From The President
Marcus Family Campus Dedicated
35th Annual Board Of Governors Meeting
Bubbles In The Air
Next Stop, Mars
Taking Aim
Playing Games
Keeper Of Secrets
In Memoriam – Irene Kreitman
In Memoriam – Sara Tadmor
Mystics Here And Now
Cell Central
Irreconcilable Differences
A New Life In A New Land
Cutting It Thin
Crossing Continents
Graduating Daze
Deichmann Annual Lecture
Appointments
Honorary Degrees And Awards
Launch Of National Institute For Biotechnology
Project DedICATIONS
Designs For The Negev
From Global To Local
Bioinformatics Without Borders
It’s Hot, It’s Cold
Alumni In Action
From The President

As we mark the 36th anniversary of the University, it would be easy to rest on our laurels and celebrate our outstanding accomplishments. As our namesake, David Ben-Gurion envisioned, we have created an institution that is internationally recognized for its scholarship and research. At the same time, we are committed to the vision of transforming the Negev.

According to the Talmud, there are 36 righteous men and women who ensure the existence of the world. In this way, 36 – twice Chai, the number 18 doubled – takes on added significance in Jewish numerology. The number 36 requires that we reassert our commitment to life and to righteous acts, to creating a University that nurtures learning and innovation.

In a few months’ time, we will also mark the 100th anniversary of David Ben-Gurion’s Aliyah to Israel. His was part of the Second Aliyah – the second wave of ideologically motivated immigration to the Land of Israel by pioneers committed to creating a Jewish homeland and a more just society. It was a time when small acts had a tremendous impact on the country’s development. This milestone serves as a reminder that individual responsibility and accountability is the essence of the Zionist dream and that our actions can make a difference.

This is all the more relevant today as Israel confronts the aftermath of disengagement. Across the political spectrum, Israeli and Jewish leaders around the world are talking about the Negev Project. More than ever, there is a consensus that Israel’s future will be determined in how it develops its periphery. The Government is taking heed and is committing itself to investing in the region – primarily through work being done at Ben-Gurion University.

The University is a magnet for young Israeli Jews, Arabs, Bedouins and international students who seek to create a technology metropolis that is focused on closing social gaps. The positive vision aims to mobilize a major international effort that will be led by private entrepreneurship – both local and international – and will be augmented by significant government incentives. The benefits are clear: in order to avoid making the center of the country one of the most densely populated areas in the world, we must ensure a better future so that Israelis choose to build their future in the Negev.

This vision is based on established facts and not pipe dreams. It is a plan that can be achieved. Prime Minister Sharon together with Vice Prime Minister Peres and Vice Prime Minister and Acting Finance Minister Olmert have made it clear that BGU is key to the success of this plan – the focal point of a major mobilization of the best and brightest scientists who will return to Israel and our institution, in partnership with key players from around the globe to bring about a considerable investment in brain-oriented industries that will turn this area into the oasis that David Ben-Gurion believed it to be. This will occur thanks to a dedicated partnership of friends from Israel and abroad, together with BGU faculty, staff and students, who have worked tirelessly to create a new Israel in the Negev, based on social justice and opportunity.

Prof. Avishay Braverman
The Marcus Family Campus was dedicated in March in the presence of benefactors Dr. Howard W. and Lottie R. Marcus, their daughter Ellen S. Marcus and granddaughter Jennifer Kaplan of the United States. The event was held in the presence of Vice Prime Minister Shimon Peres and Chairman of the Board of Governors Roy J. Zuckerberg. Speaking at the event, Howard said, “My family and I feel deeply honored and very proud to be associated with as distinguished an academic institution as Ben-Gurion University, which is recognized as being among the world’s finest.”

The campus was named in honor of the family in recognition of their magnanimous support of the University. Their exceptional bequest is earmarked specifically to create an endowment fund to support research. It is most likely to have been one of the largest gifts ever made to an Israeli university and reflects their commitment to the future of higher education in the Negev.

“This outstanding act of generosity by the Marcus Family will ensure that Ben-Gurion University of the Negev will develop and expand its commitment to teaching and research,” said President Prof. Avishay Braverman.

“The Marcus family’s gift will make an enormous difference in the life of this University,” added Zuckerberg, calling the Marcus’ “heroes” for their unprecedented level of generosity.

Howard and Lottie Marcus were young immigrants who each made their own separate way to the United States from Germany on the eve of World War II and whose entire families perished during the Holocaust. Once in the U.S., Howard re-qualified for both his medical and dental licenses and made his home in New York, where he met his future wife, Lottie Blümlein, who was working on Wall
Street at the time. Now married for over 62 years, Howard and Lottie Marcus are generous philanthropists who care very deeply for the State of Israel and have supported a number of Jewish and non-Jewish organizations. They believe that funding water research is a vital key to peace and the future development of Israel and its neighbors. Their first act of munificence a number of years ago was to provide support to the Laboratory for Hydrological Experimental Models at the Zuckerberg Institute for Water Research at the Jacob Blaustein Institutes for Desert Research in Sede Boqer.

Together with their daughter Ellen Marcus, granddaughter Jennifer Kaplan and the Director of the Southwest region of the American Associates of BGU, Philip Gomperts, the Marcus family spent a week at the University meeting with researchers and students and visiting the campuses and the Negev.

A letter sent from Prime Minister Ariel Sharon on the occasion of the dedication of the campus was read by Prof. Braverman at the ceremony. The letter said that “the commitment of the Marcus family enables us to realize David Ben-Gurion’s dreams.”
The 35th Annual Board of Governors Meeting

Ben-Gurion University of the Negev welcomed hundreds of members of the Board, friends and guests from Israel and around the world to its 35th Annual Board of Governors Meeting. In addition to attending the ceremonies and events that took place during the week, the visitors were able to participate in the various committee meetings, which covered the spectrum of University activities, including financial, student, academic and Associates affairs. At these meetings, members of the Board heard the reports of the students, academic and administrative staff members and debated the future plans and direction of the University.

The day of committee meetings was brought to a close with the Student Evening sponsored by the President of the American Associates, Lis Gaines of New York. The evening enabled the visitors to mingle with BGU students and become acquainted with them on a personal level. During the evening, the Zlotowski Dance Troupe, trained in the art of Israeli folkdance and supported through the generosity of Suzanne Zlotowski of Geneva, Switzerland and her daughter, Adelene of London, England, gave a memorable performance. Items in the traditional auction, where the proceeds from the bids collected by co-auctioneers Eric Charles of London and Zvi Alon of California are dedicated to student activities, this year included 13 beautiful porcelain plates hand-painted by Suzanne Zlotowski, which were expertly auctioned by Huguette Elhadad, a member of the Board of Governors, and quickly snapped up by some of the major donors.

