Experiment 1

Experiment 2

	nsRT		SSRT
(${ }^{610}$		${ }^{265}$ $\frac{5}{5}$	
	Red Black Green		Red Black Green
	$F(2,58)=3.53, p<.04, \eta^{2}=0.11$		$F(2,58)=4.80, p<.04, \eta^{2}=0.14$
	Contrasts:		Contrasts:
	Red compared to Black: $t(29)=2.93, p<.01, d=0.54$		Red compared to Black: $t(29)=-2.19, p<.04, d=0.40$
	Red compared to Green: $t(29)=2.06, p<.05, d=0.38$		Red compared to Green: $t(29)=-2.27, p<.04, d=0.41$
Discussion			

- In Experiment 1 we found that RTs for a green cue were significantly shorter compared to the red cue. Most importantly, we found that stopping was more efficient when a red cue was presented.
- Experiment 2 replicated the results of Experiment 1. Furthermore, the red cue was slower than the neutral in the go-process and faster in stopping compared to the neutral. Differences between the green cue and the neutral didn't reach significance, either in go-process or stop-process.
- Our results strengthen the suggestion that environmental cues affect higher attention processes and interestingly, influence complex cognitive operations, such as inhibition of a prepotent response.

References:

1. Verbruggen, F., \& Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends Cogn Sci. 12, 418-424.
2. Verbruggen, F., \& Logan, G. D. (2009). Models of response inhibition in the stop-signal and stop-change pradis. Neurosci Biobehav Rev, 33, 647-661. 1388. .

- Stimuli:

Experiment 1: go signal was a picture of either a red or a green traffic light (see Figure Experiment 2: go signal was a picture of either a red, black (as neutral) or a green traffic light (see Figure 2).

Fig. 2: Stimuli for Experiment 1

Stimuli for Experiment 2

- Procedure:

The participants were told to carry out a color discrimination task as fast and as accurately as possible. An auditory stop signal was presented in a random selection of 25% of the trials and the different colors appeared in equal proportions. The stop signal was presented after a variable stop-signal delay (SSD) that was initially set at 250 ms and was continuously adjusted to obtain a probability of stopping of 50% for each color.

