

Pupil Dilation during a Number Line Estimation Task

Hanit Galili¹, Avigail Langer², Avishai Henik²

¹Department of Cognitive and Brain Sciences, ²Department of Psychology

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Introduction

- In number line estimation tasks, participants are presented with a number (e.g., 358) and asked to estimate this number position on a line between 0 and 1,000 (0 and 100 for young children or 0 and 1 for fractions).
- Researchers have suggested that this task captures participants' intuitions regarding numbers and their magnitudes.
- Accuracy on this task, which correlates with math achievements, is higher at specific orientation points (e.g., ends or middle of the line) and for integers than for fractions.
- We reasoned that the different estimation requirements entail different needs of mental manipulation and attention.

Method

In the current study, we measured pupil dilation while performing the task and checked correlation with a math fluency task (Gliksman et al., 2022).

Discussion

- As expected, accuracy is higher and response time is lower for numbers near orienting points and in the middle (near 500).
- Pupils dilated more for numbers near the ends, suggesting more mental attempts or more weighing of alternatives is required for these numbers than for other numbers along the line.
- Negative correlation between number of correct exercises in a math fluency task and PAE in the number line estimation task was found. Both tasks correlate with math achievements.

Reference

Gliksman, Y., Berebbi, S., Hershman, R., & Henik, A. (2022). BGU-MF: Ben-Gurion University Math Fluency test. Applied Cognitive Psychology, 36(2), 293-305.

Email:

hanit.galili@gmail.com