Monday morning began with the dedication of the Ma’agan Center, situated in the Ramot neighborhood not far from the University, established through the generosity of the Benjamin and Seema Pulier Foundation of New York. The ceremony was conducted in the presence of its benefactors, the Municipality of Beer-Sheva with the support of the University and the Israel Cancer Society, contains spacious public areas specifically designed for its different activities.

Visitors proceeded from the dedication ceremony to the new train station under construction adjacent to the Marcus Family Campus. Once completed, the University and the station will be connected to one another by a pedestrian bridge being built thanks to the generosity of the

Edith and Solomon Freedman of New York, with the participation of the Mayor of Beer-Sheva, Yaakov Terner, and the Director-General of the Israel Cancer Society, Miri Ziv. The Ma’agan Center provides a venue where people with cancer and their families can receive emotional and social support in the community, outside of a hospital setting. Established in 1999, the Center quickly outgrew its rented facilities. The new building, constructed on land provided by Mexican Friends of BGU. Together with donors Lillian and Lawrence Goodman from Illinois, benefactors of the station building, Chairman of the Board of Israel Railways, Moshe Leon, and Beer-Sheva Mayor Yaakov Terner, they learned about the ongoing advancement of the construction work, which is scheduled to be completed by Fall 2005.

Additional dedications that took place later on the same day included that of the third floor of

Suzanne Zlotowski and Michel Halpérin, President of the Swiss Associates, with one of the plates decorated by Susy that were auctioned at the Student Evening
At the Student Affairs Committee Meeting. Seated, from left: Yaakov Affek, Dean of Students, Aharon Yadlin, Suzanne Zlotowski and Amir Golan, Chairman of the Student Association, with students.

From left: President Avishay Braverman, Zvi Alon, Vice-Chairman of the Board of Governors, and Dr. Israel German, Senior Vice President, at the Associates Affairs Committee Meeting.

Prof. Aaron Klug (left) and Rector Prof. Jimmy Weinblatt at the Academic Affairs Committee.

Eric Charles and Micha Dapht at the Finance Committee Meeting.

Director-General David Bareket speaks at the Finance Committee Meeting.
the Zlotowski Student Administration Building. This completes the construction of the building, enabling all the administrative services for BGU students to be concentrated in one location on campus. Its generous benefactor, Suzanne Zlotowski, was accompanied by her daughter Adelene and grandson Louis James, who were greeted enthusiastically by the students.

The Jeremiah Sundell Executive Auditorium was dedicated in the presence of Faye Sundell of Lake Worth, Florida, widow of the late Jerry Sundell, together with her daughters Cheryl and Donna and other family members, in the School of Management building. The auditorium provides state-of-the-art facilities for students of the Honors MBA program.

Students in the program heard a series of lectures delivered by renowned figures in the international business world. The Sundell Auditorium dedication ceremony was preceded by a special address on “Leadership and Entrepreneurship” by Honorary Doctorate recipient Richard J. Pratt AC, Chairman of VISY Industries and the Pratt Foundation in Australia. The session was chaired by the Chairman of the International Advisory Board of the Honors MBA Program, Prof. Ehud Houminer, of Columbia University in New York. The Chairman of the Board of Governors, Roy J. Zuckerberg, also former Vice-Chairman of Goldman Sachs and Chairman of Samson Capital Advisors LLC in New York, gave a private lecture to the students of the program, sharing with them highlights of his business strategy, as did new member of the Ben-Gurion Society, Nina Brink, a leading businesswoman and investor from the Netherlands, who spoke on “Investing in Technology.”

AABGU President Lis Gaines receives a token of appreciation from Amir Golan at the Student Evening

The Zlotowski Annual Lecture, held in the presence of Suzanne and Adelene Zlotowski, was given by former U.S. Assistant Surgeon General Rear Admiral (ret.) Susan J. Blumenthal, M.D., who spoke on “Critical Women’s Health Issues in the 21st Century: Implications for Improving Mental Health.” The respondent was BGU Prof. Haim Belmaker of the Faculty of Health Sciences.

The Adam Klug Annual Memorial Lecture took the form of a panel discussion on “Reforming the Israeli Financial System.” The discussion was chaired by Prof. Avishay Braverman and taking part were Director-General of the Ministry of Finance, Dr. Yossi Bachar; Deputy Governor of the Bank of Israel, Prof. Avia Spivak, who is also a member of the Department of Economics at BGU; and Chairman of the Board of Israel Discount Bank Ltd., Arie Mintkevich. In attendance were colleagues and friends, as well as family members, who included Prof. Sir Aaron Klug, father of the late former member of the Department of Economics, Dr. Adam Klug. Rector Prof. Jimmy Weinblatt, himself a member of the same Department, spoke about “Remembering Adam” and his contribution to the University and academy.

The Hyman Keitman Memorial Lecture on “The Seven Pillars of
From left: Solomon Freedman, Prof. Avishay Braverman, Edith Freedman, Beer-Sheva Mayor Yaacov Terner and Prof. Pesach Schwartzman of the Division of Community Health in the Faculty of Health Sciences, at the dedication of the Ma’agan Center.

Faye Sundell (center) with Prof. Arie Reichel, Dean of the School of Management, and members of the Sundell family at the entrance to the School of Management building.

From left: Moshe Leon, Avishay Braverman, Lillian and Larry Goodman and Yaacov Terner at the University train station.

Suzanne Zlotowski, her daughter, Adelene, and grandson, Louis James, together with Avishay Braverman at the dedication of the third floor of the Zlotowski Student Administration Building.
Life” was given this year by renowned scientist, Honorary Doctorate recipient and former Editor-in-Chief of the magazine Science, Prof. Daniel E. Kosland of the University of California at Berkeley, to a packed auditorium. The event’s benefactress, Irene Kreitman ב"ר of London, was unable to attend the Board of Governors Meeting due to illness and only two weeks later, passed away (see page 26).

A lecture entitled “Innovations in Nanotechnology at BGU,” designed to give the audience a better understanding of the science of nanotech, was delivered by Dr. Ron Folman from the Department of Physics. It was chaired by Chairman of the International Advisory Board of the Ilse Katz Center for Meso- and NanoScale Science and Technology, Prof. Sir Aaron Klug OM FRS, in the presence of Yair Green, Att., of Israel.

