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Despite medical advances, differentiation between a viral and
bacterial etiology based on clinical symptoms is currently

very difficult, being at the same time of utmost importance to
clinicians.1,2 Accurate and rapid information in this regard can
result in commencement of appropriate treatment for a viral or
bacterial disease: the former infection generally resolves with
supportive care only, and the latter usually necessitates the
administration of antibiotics. Treating viral infections with anti-
biotics is ineffective and contributes to the development of
antibiotic resistance, allergic reactions, toxicity and greater
healthcare costs.2�4 The most common ways to diagnose
bacterial infections currently are microbiological cultures, ele-
vated leukocyte and neutrophil counts, C-reactive protein level,
and erythrocyte sedimentation rate.5 A viral infection diagnosis
includes tests for viral antigens, PCR and determination of
antibody titers, as well as normal or low white blood cells count.
Those techniques are time-consuming and sometimes have poor
sensitivity and specificity. Therefore, an alternative rapid, sensi-
tive, and commercially available diagnostic tool for determining
whether the infection is viral or bacterial in origin is needed.

Polymorphonuclear leukocytes (PMNs) or phagocytes, often
elevated in blood, play a major role in the defense response of the

host during an episode of infection.6,7 These cells inherit
different pieces of information in the case of different etiological
agents stimulating immunity. The molecular environment in a
specific infection is pretuning the “warrior” immune cells, thus,
preparing them for future tasks and acting as a disease marker.8

Upon activation of phagocytes, an increase in the consumption of
molecular oxygen occurs, which results in the production of
reactive oxygen species (ROS), a process collectively called
respiratory burst.9�11 When luminol is added to the system,
the ROS generation is accompanied by light emission (chemilu-
minescence, CL). Thus, CL is a sensitive marker of the oxidative
potential of phagocytes, which can be recorded as a luminol-
dependent CL (LCL).11,12

Attempts have been made to correlate the primed activity of
circulating phagocytes with the severity of disease and its
outcome.13�18 The correlation of phagocytic CL activity to
peritoneal dialysis associated clinical states was previously establi-
shed and the C4.5 decision-tree algorithm demonstrated an
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ABSTRACT: Oftentimes the etiological diagnostic differentia-
tion between viral and bacterial infections is problematic, while
clinical management decisions need to be made promptly upon
admission. Thus, alternative rapid and sensitive diagnostic
approaches need to be developed. Polymorphonuclear leuko-
cytes (PMNs) or phagocytes act as major players in the defense
response of the host during an episode of infection, and thereby
undergo functional changes that differ according to the infec-
tions. PMNs functional activity can be characterized by quanti-
fication and localization of respiratory burst production and
assessed by chemiluminescent (CL) byproduct reaction. We have assessed the functional states of PMNs of patients with acute
infections in a luminol-amplified whole blood system using the component CL approach. In this study, blood was drawn from 69
patients with fever (>38 �C), and diagnosed as mainly viral or bacterial infections in origin. Data mining algorithms (C4.5, Support
Vector Machines (SVM) and Naïve Bayes) were used to induce classification models to distinguish between clinical groups. The
model with the best predictive accuracy was induced using C4.5 algorithm, resulting in 94.7% accuracy on the training set and 88.9%
accuracy on the testing set. The method demonstrated a high predictive diagnostic value and may assist the clinician one day in the
distinction between viral and bacterial infections and the choice of proper medication.
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84.6% predictive accuracy.14 The phagocytic function resulting
from viral exposure was studied previously, including the result-
ing CL response produced as a result of viral infection.19�24 A
number of reports have also shown altered metabolic activity in
PMNs in response to bacterial infection.19,20,25 It was found that
bacterial infections generally elevate host cellular CL.26 The
hypothesis of the present study is that phagocytes are of high
predictive value for use as a sensitive infection marker for distin-
guishing between different kinds of infections providing us with a
timely diagnostic tool.

Herein, we characterized the functional states of phagocytic
cells from patients with acute infections with different etiologies
by applying the aforementioned approach of component chemi-
luminescence sensing in a luminol-amplified whole blood sys-
tem. We applied different data mining algorithms in order to
discover specific patterns for each type of infection. The highest
classification accuracy was reached by the C4.5 algorithm,27

which also provides the most interpretable model in the form
of a decision tree. Afterward, the rules were used to classify blind
cases, achieving 88.9% prediction accuracy.

