
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phenomena that can be attributed to the effect of anisotro
diffusion. These include in particular observed phenome
such as rectangular and triangular front shapes with sh
corners and traveling wave fragments@10,12,13,48–50#. We
also did not study in detail the effects of front interactions
interactions with boundaries on pattern dynamics~e.g., front
reversal or vortex nucleation!. Relations between the veloc
ties of interacting fronts,C, and the distances between the
d, can be derived using an approach similar to that use
deriving Cn vs k relations@45#.

A relation between the normal velocity of a front and
curvature can be used to evolve front lines in time@39# to
simulate patterns such as spiral waves. This approach ca
be applied to the velocity-curvature relations derived in S
III because of the multivalued nature of these relations n
the NIB bifurcation. The appropriate approach consists
coupled evolution equations for the curvature and the nor
front velocity, which capture dynamic transitions betwe
counterpropagating Bloch fronts. Such an approach has b
developed for isotropic media in Refs.@37,43# but has not
yet been extended to anisotropic systems.

The anisotropy considered here pertains to diffusion ra
Similar effects on pattern formation might be expected
systems with anisotropic advection caused by flows or e
tric fields @8# or in spatially heterogeneous systems with b
ken rotational symmetry. Examples for the latter are form
tion of waves with sharp corners in the Belouso
Zhabotinsky reaction with heterogeneous distribution
catalyst @51,52#, elongated spirals and targets in heterog
neous media@53#, or the production of ordered stripes in th
films of polymer mixtures on a striped substrate when a
mogeneous substrate leads to labyrinthine patterns and c
ening @54#.
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