A scientific lecture: “Systems Biology: Revolutionizing Biology and Medicine” was delivered by the President of the Institute for Systems Biology and Honorary Doctorate recipient, Dr. Leroy Hood of Seattle.

At the Opening Plenary Session, a salute was made to the National Institute for Biotechnology in the Negev, when Vice Prime Minister and Minister of Industry, Trade and Employment, Ehud Olmert, confirmed the government’s agreement to allocate one-third of a $90 million grant to the nascent NIBN at BGU, and the establishment of the Mandel Center for Leadership in the Negev was declared (see page 47). Greetings were delivered by Mayor of Beer-Sheva, Yaakov Terner; President of the Israeli Friends of BGU, Raya Strauss Bendror; Chairman of the Board of Governors, Roy J. Zuckerberg; President Avishay Braverman; Rector Jimmy Weinblatt; and Chairman of the Student Association, Amir Golan. A panel discussion entitled “A New Israel in the Negev” was chaired by Prof. Avishay Braverman and the guest of honor was Minister Ehud Olmert.

A presentation on the critical issue of water in the Middle East and particularly its research at the Jacob Blaustein Institutes for Desert Research (BIDR) was made by Roy J. Zuckerberg of New York, Chairman of the Board and initiator of the Zuckerberg Institute for Water Research at the BIDR. Matters regarding the economics of the region were discussed by Vice-Chairman of the Board and Chairman of Apax Partners Holdings Ltd., Sir Ronald Cohen of London. The importance of hi-tech, business and social responsibility in the Negev and in Israel was outlined by Vice-Chairman of the Board and Chairman of 3Com, Eric A. Benhamou of California. Morton L. Mandel of Cleveland, Ohio, businesswoman, philanthropist and the initiator of the Mandel Leadership Center in the Negev, spoke on leadership in the Negev. A number of statements regarding the Bedouin in the Negev as well as issues of social welfare were brought forth by BGU (and Israel’s first Bedouin head of an academic department, Prof. Aleen Alkrenawi, Chairman of the Charlotte B. and Jack J. Spitzer Department of Social Work, Science in the Negev was discussed by Director of the Department of Biochemistry and the Oxford Glycobiology Institute at the University of Oxford, Prof. Raymond Dwek FRS, who surprised the audience with his announcement of Oxford’s offering joint doctorate and post-doctorates with BGU.

A panel discussion on “Water, Agriculture and the Environment,” chaired by the Director of the Jacob Blaustein Institutes for Desert Research, Prof. Avigad Vonshak, was held at the Sede Boqer campus. Taking part were Roy J. Zuckerberg; President of the French Associates, Gérard Worms; and Chairman of the Board of Israel’s
Students of the Honors MBA Program hear a lecture by Roy J. Zuckerberg

Nina Brink responds to students of the Honors MBA Program

Dr. Yossi Bachar speaks at the Adam Klug Annual Memorial Lecture. Seated: Arie Mintkevich (left), and BGU Prof. Avia Spivak

Raya Strauss Bendror at the Opening Plenary Session

Prof. Daniel E. Koshland addresses the audience at the Hyman Kreitman Annual Memorial Lecture. Seated: Prof. Ilan Troen, Director of the Kreitman Foundation Fellowships
national water company, Mekorot, Booky Oren. On the same occasion, the declaration was made of the establishment of the Institute for Dryland Agriculture by the French Associates.

Two academic Chairs were inaugurated during the week. For the fourth consecutive year, Dr. Gabi and Eng. Max Lichtenberg from Israel and Florida have established a Career Development Chair in the Faculty of Health Sciences. This year, the Career Development Chair in Surgery has as its incumbent Dr. Nitzan Newman-Heiman of the Faculty of Health Sciences.

The William and Jean S. Schwartz Career Development Chair in Community Health Professions was inaugurated in the presence of Estelle and David Steinberg of Philadelphia, niece and nephew of the deceased donors, with Dr. Itzhak Meltzer of the Physical Therapy Department of the Recanati School for Community Health Professions as its first incumbent. That ceremony was followed by the dedication of the William and Jean S. Schwartz Movement Analysis and Rehabilitation Laboratory at the Recanati School.

Honorary Doctoral Degrees were conferred upon six internationally-recognized figures in acknowledgement of their distinguished contributions to science and humanity. Guest of honor was Vice Premier Shimon Peres. The seventh intended recipient, the Egyptian playwright and satirist Ali Salem, was unable to attend the ceremony, having twice been prevented from leaving his country by the authorities there. An excerpt from Salem’s undelivered speech was read at the ceremony by the moderator, Prof. Ilan Troen. Salem will receive his deserved honor at a future ceremony.

Former United States Assistant Surgeon General, Senior Medical and E-Health Advisor in the U.S. Department of Health and Human Services, Rear Admiral (ret.) Susan J. Blumenthal, M.D., whose work focuses on a broad range of public health and science issues, was honored as “a physician who has exerted tremendous influence over the health of the citizens of the United States of America, initiating and advancing research, education and medical services in many realms, among them women’s health and mental illness, and for her efforts as a research scientist who led innovative programs across the agencies of the U.S. Department of Health and Human Services and dedicated her efforts to education both in the world of academe and beyond it.”

Chairman and CEO of Ormat Industries Ltd and a member of BGU’s Board of Governors, Lucien Y. Bronicki of Israel, is an internationally-recognized scientist who holds numerous patents on energy-related equipment. He was recognized for “his work as an industrialist and inventor, whose products subscribe to the tenets of sustainable development and exemplify a combination of the public good and economic success.” He is “an engineer and physicist who sought new technologies to exploit geothermal energy and processes to produce energy from renewable resources, thus helping to preserve the environment and advance rural areas in developed countries and less-developed countries.”