To conclude, the approach of inspecting whole-blood CL as a
measure of respiratory burst, analysis of kinetics, and classifica-
tion of clinical groups using data mining algorithms demon-
strated a high predictive diagnostic value andmay assist in proper
treatment modalities a very short time after admission of the
patient to the hospital.

’EXPERIMENTAL SECTION

Study Population. Sixty-nine patients were recruited from
Emergency Room and Internal Medicine Departments, Soroka
University Medical Center. These cases were recruited on the
basis of appearance of high fever (>38 �C) and basic signs of
possible acute infection in the moment of admission to the
hospital. The patients recruited formed two groups: one group
with identified bacterial infection (33 instances) and the other
group with identified viral infections (or nonbacterial infections;
36 instances). The instances were randomly divided into two
data sets: 51 instances as a training set (to induce the model) and
18 as a blind set (to evaluate the predictive performance of the
model). The bacterial infections were mainly from two groups:
urinary tract infections (UTI, 5 instances) and respiratory tract
infections (28 instances). Diagnosis was based on signs and
symptoms of high grade fever (>38 �C), cough, dyspnea,
auscultatory findings, typical findings of infiltrates in chest
X-rays, and positive microbiological urinary or/and blood cul-
ture. Cases from the bacterial group suffered from infections
caused by a single ormultiple bacteria (UTI caused by Escherichia
coli, Pseudomonas aeruginosa, Enterococcus). Viral infections
caused by viruses (Human Rhinovirus (HRV, common cold),
Influenza virus (flu) or swine flu (H1N1), Para influenza virus)
were diagnosed by clinical observations of fever, cough, running
nose, headache, and myalgia, while others (H1N1) using PCR.
The viral diagnoses were supported by a negative microbiological
culture, lack of findings in chest X-rays and either normal or
slightly elevated leukocyte counts. It was assumed that the main
source of illness was bacterial or viral, whilemixed infections were
eliminated for better clarification between the border between
viral and bacterial etiology. For control cases, we measured and
recorded blood CL kinetics of 6 healthy subjects without clinical
symptoms of infection. All control instances were used in the
training set. A detailed list of all the patients recruited and their

affiliation to a specific clinical group are found in the Supporting
Information (SI), Table S-1. The study protocol was approved by
the Helsinki committee of Soroka University Medical Center
(Certification Nums. 4241, 4599, 4888). All patients gave their
informed consent for this study.
Reagents. Zymosan-A (Sigma Chemical Co., Z4250), used as

a stimulating agent, was opsonized for 30 min at 37 �C in each
corresponding patient plasma sample (10 mg/mL) and prepared
in Krebs-Ringer phosphate buffer prior to use13 (20 mg/mL).
Luminol (Bio-Rad HRP substrate kit 170-5040) was used to
amplify chemiluminescence activity. In some experiments, fMLP
(ICN Biomedicals, 1511170) was used (10�9 M final con-
centration) for priming of the phagocytes.
Chemiluminescence Assays. Peripheral whole blood (1:100

(v/v) final dilution) was used to avoid the appearance of artifacts
due to the isolation of PMNs and to preserve conditions that are
close to the in vivo cellular environment. Samples, at a total
volume of 200 μL, contained whole fresh blood diluted in KRP,
luminol, and zymosan in KRP as was described before.14 After
addition of opsonized zymosan, the sample contents were mixed
and CL was measured. Three CL systems were investigated:
standard, priming, and aging as was described before14 and
mentioned in Supporting Information.
Data Analysis. Data analysis was performed in the following

steps: (1) the experimental CL curves were recorded; (2) full sets
of kinetic parameters were calculated based on the decomposi-
tion of the experimental CL curves to the three biological
components; (3) patients with similar clinical states were placed
into defined groups (such as group with bacterial infections,
group with viral infections and healthy controls); (4) data mining
algorithms were applied to induce classificationmodels for discri-
minating between clinical groups; (5) the algorithm predictive
performance was evaluated.
The recorded kinetic CL curves were presented as a sum of

three biological components representing the following proce-
sses:13,28 (1) extracellular ROS generation connected to phago-
cytosis; (2) intracellular ROS generation, connected to phago-
cytosis; (3) intracellular ROS, not connected to phagocytosis. To
decompose the chemiluminescent curve into the three afore-
mentioned components, the PeakFit program was employed,
using Poisson-type distribution equations for each component,29

considering the boundary conditions for the time appearance of
each peak: first component t1 [1�6] min, second component t2
[7�13], third component t3 [>13] min.

