Non-secular Lindblad Equation

Baruch Horovitz

Introduction

Application to Floquet Topological system

Application to the Mollow triplet

Meeting with Sdeh Boker physics group 6.4.16

System operator A(t), environment operator B(t) coupling is A(t) \cdot B(t)

Environment is charachterized by its correlation

$$\Gamma(\omega) = \int \langle B(t)B(0) \rangle_E e^{i\omega t} dt$$

System has eigenfrequencies v_i

$$A(t) = \sum_{j=-J,\dots,J} A_j e^{-i\nu_j t}$$

To 2nd order in the coupling, the reduced density matrix satisfies

$$\frac{d\rho_S}{dt} = \sum_{j,k} \Gamma(\nu_j) \mathrm{e}^{i(\nu_k - \nu_j)t} [A_j \rho_S A_k^{\dagger} - A_k^{\dagger} A_j \rho_S] + h.c.$$

The secular case, keeping only k=j is the Lindblad equation, justified only if all $|v_k - v_j| >> \Gamma$.

Floquet Topological state

S. Vajna, B. Dora, G. Zarand, BH arXiv:1603.05348

Secular approximation

Non-secular case a sharp crossover.

Mollow triplet

A. Ulhaq et al., Nature Photonics (2012)

Bloch equations:

(1) Lab frame $\Omega \ll \Gamma$

(2) Relaxation in rotating frame $\Omega >> \Gamma$

Crossover needs non-secular system.