President of the Institute for Systems Biology in Seattle, WA, Dr. Leroy Hood, an internationally-recognized scientist, was acknowledged for his work as a leader in the fields of molecular biology, genomics and biotechnology; and as “a pioneer in immunology, who stretched the boundaries of the life sciences, led the development of advanced instruments, namely sequencers
Morton M. Mandel speaks at the panel discussion on "A New Israel in the Negev." From left: Prof. Alean Alkrenawi, Sir Ronald Cohen, Roy J. Zuckerberg, Minister Ehud Olmert, Prof. Avishay Braverman, Eric Benhamou and Prof. Raymond Dwek, FRS

Cérard Worms addresses the audience at the panel on Water, Agriculture and the Environment. Seated, from left: Prof. Avigad Vonshak, Director of the Jacob Blaustein Institutes for Desert Research, Roy J. Zuckerberg, Prof. Avishay Braverman and Boooky Oren

At the inauguration of the William and Jean S. Schwartz Career Development Chair in Community Health Professions. From left: Claire Winick, Director of the Mid-Atlantic Region branch of the American Associates, Rector, Prof. Jimmy Weinblatt, David and Estelle Steinberg, incumbent Dr. Izhak Meltzer and Dean of the Faculty of Health Sciences, Prof. Rivka Carmi

Inaugurating the Dr. Gabi and Eng. Max Lichtenberg Career Development Chair in Surgery. From right: Eng. Max Lichtenberg, Chair incumbent Dr. Nitzan Newman-Heiman, Dr. Gabi Lichtenberg and Prof. Rivka Carmi with incumbents of Chairs inaugurated in the past three years: Dr. Klaris Riesenber (left) and (at the back) Dr. Agneta Golan and Dr. Yaniv Almog
and synthesizers of DNA and protein, which spearheaded the Human Genome Project, and also advanced molecular biology. He is a brilliant researcher who has applied himself to studying autoimmune diseases and cancer, and demonstrated a commitment to ethical and social issues and to the education of children and youth. Prof. Daniel E. Koshland Jr. is a renowned prize-winning leader in molecular biology at the University of California at Berkeley and former editor of Science Magazine. He was recognized for "his work as a Group Leader in the Manhattan Project, for his achievements as a scientist who set new paradigms in the study of enzyme mechanisms, as well as in the study of signaling pathways in bacteria, which explained how they sense their environment; for his efforts as an educator in the world of academe, who shaped generations of students and pioneered interdisciplinary research in the life sciences; and for his role as editor-in-chief of Science, transforming it into an important and influential international journal."

The former Chairman of Premier Industrial Corporation and a major philanthropist and leader in the American Jewish community, Morton L. Mandel, was acknowledged as "an indefatigable philanthropist, a successful businessman who established, together with his brothers Joseph and Jack, the Mandel Foundation and who devotes his time and energy to worthy causes. He is one of the pillars of the Jewish community in Cleveland and the United States, who tirelessly strives to advance Jewish education and to promote the continuity and flourishing of Jewish communities around the world."

"The Chairman of VISY Industries and Companion of the Order of Australia, Richard J. Pratt AC, was honored "as a brilliant industrialist and entrepreneur who heads an Australian-based international firm that applies cutting-edge technologies to transform waste into high quality packaging products; for his commitment to protecting the environment through the wise management of natural and recycled resources, in particular water; for his understanding of the responsibility of industry towards surrounding communities; and for his efforts as a generous philanthropist, founder of the Pratt Foundation, which supports a wide range of causes that benefit society, education, health and welfare, the arts and the environment."

Another prestigious award presented was the Ladislaus Laszt Ecumenical and Social Concern Award, which was bestowed upon the Director of St. Joseph's Seminary and High School in Nazareth, Archemendrite Emile Shoufani. Shoufani, who belongs
From left: Archimendrite Emile Shoufani, Prof. Dan Baron and Prof. Moshe Dariel, representative of the Laszt family

Richard Pratt takes the stage at the evening held in his honor accompanied by singer Yevgeny Shapovalov

Unveiling the new names on the Ben-Gurion Wall, from left: Dr. Gabi Lichtenberg, Prof. Avishay Braverman, Nina Brink and Eng. Max Lichtenberg

At the Faculty of Engineering Sciences Project Day. Above, from left: Prof. Jimmy Weinblatt, Prof. Yigal Ronen, Dean of the Faculty of Engineering Sciences, Shraga Brosh, Prof. Avishay Braverman, Lucien Y. Bronicki, Dr. Yossi Vardi

Below: Students at the Project Day
to the Greek Catholic Church, was recognized for "his endeavors to foster dialogue and understanding between the diverse cultures and religious faiths in the Middle East and to advance a more compassionate society." The award, created by the late Ladislaus Laszt and his wife, Nelly, of Switzerland, is bestowed on a religious personality of international repute or on a person or organization that has made an outstanding contribution to society and whose deeds reflect tolerance, hope and vision.

A musical evening, accompanied by a festive dinner in honor of Honorary Doctorate recipient Richard J. Pratt AC, was held at the Forum club in Beer-Sheva. Pratt, an avid music aficionado who loves to sing and is a great supporter of immigration to Israel, accompanied the guest singer Yevgeny Shapovalov – an immigrant from the former Soviet Union – in a rousing duet, and even gave a solo performance of his Australian favorite – the well-known "Waltzing Mathilda."

Visitors viewed a display of the final projects by the graduating class of the Faculty of Engineering Sciences, at the Faculty’s Project Day. The event opened with an address by Chairman of Ormat and Honorary Doctorate recipient Lucien Y. Bronicki. Special guests included President of the Israel Manufacturers Association, Shraga Brosh, and Chairman of International Technology, Dr. Yossi Vardi, both of Israel.

Fifty-seven new names on the Founders Wall and eight names on the Ben-Gurion Wall were unveiled in the presence of supporters from around the world, celebrating their warm welcome into the BGU family.

Prior to the procedural activities of the Closing Plenary Session, presided over by the Chairman of the BGU Executive Committee, David Brodet, scholarships were awarded by the Chaim Herzog Center for Middle East Studies and Diplomacy to six doctoral students and one Masters student. Guest of honor Minister of Housing and Construction Isaac Herzog, son of Aura and the late Chaim Herzog, presented the prizes.

The award ceremony was followed by a speech in honor of the absent and previously-scheduled Ali Salem – who, as mentioned above, was prevented from attending the Board of Governors Meeting – by the Israeli author David Grossman. Israel Prize laureate Prof. Sasson Somekh spoke about the renowned Egyptian writer and his works.

Guests celebrated with students on the last night of the Meeting, when they were invited to join the festivities of the annual Student Day.

In addition to the scheduled ceremonies, the annual Dr. Joseph Friedman Award was presented to an outstanding Ph.D. student at the Center for Advanced Studies in Mathematics – whose activities have been funded through the generosity of the President of the American Associates, Lis Gaines. In the absence of the donor – BGU alumnus and AABGU National Board member Dr. Yossi Friedman of New York – the prize was awarded by Dr. Friedman’s parents, who reside in Beer-Sheva.