30�32 The first and the
third components were decomposed arbitrarily to two additional
components to represent the CLmultimodal curve inmore details:

t1 ½1� 6� min ¼ t11 ½1� 2� min þ t12 ½3� 6� min
t3 ½ > 13� min ¼ t31 ½13� 25� min þ t32 ½ > 26� min

As a result, the final number of curve components was five.
The detailed decomposition of one of the curves is represented in
the Supporting Information, Figure S-1. Matching the sum of the
CL components obtained by modeling to that of the experi-
mental curve was achieved by determining the minimum sum of
the squared differences.30�32 For each patient, 82 kinetic param-
eters derived from three systems (standard, priming, and aging
systems) were calculated, while the kinetic parameters were
published before.14 The parameters calculated for each specific
curve are indicated in Table S-2 of the Supporting Information.
Models Induction. The 75 cases were used as a final data set.

Three datamining algorithms (C4.5 (J48), SVMandNaive Bayes)
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were applied to induce classification models for differentiation
of clinical groups using RapidMiner 4.3 open-source data mining
tool (http://rapid-i.com) and Weka 3.5.6 Machine Learning
Software.33 Ten-fold stratified cross-validation was applied
10 times using a different local random seed in each iteration.
The results are averaged for the 10 iterations of 10-fold cross
validation. In parallel, the data set was split randomly into
training and blind sets (24% of the instances). All classification
results are presented in a 95% confidence interval. To improve
classification performance, feature selection was applied as a
preprocessing step. The wrapper approach was used with for-
ward selection feature generation scheme implemented by the
feature selection operator in the RapidMiner software.

’RESULTS AND DISCUSSION

Whole Blood Chemiluminescence. Patients recruited were
divided into two main groups, namely, those resulting from
bacterial or viral etiology, and these were compared to the control
group in the studies conducted. UTI cases were not excluded
from this study and were included in the clinical group with
bacterial infections, because of the similar CL pattern to respira-
tory tract infections.
Owing to the experimentation performed, the patients with

different infections could be grouped according to their chemi-
luminescent behavior and the functional states of phagocytes
could be characterized. Figure 1 presents the main parameters

Figure 1. Description and comparison of derived respiratory burst parameters (capacity, effectiveness, and velocity) in three clinical states (bacterial
infection, viral infection, and control) in the standard (A), priming (B), and aging (C) systems. Functional states of PMNs are assigned according to the
calculated parameters as “resting” state in the case of control and “effective” or “fighting” state in both types of infections.
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(capacity, effectiveness, and velocity) that are used in the
estimation of functionality of the immune system and Figure 2
represents the CL curves in case of different infections. The data
was analyzed and compared to healthy, noninfected controls
demonstrating the earlier described “resting” pattern (CLEHVL =
CapacityLowEffectivenessHighVelocityLow).

14,34 The resting pat-
tern is characterized with a low capacity to generate ROS, while
phagocytosis of the prey is performed with high effectiveness,
expressing the healthy state of the cells; and low velocity, as the
cells are not activated and not ready for the defense and killing. In
comparison to controls, it can be observed that the two infected
groups have higher capacity and velocity in the standard system,
revealed by the presence of infection, leading to an elevated
cellular CL response (Figure 1A). The effectiveness of the
phagocytosis in both infections is lower than in the control cases,

reflecting some of the ROS generation processes that flow
outside the cells.
The CL kinetics of bacterial infection are associated with high

capacity, lower effectiveness than in controls, and high velocity in
the standard system (Figures 1A and 2B), corresponding to an
“effective” (CHEHVH), very close to the “fighting” (CHELVH)
functional state of the phagocytes. This state corresponds to the
activated state of the immune system in case of infection (as it
was already shown before14,34): the phagocytes have high
capacity to generate ROS, which occurs predominantly inside
the cells. This oxidative potential of cells is achieved by processes
directly associated with phagocytosis. As can be seen examined
by kinetics parameters and CL curves, priming and aging influ-
enced the pattern of the curve. Effectiveness in priming and aging
systems was lower, as it is also represented by a high initial slope of
the CL curve and, as a result, highest extracellular ROS generation.
The velocity of the priming and aging curves is higher, and the peak
appears earlier in time, representing activation of phagocytes.
The CL kinetics of viral infection cases is very similar to

