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Outline of part III

Background: Localized structures, multi-mode systems
Multi-mode localized structures - the general idea

Hopf-Turing systems:

1. The Hopf-Turing bifurcation in the FHN model

2. Amplitude equations for the Hopf-Turing bifurcation
3. Effects of spatial and temporal periodic forcing

Localized Turing structures hosting the Hopf mode:
1. Self-organized waveguides
2. Multi-state localized sturctures

Localized Hopf structures hosting the Turing mode:

Hosting phenomena in cusp-Hopf systems
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Localized sturctures

Oscillons in vibrated Dislocation and penta-hepta defects in
granular media |

periodic patterns

}

Oscillons in surface Four-phase spirals
waves l in the BZ reaction
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Multimode systems
The localized structures shown above all involve a single mode, but
spatially extended systems often give rise o multiplicity of modes.

The modes may appear simultaneously in multiple instabilities, or
sequentially in a series of instabilities.

Different spatial modes in
optical patterns

(Residori, Ramazza, Pampaloni,
Boccaletti, Arecchi, PRL 1996).

<— Roll and hexagon modes in thermal
convection (Assenheimer and Steinberg, 1996).
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Multimode localized structures

Quite often one mode non-linearly damps the others:
Hopf and Turing modes in an RD model (Yang, Dolnik, Zhabotinsky, Epstein, JCP 2002)

The Hopf mode wins over the Turing
mode as time proceeds,

BUT

The Turing mode is not completely
eliminated: Turing spots still persist in
the tips of Hopf spiral waves!
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Multimode localized stuctures

General idea ,
Primary mode

Driving a system out of equilibrium
often induces an instability of the
equilibrium state, at which some Equilibriuml
primary mode begins to grow. AN

Secondary mode

Vo

-

Increasing the distance from equilibrium generally induces additional
instabilities of the equilibrium state, but the secondary modes that
grow are often non-linearly damped by the primary mode whose
amplitude is much larger.

Claim: Localized structures of a primary mode, where it's amplitude
goes to zero or becomes sufficiently small, can host nonlinearly
damped secondary modes, giving rise to multi-mode structures.

Demonstration with the
Hopf-Turing bifurcation
in the FHN model:

Above Hopf and slightly
above Turingg —»

Above Hopf
and farther
above Turing
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Multiple instabilities: The Hopf-Turing example

0.5

We have encountered already a Hopf- Hopt  Turg
Turing bifurcation when we studied
temporal forcing of oscillating systems. .

Hopf-Turing bifurcations appear in many
contexts, including the FHN model:

3 2
U, =u—u" —v+V-ou

1% zg(u—alv)+5V2v a <1

4

The stationary uniform state, (1,v)=(0,0), loses stability to uniform
oscillations as ¢ is decreased below &=¢, =a; .

For a given ¢ value it also goes through a Turing bifurcation as ¢ is
decreased past

&, =0/(2—a,+21-q,)
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Multiple instabilities: The Hopf-Turing example
g A
Turing bifurcation g=¢, (0)

Hopf bifurcation
|

l | E=&y
: A codimension-2 point at
0 =0, where both mode
: , are marginally stable.
S o)

c

Near the codimension-2 point we can approximate solutions of the
FHN model as

U - (lejAexp (i, )+ (1}? exp i, 1)+ c.c.

Amplitude of Amplitude of
Turing mode Hopf mode
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Multiple instabilities: The Hopf-Turing example

Where the amplitudes A and B satisfy
A =AA+(2k,0, —i@i)A+ (AIAIP +x|BI)A
B =(u+iv)B+aV’B+(5|1 A’ +B1BI*)B

a, 6, p are in general complex-valued constants
A= (5H —5)/5H - distance from the Hopf bifurcation

U= (ST —8)/8T - distance from the Turing bifurcation

We can increase the variety of localized structures in the Hopf-
Turing system by forcing it in time and in space. The amplitude
equations then change to:

A = A+ (2k,0, —i0))A+(A1AF +k| BI) w

S~

B =(u+iv)B+aV B+(5| Al +,BIBI2)
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Uniform solutions of Hopf-Turing systems

Zero solution: A=0, B=0 Pure Turing mode: A=A,, B=0
Mixed-mode: A=A, B=B, Pure Hopf mode: A=0, B=B,

r r. T
A A = ARe(f3) — kRe(4) " e
I'=¢€+4
Focus on: Monostability regime of pure Hopf mode
or Monostability regime of pure Turing mode
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Note: in both cases ¢> 0 and x>0 (both modes linearly grow)




Monostability regime of pure Turing mode (B=0 )

The spatial forcing fixes the phase of a

7z, creating bistability of states, fronts and vortices:

Im(A) 0.02
Im(A)
(Chirality)