At the end of the week, Board members were invited to a festive reception hosted by Honorary President of the Israeli Associates of BGU, Sara Tadmor, and Dov Tadmor at their home in Caesarea. Sara Tadmor was killed in a tragic accident in the middle of August.
Prof. Miriam Cohen, Director of the Center for Advanced Studies in Mathematics (center), presents the Dr. Joseph Friedman Award to Andrey Melnikov in the presence of Dr. Friedman’s parents, Mina and Asher Friedman (left), and Prof. Avraham Feintuch, Chairman of the Department of Mathematics.

Israeli author David Grossman speaks to the audience about Ali Salem at the scholarship presentation ceremony of the Chaim Herzog Center for Middle East Studies and Diplomacy. Seated, from left: Prof. Fred Lazin, Prof. Sasson Somekh, Minister Isaac Herzog, Prof. Avishay Braverman and Dr. Yoram Meital, Director of the Herzog Center.

From left: Janet Croupen, Samuel Ranish and Shirley Schwartz, who have donated to the Life Stories project, Aliza Ranish, Director of the Greater Florida Region branch of the American Associates, and Dorothy Kravetz.

David Brodet at the Closing Plenary Session.
Dr. Haim Kedar-Levy
Bubbles In The Air

Dr. Haim Kedar-Levy’s favorite pursuit is research of financial crises and anomalies in financial markets. He is fascinated by the forces that govern seemingly sharp fluctuations in the stock market, such as financial bubbles. Most existing models explain bubbles as irrational phenomena, therefore they are still considered anomalies by most mainstream economists.

A lecturer in the Department of Management at the School of Management, Kedar-Levy developed a new model of pricing stocks to explain this phenomenon without relinquishing the important “rationality” paradigm. In other words, there is a “method to their madness,” which means that financial bubbles can be explained, but not predicted.

How do financial bubbles evolve? Kedar-Levy explains that when investors establish profitability expectations based on the stock’s past performance in the market, the stock’s price process becomes dynamically unstable and prices diverge to high values. This can only happen if investors don’t have complete information regarding the fundamental value of an asset, or choose to ignore it for some reason. When investors know the fundamental value of an asset they won’t pay more than the asset is worth and the price process will be dynamically stable.

So how does it happen that investors don’t know the value of an asset? One example is the pricing of new technologies. Since these do not generate real profits or yield dividends, investors cannot assess their real value. Therefore they may end up paying more for stocks than they are worth. The investor is not irrational, Kedar-Levy emphasizes; he or she just does not have access to the information on which to base an informed pricing decision. An example of this is the well-known internet bubble. For example, once Amazon.com started generating revenues and profits, it became clear that its market value was too high to be supported by its earnings and thus its price “adjusted downward” – or, in simple words, it crashed. In purely economic terms, the prices reverted to the now-observable fundamental value that had not been available during the introductory phase of the new-technology, before real profits were generated.

This model explains other examples of bubbles such as the infamous U.S. stock market crash of 1929 that caused the Great Depression. The 1920s saw the emergence of new technologies such as those used in the radio and refrigerator and great improvements in automobile mass production. But no one knew the real value of these technologies if they did not generate profits.

The 1983 collapse of stock prices of the largest banks in Israel reveals a slightly different twist on the same theme. After all, intelligent investors
then had access to fundamental information for the purpose of rational valuation of bank stocks and yet they still kept on buying them at values higher than their real value. So were these investors irrational? “No,” Kedar-Levy maintains, “they were just misled by the deceptive assurances of the banks that their shares would keep on appreciating in value as they did before.” Indeed, the Biesky Committee found the bank managers responsible for artificially inflating their bank’s share prices and guilty of misleading the public.

Kedar-Levy explains that bubbles are only one aspect of the divergence of market values from their fundamental price. His model is the only one that predicts that stock prices can diverge downwards as well, resulting in “penny stock” valuations, such as those traded at the NASDAQ Over the Counter (OTC) for less than $5 per share. These neglected shares are priced far below their unobservable fundamental value, while according to mainstream theories, they should have been part of everyone’s portfolio. He explains that this is because poor past performance drove investors’ expectations of these shares very low and caused their prices to diverge downward. But, he reassures investors that both bubbles and penny-stock valuations can only be transitional phases, not long-term ones; eventually, all profitable technologies generate real profits, or dividends, based on which the market can acknowledge their fundamental value. Once this happens, investors can evaluate their worth properly, leading to long-term stable equilibrium prices.

Kedar-Levy’s professional life has taken many twists and turns from his high-school years, when he mastered the lathe, welding and other tools at an ORT vocational school. “After high school, I served in the Israel Air Force. I was good with my hands, so working with Phantom F4 aircraft was a natural job for me. At the time, the F4 had the most complex mechanical system in the world. And I mastered it. So at first, that seemed to be the direction I would take. But I didn’t go into engineering. I needed greater diversity, a field in which I would learn something new each day, which could be relevant and applicable to a variety of other fields. So I turned to management and started studying business and economics at the Hebrew University.”

Kedar-Levy received a B.A. in business and economics and an MBA with a major in finance and entrepreneurship as a second field. He had to pay his own way through school so he always worked, starting from a drill-fixing workshop, a soundman at performances and at Intel in Jerusalem, to a position as CEO of a new technology electroluminescent company called ELAM. In 1997, four years after establishing ELAM, he managed 40 employees, a couple of million dollars in sales and a facility working 24 hours daily.

“The work was hectic and I was still studying for my Ph.D. But four years into the job, I had mastered whatever I was interested in doing, creating a vital organization out of amorphous inputs. When I felt the tasks were repeating and the work became boring, I had to move on.”

So Kedar-Levy left ELAM. While working on his Ph.D., he was co-opted to teach and manage a joint BGU program with Temple University called Global Entrepreneurship in Technology, or the “GET program,” in which business students from Israel and the United States formed teams to write a business plan for Israeli start-up firms. That program was a stunning success. After four years with GET, Kedar-Levy’s next step was two years at Temple University, in which he was part of a faculty team that developed a new full-time MBA program with a core of experiential learning similar to the model developed for the GET program. This program will start running in the Fall of 2005. But, says Kedar-Levy, “I always wanted to devote myself fully to research and I am finally able to do that now.”

The Kedar part is his wife’s last name. It is instrumental in distinguishing him from another Haim Levy in the same field of research.
Dr. Eugene Shwageraus
Next Stop, Mars

Sending astronauts to other planets – and bringing them back alive – is the dream of much current space research. To achieve this, Dr. Eugene Shwageraus of the Department of Nuclear Engineering believes that a nuclear-powered spacecraft is the only option.