bacterial infections, exhibiting activation of the system as a result
of stimulation of the immune system during infection. The viral
cases showed high capacity, effectiveness lower than controls,
and high velocity in the standard system (Figures 1A and 2C),
defined, as in the case of bacterial infection, as an “effective” or
“fighting” functional state of the phagocytes. In comparison to
bacterial infection, effectiveness is lower in case of viral infections,
as seen in the kinetics curves presented in Figure 2, where the
initial slope of the viral group’s kinetics is much sharper than in
case of bacterial infection. As revealed by the kinetics parameters,
priming had little influence on the pattern of the curve. In the
priming system, capacity, effectiveness, and velocity remain almost
the same as compared to the standard system (Figures 1B and 2C).
In the aging system, capacity is lower, as revealed in the aging
kinetic curve that is slightly lower than the two other curves.
Effectiveness is slightly lower because of the more emphasized
extracellular part of the kinetics (Figures 1C and 2C). Velocity is
higher, representing the dominant extracellular part and the ROS
generated mainly in the processes connected to phagocytosis.
In the case of bacterial infections, the system showed high

capacity to produce ROS and lower effectiveness as compared to
the controls, as well as high velocity, meaning that the ROS
generation occurs mainly by processes directly associated with
phagocytosis and has substantial extracellular origin. In general,
the functional state of bacterial infection corresponds to the
“effective” or “fighting” functional state. As reported in previous
studies,19,20,26 PMNs in the majority of patients with active
bacterial infection are found in an activated state, both functionally
and metabolically, and these produce increased CL. The results of
the present study support these previous reports, while also
showing an increased CL response with high capacity and velocity.
Moreover, our research shows that the main part of ROS produc-
tion during phagocytosis takes place in the intracellular space.
In case of a viral infection, the system showed almost the same

behavior as in the bacterial cases, except for the predominant
extracellular origin of the ROS generated in phagocytosis, which
is higher in viral infections, resulting in lower effectiveness. As
reported in previous studies, influenza viral infection has been
associated with decreased phagocytic cell function and inhibition
of chemiluminescent responses of PMNs to various stimuli,24

together with other studies that report an induction in phagocytic
function.21�23 The results presented in our study address viral
infections in a nonseparated manner as predominantly respiratory

Figure 2. CL pattern data recorded using standard, priming, and aging
systems and averaged by different groups. Three clinical states are
represented: control (A), bacterial infection (B), and viral infection (C).
Different CL patterns are used for distinguishing between different acute
clinical conditions of patients by their distinct patterns of PMNs
functionality.
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infections (i.e., influenza and HRV-mediated infections were
considered together and taken as an average of the different
viruses). Thus, on average, the phagocytes are induced and the
CL curve is elevated as compared to the control. The reason for
the lower effectiveness in the case of viral infection can be explained
by taking into account the different natures of viral infections, with
not only the influenza-causing virus being present. Furthermore, as
shown in previous studies,35 HRV produces oxidative burst mainly
outside the cell, thus, lowering the effectiveness.
To conclude, the two infections exhibit completely different

types of chemiluminescent signatures, each one described by its
own characteristics, proving that the oxidative potential of the
innate immunity can indeed serve as a prognostic or diagnostic
marker. Moreover, we show herein that the infectious states do
show an effective type of phagocytic behavior, as supported by
the behavior of peritonitis14 and pulmonary abscess cases.34

Phagocyte CL Information Can Differentiate between
Clinical Groups. The kinetic parameters previously described
were calculated in all clinical cases, and the data set was checked
to evaluate to what extent the proposed methodology can serve
as a relevant tool to describe clinically primed and challenged
phagocyte diversity. The induced classification models resulted

in a statistical separation of three clinical groups: bacterial
infections, viral infections, and controls. The most accurate and
interpretable model was induced by the C4.5 algorithm as
compared to Support Vector Machines (SVM) and Naive Bayes
(Table S-3) in training/testing configuration. In the case of SVM,
the linear model was selected to be the most accurate. Naive
Bayes Classifier resulted in 73.7% prediction accuracy in the
training set (similarly to linear SVM). In Figure 3, we present the
most accurate induced model, which is the decision tree con-
structed by C4.5. It was obtained using the value of a minimum of
2 instances per leaf. In the training set, three clinical groups were
classified with 94.7% accuracy.
Control Group. In differentiating the control group, three

parameters were chosen by classification task: the ratio of
the intracellular nonphagocytosis capacity of the primed sample
divided by the intracellular nonphagocytosis capacity of the
standard sample (RelIntranoPhagSP), the ratio of velocity of
primed sample to the velocity of standard sample (RelVel_SP),
and capacity of the aging system (CapSA). Relative velocity in
the priming system should be lower in control cases when
comparing to all viral infections and to part of the bacterial
infections. This is supported by Figure 1B, where velocity of

