Physics of Strongly Correlated Systems

Grzegorz Jung

- Long range electronic correlation: Superconductors
- Long range spin correlation: magnetic materials (CMR manganites)
- Nanoscale strongly correlated systems
- Hybrid organic-inorganic systems

Experimental methods

- Noise and metastable states
- Transport
- Magnetization and Susceptibility
 - Temperature 1.5 K 450 K
 - Magnetic Field up to 9 T
 - Signal analysis dc 25 GHz
 - Hydrostatic pressure up to 15 kbar
 - Thin Films
 - Single Crystals
 - Nanoparticles
 - Hybrid Systems

in house and collaborations collaborations

in house

collaborations

Strongly Correlated Electronic System: Superconductivity

- Vortex dynamics
 - Channeled vortex motion
 - Quasi-Josephson Effects

Artificial channels for easy vortex motion

- Strong interactions between channeled vortices make their motion coherent.
- Coherent vortex flow results in quasi-Josephson effects; attractive alternative to weak links in HTS.
- Channels for vortex motion can be fabricated either by increasing pinning in the channel banks, or by decreasing pinning in the channel area with respect to the pinning in the banks.

Alternative techniques investigated:

Electron Writing, YBCO-LSCM Bilayers, Molecular Pinning

Coherent vortex motion

Strongly Correlated Spin System: CMR Manganites

- Metastable resistivity states and noise
- Nongaussian noise in ferromagnetic insulating manganite
- Manganites on nanoscale

Metastable resistivity states

Pristine state

La_{0.82}Ca_{0.18}MnO₃

Metastable resistivity states and noise

D-H-D model of 1/f noise:

$$S(\omega,T) \propto \frac{kT}{\omega} D(\tilde{E})$$

Noise signatures of metastable resistivity states

La_{0.86}Ca_{0.14}MnO₃

Non Gaussian noise - RTN

Non Gaussian noise - RTN

0.25 mA

0.55 mA

180

190

 0.10 mA 0.25 mA

🔺 0.40 mA

▼ 0.55 mA

190

Hybrid Organic – Inorganic Systems

- Crackling noise in self-assembled molecular layers
- Crackling noise in equilibrium
- Inverse proximity effect

Charge avalanches in 2D SAM

Universal crackling noise

Inverse proximity effect in hybrid S-N systems