“Clearly, to get astronauts to and from the moon, conventional rockets are sufficient, but these engines can’t send people to Mars and bring them back in any reasonable time frame.” Existing spacecraft, fueled by standard chemical propulsion, require eight to ten months to make the journey. According to Shwageraus, nuclear fuels offer a better solution. Together with his colleague, Prof. Yigal Ronen, Shwageraus has shown that a rare nuclear material – americium-242m (Am-242m) – could speed space vehicles from Earth to Mars in just a few weeks.

The researchers demonstrated that Am-242m can maintain sustained nuclear fission as an extremely thin metallic film, less than one thousandth of a millimeter thick. In this form, the high-energy, high-temperature fission products can escape the fuel elements and can be used for propulsion in space. Obtaining fission-fragments is impossible with the better-known uranium-235 and plutonium-239 nuclear fuels: they require large fuel rods, which absorb fission products.

“This can also be a reliable source of electricity with no moving parts – and you certainly want to send something reliable to Mars,” says Shwageraus. For the time being, though, the main obstacle is cost. “Am-242 is a wonderful nuclear fuel, much better than uranium,” he says, “but our current technology is not mature enough to obtain it in large quantities, so it is very expensive.”

To meet the demands of international space exploration, Shwageraus continues to work toward developing the necessary reactor technologies in his laboratory. “People in NASA and elsewhere are starting to understand that in order to get interesting scientific results, you need devices that require high-power electricity.” Today, he explains, space exploration is severely limited by constraints connected to the power supply. The further space vehicles are from the sun, the less energy reaches their solar panels. This makes it difficult to collect and transmit data.

For example, Shwageraus points to the current Cassini-Huygens mission, the first to explore Saturn’s rings and dozens of moons from orbit. Powered by three Radioisotope Thermoelectric Generators (RTGs), the spacecraft is sending vital data and the best views ever seen of this mysterious and beautiful planet. In another recent project, NASA is designing a fully nuclear powered mission to explore Jupiter’s icy moons. Already under development, the multi-billion dollar Project Prometheus will have a fully functional nuclear reactor on board.

After earning his B.Sc. and M.Sc. degrees in Nuclear Engineering at BGU, Shwageraus received his Ph.D. at the Massachusetts Institute of Technology (MIT). There, he became involved in a project aimed at getting people to and from Mars using nuclear-powered spacecraft. Back in Beer-Sheva, he still takes an active role in that effort.

Likewise, Shwageraus serves on the Board of Advisers of the Mars Homestead Project with his colleagues from MIT. Composed primarily of scientists and engineers, the Project seeks to establish the first sustainable colony on Mars, built mainly with local materials.

Pursuing nuclear-powered space exploration from another angle, Shwageraus is now developing a “nuclear battery” that produces energy with no moving parts. “Already, we have ideas about the dimensions, materials needed and energy efficiency we can get from this battery,” he notes. “The key here is to obtain the highest electrical power from the lowest mass.”

“The biggest problem in space is that you can’t build a cooling tower or dump waste heat in a river or sea, so all waste heat has to be radiated,” continues Shwageraus, who is attempting to develop a battery where excess heat is dissipated through its surface without the need for an additional radiator.

Back on earth, Shwageraus researches different aspects of nuclear power, which he views as a source of safe and inexpensive energy. Addressing questions of radioactive waste, he explains that the problems of treating spent fuel plutonium and elements higher on the periodic table can be solved. “These materials decay very slowly and may take up to a million years before reaching a safe level. Over such a long period, we can’t be absolutely sure that our encasements will stay intact,” he accedes. The solution would be to take spent fuel,
separate the trans-uranic elements and return them to the reactor. Then, by being bombarded with neutrons, these elements would undergo fission. They would split into two parts that would decay in within a few hundred years. This way, there would be no problem to contain them for such a comparatively short time.

“For years, the French have been re-processing fuel, but only one cycle and with plutonium. We’re proposing multi-recycling, something we will see in our lifetime,” says Shwageraus. Not only a solution for waste, this method yields energy. By producing more energy from a single natural resource, it is utilized in the most efficient way.

Turning to the subject of economics, Shwageraus is researching the possibility of changing fuel types in existing reactors in order to increase their power by up to 50 percent. It has been suggested to replace solid rod fuel with fuel in the shape of hollow tubes, so that more surface area is exposed to the reactor coolant. More efficient cooling allows for more reactor power, explains Shwageraus, who is currently exploring different ways of applying such fuel design to advanced nuclear fuel cycles which would be more economical, safe, and produce a minimal amount of radioactive waste.

For Shwageraus, the direction is clear. “Only now is the rest of the world starting to wake up to the huge potential of nuclear power – in space and on earth,” he says. “For all us ‘nuclear’ people, this was obvious years ago.”
Dr. Angel Porgador

Taking Aim

The paradox of so many anti-cancer drugs, muses Dr. Angel Porgador of the Department of Microbiology and Immunology in the Faculty of Health Sciences, is that their efficiency as killers of cancer cells makes them toxic to normal tissues as well. In recent years, to avoid the toxic side-effects of these medications (especially to the immune system, skin and intestinal cells), doctors have fought many cancers with a tumor-targeted strategy using antibodies that recognize and fight specific tumor antigens.

Such a “tumor-specific strategy” does reduce the toxicity of the treatment, but in many cases it also reduces its efficacy.

Sounds like time for a new game plan, and that is precisely what Porgador is working on: developing cancer-killing molecules that will recognize cancerous cells and target them aggressively while not affecting normal ones.

Porgador, a leading researcher in the fields of tumor vaccines, antigen presentation and natural killer cells, believes that he has found a way to do exactly that – specifically, by creating molecules that will bind selectively to a broad spectrum of tumors and viral-infected cells and recognize tumor cells and an effector that binds to the macrophage, or diseased cell, and destroys it. The drug also, by itself or combined with other compounds, improves the efficacy and safety of chemotherapy agents.

Because the recognition component is broad-spectrum, the therapy has the advantage of being efficacious against a variety of cancers. Currently, extensive experiments are being done in animals to demonstrate the technique’s therapeutic potential in human melanoma and prostate cancers.

In parallel research, Porgador’s team is also seeking, at the level of the cellular chemical process, the

“People are living longer and the longer you live, the less efficient your immune system becomes.”

kill them. This work is being done in collaboration with Dr. Ofer Mandelboim from the Hebrew University.

The cancer-killing molecules work only where they are supposed to, Porgador explains, because they are “natural,” derived from the natural cytotoxicity receptors expressed by natural killer cells that recognize and eliminate tumor and virus-infected cells. “These receptors evolved in the human body over eons. We are merely using their broad-spectrum cancer-recognition potential and empowering the natural mechanisms of the body’s immune system.”