Figure 3. Decision tree and confusion matrix of patients in the training and testing sets. Three clinical groups were classified with 94.7% accuracy in a
training set: 24 out of 25 cases in group with bacterial infections (96%), 24 out of 26 cases in group with viral infections (92.3%), and 6 cases of control
(100%) were classified correctly. The tree is based on 7 parameters chosen by the algorithm from the 82 parameters that were calculated according to the
component approach. Sixteen out of 18 blind cases (88.9%) were classified correctly according to the induced model, with detailed accuracy represented
by class.
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controls is lower than in case of any infection. The capacity of the
aging system should be lower than that found in bacterial cases.
This finding, derived from the classification model, is supported
by Figure 1C, where the capacity of control is much lower than in
both types of infection.
Bacterial Infections Group. There are four clusters or leaves

formed to differentiate this clinical group. The first parameter
that is substantial in differentiating bacterial cases from controls
is CapSA, capacity of aging system. This parameter is estimated
to be higher in bacterial infections than controls, which is
supported by Figure 1C. Second parameter, which appears twice
as a node in a decision tree, is RelEff_SA, relative effectiveness of
aged system as compared to the standard system. According to
the model presented, RelEff_SA should be higher in part of the
cases with bacterial infection, when compared to viral infections.
This finding is supported by the parameters derived from CL
kinetics (Figure 1C), where the effectiveness of the aged system
in bacterial infections is higher than in viral infections. An
additional parameter that plays a role is the RelEff_SP, relative
effectiveness in primed system as compared to the standard
system. This parameter should be higher in part of the cases with
bacterial infections, as compared to cases with viral infections,
which is supported by Figure 1C.
Viral Infections Group. Four main parameters influence

the differentiation of the viral infections group, which is divided
to 3 clusters during classification task. The first is the Time_
nonPhago1_SA (time to peak of the last portion of nonphago-
cytosis related CL of the aging system) which is chosen for
differentiation of the main part of the clinical cases with viral
infections. In these infections, the time peak for production of
ROS in not connected to the phagocytic processes chosen to be
earlier in time as compared to bacterial infections, thus, reflecting
faster kinetics. This is supported by the chemiluminescent
parameters of aged kinetics presented in Figure 1C, where
velocity is the highest in cases with viral infections. The second
parameter differentiating the viral group is SlopeSP, that is, the
ratio of the peak magnitude to time required to reach this point,
which should be low as compared to some of the cases with
bacterial infections, thus, reflecting slow kinetics in the primed
system. This finding cannot be seen on the CL parameters,
mainly because the parameters are averaged for all cases, while
the decision tree differentiates on a case-by-case basis. Another
two parameters are relative effectiveness of primed (RelEff_SP)
and aged (RelEff_SA) systems, which should be lower in viral
infections when compared to bacterial ones, seen in Figure 1,
panels B and C, respectively.
To summarize, the parameters which successfully distinguish

between the clusters matched the chemiluminescent parameters
of the systems presented in Figure 1, thus, revealing the patterns
unique for each group. The oxidative potential of phagocytes,
expressed by CL kinetics in various infections, has enabled the
differentiation using the classification model, correlating well
with the evaluation of the functional state of the fighting cells.
Control cases were characterized with low capacity when com-
pared to the infected ones, as it was defined by the model and
supported by the kinetics parameters. The model illustrated that
the ROS generation is more effective in cases of bacterial
infections, when compared to viral infections, showing that the
ROS is mainly generated intracellularly in bacterial phagocytosis.
The CL curves demonstrated a higher extracellular part in the
viral group via a sharper initial slope, thus, expressing low
effectiveness. The kinetics in viral cases was fast, as it is portrayed

in the model and in the CL parameters (Figure 1) as well.
Therefore, the combination of modeling and the molecular des-
cription of the systems was successful in defining and describing
each clinical group: the groups with infections showed a high
activation of the immunity, which was expressed as a high
velocity of ROS generation, and fast phagocytosis; high effec-
tiveness to produce ROS for defense, but still lower than in the
case of a potential fight in healthy individuals; and high capacity
of oxidative potential.
Evaluation of Blind Cases. On the basis of the decision tree