Tl A
RelAl

R
—}x’
*
g
*

-0.02

(Coullet et al. PRL 1990)

Transverse
Bloch front 1

Transverse
Ising front

Longitudinal
Ising front
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Turing stripe patternat 0 or

\'Z'och fronts

Fre[A ferfA)

Re(4) ; (&)
.35 I

Ising front

Transverse
Bloch front 2

=

Bloch vortex
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Localized Turing structures hosting the Hopf mode

Breathing Ising front (Lampert & Meron, EPL 2007)

Turing Ising

' = | (a)
front 02 \ i
--------- ImiA)
0 Rie(B)
02F 5o \ - Im{B) T

20 g 100

Breathing
a1} \ { Ising front
v L The Hopf mode

does not affect
the Turing mode

max|B]

u 0.06 007
]
™ distance from the
Hopf bifurcation

The Turing Ising front hosts the Hopf mode at the front core where
the Turing amplitude vanishes.
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Localized Turing structures hosting the Hopf mode

Analytic solution for the
breathing Ising-front

For ’rhe special case where
o= 4k and f=0=A=kx=1

we found the exact solution:

A = NTtanh[\[T -yt (x/2k,)]
B = \[2u~Tsech[\JT — i (x/2k,)le"™"

The solution appears at u, =1'/2

©
o
S
®
c
3.
(o]
S
-
=.
<
o
-3
8
—+
=
m
>
c
Q.
=
o
3
(o]
S
|
S
S
=
O
(e
=~
o]
o
=
4
o
>
c
oN




Localized Turing structures hosting the Hopf mode

Self-organized waveguides

A breathing Ising front in 2D forms a 1D oscillatory medium along the
front-core line = tfraveling wave phenomena along the core line

2:1 temporal forcing leads
to Hopf-pulse propagation
guided by a Turing Ising

Re(A)
RelA)
Re(A)

front .
g “ . B I ~ : g’ - :
: % : P 3
i . '_,_d-'-" IIIII - i___'_,_,_,--""' llllll . - - ik
x WS " x o ;J' X 0N b

u(x, v, t) =~

K . O
u, +cAexp i—x [+c,Bexp i—t |+c.c.
2 2
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Localized Turing structures hosting the Hopf mode

Breathing Bloch vortex

A Turing Bloch vortex can host the Hopf mode at the vortex core
where the Turing amplitude vanishes:

W

Potential application: data-

s’ror'age (Coullet, Riera, Tresser, "A
new approach to data storage using
localized structures”, Chaos 2004):

Re (A)

Re (B)
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Applying a temporal forcing with o, ¥nw, , creates a breathing
vortex having n different phase states.




Localized Hopf structures hosting the Turing mode

Focus on Hopf-Bloch fronts hosting the Turing mode:

x 107

p2f

01F

0.062 €, 0.067 €. 0072

Ca

€
Hosted Turing mode slows down

Hopf-Bloch fronts (0<e<g,) or
e = s stop their propagation (0 <& <g).

e (Lampert & Meron, EPL 2007)

Unlike the previous case,
here the hosted Turing
mode does affect the
hosting Hopf mode.

Pure Hopf-Bloch Hopf-Bloch front
front hosting Turing mode
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Hosting phenomena in cusp-Hopf (pitchfork-Hopf) systems

A =(+iv)A-|A A+V3A

Hopf amplitude
—iy,Av — 5,Av’ }

v, =&V — v +dViv— U‘A‘zv Pitchfork amplitude

Hopf (po,0) 170,>1 Hopf(po,0)  16,<I

l

Vvl 4+ g2
LY
b

wteh fork(0, vg)
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p=|A Monostability &
regime of pure Hopf mode




Hosting phenomena in Hopf-Pitchfork systems

A spiral-core instability: hosting the pitchfork mode
£< &, £>¢,

arg(A)

(b) (d)

(a) (b)

05 0.5
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Hosting phenomena in Hopf-Pitchfork systems

0

A secondary spiral-core o
instability: successive o I S
hosting events 2
v =

-0.4f 1 :O3

0.6} | | | | i :23
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Summary

1. Higher instabilities of an already unstable zero state are
important!

2. Localized structures of the first mode to grow can host other
secondary modes through instabilities of pure-mode structures
to mixed-mode structures. The latter can go through secondary
instabilities leading o complex spatio-temporal behavior.

3. Using spatial and/or temporal periodic forcing one can control
localized structures: (i) self-organized waveguides, (ii) multi-
state structures.

4. The study may shed new light on earlier observations:

' N

Decorated kinks in
vibrated granular
media ?

Umbanhower et al., 1998

Rolls and hexagons in
thermal convection

{\@’: Assenheimer and

Steinberg, 1996

5. Analysis is needed!
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