The therapeutic drug that emerges from the research is a two-part molecule composed of a recombinant protein moiety that will
specific mechanism that allows the innate immune system to recognize the transformed cells. Identifying what chemical signal, or ligand, the body’s natural receptors recognize as indicating a tumor cell, would point out new directions for developing even more potent cancer-killing drugs.

In a related area of this work, “People are living longer,” he says, “and the longer you live, the less efficient your immune system becomes and the more time and chances there are for tumor growth. Plus we have better detection of the disease – in former times, people died without cancer being defined as the cause.”

Porqador produces the components of the two-part therapeutic molecule that he is developing into an anti-cancer drug in what he calls “mini-cell factories.” Testing is then done on mice that are especially bred for research into human cancers. “The mouse is a ‘test-tube’ in which reactions can be attempted and monitored,” he explains. Meanwhile, in both research and applications, he utilizes current DNA techniques, altogether cutting a wide scientific swath.

Porqador began his career by training to be a dentist. But he soon saw that science offered him the “hope to do something important” beyond fixing the teeth of individuals, and he switched his studies to the fields of microbiology and immunology, earning his Ph.D. from the Weizmann Institute of Science in 1993. After post-doctoral studies in the United States at Duke University and the National Institutes of Health, he joined Ben-Gurion University in 1998. As a microbiologist, he has worked with bacteria that live within cells in the body, identifying the genes of intercellular bacteria that interfere with the body’s immune response, while as an immunologist, he has been working on developing antiviral vaccines.

Porqador is searching for an answer to how certain changes in sugars and fats within cells may help cancer cells disguise themselves in order to evade detection by the immune system and continue to grow.

Is there an increase in the incidence of cancer in our time? Porqador notes that not all cancers are related to increased exposure to carcinogens.

Excellence Recognized

Prof. Dan Bar-On, Chairman of the Department of Behavioral Sciences and incumbent of the David Lopatia Chair in Post-Holocaust Psychological Studies, and his Palestinian partner, Prof. Sami Adwan of Bethlehem University, were awarded the first annual Victor J. Goldberg IIE Prize for Peace in the Middle East for their educational curriculum development project entitled “Learning Each Other’s Narrative.” Prize donor Victor J. Goldberg and representatives from the Institute of International Education (IIE), commended the two researchers for their “commitment to overcoming the barriers that divide the Middle East” and noted that their project “has demonstrated success in bringing people together across religious, cultural, ethnic and political divides.”

Dr. Asaf Rudich of the Department of Clinical Biochemistry has received an award from the Initiative for Excellence in the Negev Fund to support the purchase of equipment for a specialized Diabetes Research Laboratory at BGU. In the lab, Rudich will pursue his work on the biochemical, physiological and cell biological aspects of obesity and insulin resistance. The funds for his equipment were donated by Raya Strauss Bendror, President of the Israeli Friends of BGU, under the auspices of the Initiative for Excellence in the Negev Fund. Committed to strengthening the University as a leading research center, the Fund serves as a catalyst to attract and retain outstanding young scientists.
The “dismal science” – that’s what nineteenth-century essayist Thomas Carlyle called economics – and the sobriquet has stuck. But theoretical economist Dr. Ori Haimanko treats his field as a kind of game.

Or, to be more precise, he makes it an exercise in game theory, a branch of mathematics that studies problems consisting of interacting “sides.” Haimanko explains that each side, through its choices, or strategies, tries to give its interactions utility – that is, work for its benefit. Chess is a classic example of a game understandable through game theory, for the strategy and moves of one side directly affect what the other side does.

The play of strategic interaction, says Haimanko, warming to his subject, can also be seen, for example, in competition between companies. Setting prices constitutes a strategy, with profit as the utility to be gained. Game Theory offers a theoretical way to predict the results of the interactions and may even be able to posit the best outcomes – although it is forced to assume that both sides act “rationally,” Haimanko adds, admitting wryly that rationality in the marketplace cannot always be assumed.

At age 27, he is young for his position as a BGU senior lecturer. That’s because, he explains, he began university studies at the age of 15. Born in the former Soviet Union, Haimanko came to Israel when he was 12 years old and grew up in Jerusalem. He earned his Ph.D. at the Hebrew University in 1999 in Cooperative Game Theory – a field that “treats situations in which people cooperate and there’s need to divide benefits or costs.” He has taught for four years at BGU, after post-doctoral stints at Yale University’s Cowles Foundation for Research in Economics and the Center for Operations Research and Econometrics at the Catholic University of Louvain in Belgium, where he began his work on the “stability of coalitions” in collaboration with prominent game theorists.

In general, Haimanko’s work is to develop abstract models that he then applies to concrete situations. One current project, in the area of contract theory, deals with designing labor contracts.

From the employer’s side of the game board, the aim is to “incentivize” the employee to do his
best work at the least cost to the employer. Up until now, the conventional wisdom in the field has been that the employer is best off operating in a one-to-one relationship with employees, negotiating each contract separately, with payment directly correlated to the quality of the employee’s work. But Haimanko challenges this. In his view, the employer can benefit by rewarding employees in relative fashion, using such means as bonuses or promotions, so that Employee A’s work strategies affect Employee B’s potential rewards. “If I get zero and he gets 10,” Haimanko speculates, “I’ll work harder. So it’s better for the employer to base pay on relative performances. Competitive contracts motivate workers to do their best more than individual contracts do.”

If several people do the same job, he continues, the more skilled employees are likely to receive the bonuses, motivating the less skilled to work harder in order to compete. Haimanko acknowledges that while this strategy will economically benefit the employer, it may be less good, psychologically, for the employees, with unpredictable effects in a real workplace. However, in general, he says, “even though the game-theory models are very stylized, they seem to work in the real world.”

While close to mathematics, Haimanko’s game-theory economics also have applications in such fields as urban planning. In one theoretical problem he calls “Stability of Coalitions,” he aims to discover how to divide the costs of building a public park in a town where some residents live far away from it and would therefore benefit less than others. His theoretical work predicts a way to create a regular payment structure that would solve the problem by distributing costs unequally. So far, he says, the answer is clear only for a city that is linear, that is, stretched out in a long rectangular line, while he has no answer yet for a theoretical city that is circular or one in which population distribution is not even.

In another problem with applications for policy planning, Haimanko is investigating, in collaboration with Prof. Ezra Einy of the Department of Economics, a model in which economic information, such as how much goods are produced and consumed and where they are stored, is incompletely known. The various players may have different information about the parameters of the economy on which they base their decisions, making the game more complex. Despite these uncertainties, the model is a closed one, compared to the real world, he notes.

“Chess is a classic example of a game understandable through game theory, for the strategy and moves of one side directly affect what the other side does.”

Prof. Ora Kedem, professor emeritus and former Director of the Department for Desalination and Water Treatment Research at BCU, has been named a foreign associate to the United States National Academy of Engineering (NAE). The organization promotes the technological welfare of the United States by marshaling the knowledge and insights of eminent members of the engineering profession, including a select number of international researchers. Kedem was recognized “For contributions to the thermodynamics of irreversible transport processes and the development of separation processes for the treatment of water and wastewater.” Election to the NAE is among the highest professional distinctions accorded to an engineer. Membership honors those who have made “important contributions to engineering theory and practice, and have demonstrated unusual accomplishments in the pioneering of new and developing fields of technology.”

Prof. Rivka Horwitz, professor emeritus in the Goldstein-Goren Department of Jewish Thought, was awarded the Hermann Cohen Medal for Jewish Cultural Philosophy in Kassel, the German city in which her family once lived. The award was part of the opening of the Hermann Cohen Academy International Conference on “The Jewish Heritage of European Philosophy: Legend of the Canon and Context in the Cultural Battle,” organized by the Hermann Cohen Academy for Jewish Cultural Philosophy. Horwitz’s many books and articles deal with aspects of Jewish thought, with special emphasis on German-Jewish philosophy, religion and education in the 18th, 19th and 20th centuries.
Got a secret? Dr. Amos Beimel of the Department of Computer Science can help you keep it. That’s his profession – creating electronic protocols that no outsider can read or manipulate. As he puts it, his assignment is “to protect a computer network from bad people.”

Though Beimel, incumbent of the Ralph Selig Career Development Chair in Information Theory, calls himself “completely on the theoretical side,” as he delves into the fundamentals of cryptography, his work has plenty of practical applications.

The simplest and best known are protecting computer networks from increasingly sophisticated and dangerous viruses and enabling end-users to safely send credit-card information over the Internet.

But the need for cryptography and encryption also encompasses transmission of legally binding digital signatures that no one can forge or copy or the ability to hold electronic elections with a secret ballot and no duplicated votes. All of this takes sophisticated mathematics, says Beimel, whose tools of trade are pen, paper and mathematical formulas. He doesn’t even use the computer very much, he says.

Ensuring secrecy – creating computer functions that no one can access – is a general task in cryptography. Beimel’s current work is concentrated specifically in the field of Private Information Retrieval (PIR). Let’s say, he explains, that you want to find out the price of a stock or what patents exist in a particular field without giving away what stock or patent area you are interested in. The paradoxical problem is this: How can you access the information from a database without the database knowing what information you’re looking for?

You could download the entire database, but that would be a very unwieldy way of holding onto your secret. That leaves you with two options, he says. You can access different parts of the information you want from different servers. Making the assumption, which is probably valid, that the servers won’t communicate, and asking your questions cannily, you’ll get the information you want and neither database will know what you were looking for. This is hardly
an elegant solution to the problem, however, and it is likely to be a time-consuming and inefficient one, as well.

Beimel would rather have you use a single server, for which he is developing protocols based on assumptions from number theory that will allow you to get your information without the database knowing what you were looking for.

But the problem is not quite solved even though Beimel can guarantee the privacy of the informational transactions, because the efficiency of the retrieval process is still poor, requiring a lot of computation and a long time. Simplifying and speeding up the process is what he is working on now, aiming to make the process more practical by making it more efficient.

Beimel started his march toward his current work way back in high school, where he learned computer programming, then expanded his grasp to computer science. His advisors at the Technion in Haifa, where he earned his B.A., M.Sc. and D.Sc. degrees, guided him into the field of cryptography.

After receiving his doctorate in 1996, he spent a post-doctoral year at Rutgers University and two more at Harvard before coming to BGU in 1999. He describes his current work as first defining a problem and its difficulties, then designing algorithms to solve the problem, then making his solutions more efficient. He acknowledges that he has sometimes become so engrossed in his problem-solving that he’s gotten lost while driving home.

Among his interests, as both a researcher and a teacher, is the field of “complexity,” which deals with the limits of computation. “A computer cannot do everything you want it to,” he says, destroying the myth of computer omnipotence. “For example, it can’t check a program, it can only run it. Nor can it determine if two programs perform the same functions.” More surprisingly, he goes on, “Even if a function can be computed, that doesn’t mean it can be done efficiently – it could take a lifetime to complete.” Sometimes, that is, a task has simply too large a number of variables.

One example that he gives is the creation of a timetable for university courses, using as few lecture rooms as possible. The computer is unable, he says, to efficiently manage all the variables of teachers, classes, schedules and room availabilities. “The secretaries in each department still have to figure out the class timetables, based on previous semesters – and it takes them a long time. For some things, people are still necessary,” he says reassuringly.

“The paradoxical problem is this: How can you access the information from a database without the database knowing what information you’re looking for?”

Prof. Yigal Meir of the Department of Physics is one of a three-member team recently awarded a grant by the prestigious Human Frontiers Science Program (HFSP). The program requires that proposals be based on “novel, daring ideas that need to be developed by collaborative teams involving biologists and scientists from other disciplines.” The subject of the proposal was “Signal integration by mixed chemoreceptor teams in bacterial chemotaxis.” Other members of the collaboration are Prof. Ned Wingreen of Princeton University and Dr. V. Sourjik of the University of Heidelberg.

Prof. Ron Apte. Chair of the Department of Microbiology and Immunology, was awarded a prestigious German-Israeli Project Cooperation Award (DIP) by the international bureau of the German Federal Ministry for Education and Research. This competitive five-year honor is awarded annually to a small number of research projects involving collaboration between Israeli and German scientists. Apte is internationally respected for his research on Interleukin-1, a mediator that affects immune and inflammatory responses.

Aharon Appelfeld, professor emeritus in the Department of Hebrew Literature, was awarded the 2004 Prix Médicis Etranger literary award for his book, The Story of a Life. The prize is France’s top literary award for a foreign writer and one of Europe’s most prestigious awards. The award-winning new book is a memoir, recounting his childhood in pre-war and war-torn Europe, the place that provides the setting for so much of his work. Appelfeld’s work is acknowledged worldwide as among the most profound literary explorations of the Holocaust.