model in Figure 3, blind cases can be evaluated and their group
membership determined. As such, 18 blind cases were examined,
applying the classification rules to the phagocyte function of
those patients and assigning them to the most appropriate group.
Sixteen of the 18 cases were correctly classified (88.9%), with
75% of the bacterial infections and 100% of viral infections being
classified correctly using C4.5 algorithm (Figure 3).
In the case of the SVM using linear model (polynomial kernel

with degree of kernel = 1) and Naive Bayes Classifier, three
clinical groups were classified with 73.7% in the blind set. Despite
the limited amount of data used in this research, the approach
showed very good compliance and high prediction accuracy in
classification of the blind cases. According to the obtained results,
the presented method has a high probability to become a valid
diagnostic tool.
Comparison between Algorithms.Data mining tools can be

very useful to organize and find specific patterns and parameters
that are special to some types of infections in the data sets
presented. Together with that, some questions should be an-
swered: Which tools can be optimal? What would be the best
possible model? Does this model correlate with biological
significance and does it provide insight into molecular events
associated with phagocytic processes and ROS generation?
Comparison of the prediction accuracies of differentiation to
clinical groups derived by various classification algorithms (based
on 10-times 10-fold stratified cross-validation) is presented in
Table S-3. Without feature selection, C4.5 resulted in 50.8% (
3.9% prediction accuracy, SVM achieved a 50.8% ( 1.2%
accuracy, and Naïve Bayes Classifier resulted in 47.6% ( 1.7%
prediction accuracy.
Feature selection has substantially improved the prediction

accuracy after 10-fold cross-validation in all algorithms: C4.5
accuracy was improved from 50.8% ( 3.9% to 69.2% ( 2.5% in
case of 2 instances per leaf; SVM accuracy was improved from
50.8% ( 1.2% to 62.4% ( 2.5%; Naive Bayes accuracy was
improved from 47.6% ( 1.7% to 66.8% ( 1.4%. All differences
were found to be statistically significant (p < 0.001) using t-test.
The best performance was achieved in case of C4.5, as in the case
of independent training/testing sets. The decision tree classifier
may be actually the most useful while comparing to other
algorithms in presenting classification problems, because of the
“white-box” straightforward model with easy-to-read explicit
classification rules that can be interpreted biologically, character-
izing each specific clinical group.

’CONCLUSIONS

Bacteria and viruses are themost frequent agents causing acute
respiratory infections, such as pneumonia and viral bronchitis.
Bacterial cultures and immune-fluorescence tests, as well as PCR
for viral antigens, are used to differentiate bacterial from viral
infections in clinics. However, the results of bacterial cultures
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often require 24�48 h, and indeed, tests for bacterial and viral
etiology may not be available in some clinical settings.36 More-
over, negative bacterial culture cannot always exclude the bacter-
ial origin of an infection. Unfortunately, there are no highly
sensitive validated clinical prediction rules for distinguishing
bacterial from viral etiology (with the exception of incomplete,
rarely used and complicated PCR technologies), despite the fact
that such criteria can guide decisions as to whether to use
antibiotics. Limiting the use of unnecessary antibiotics may help
prevent the development of antibiotic resistance, reduce the
number of patients with adverse effects of antibiotics, and
substantially decrease healthcare costs.36,37 Crucial understanding
of early dynamics of infection, interaction between the immune
system and the pathogens and, as a consequence, a proper selection
of early intervention was the motivation for this study.

It is well-known that phagocytic cells are the first line of
defense in our body, and are influenced differently by different
clinical set-ups. In our previous studies, we have shown that
phagocytes inherit molecular information expressed as extents of
ROS generation which is specific to various clinical states in intra-
abdominal pathological processes afflicting peritoneal dialysis
patients,14 as well as various infectious diseases (unpublished
data). Therefore, the objective of this study was to develop and
validate a clinical diagnostic rule based on the inherited informa-
tion of an innate immunity to differentiate bacterial from viral
etiology, using component CL approach and multiple derived
kinetic parameters.

Bacterial or viral-infected patients showed completely differ-
ent CL patterns from healthy controls. As already stated, healthy
controls showed a “resting” pattern. In the case of bacterial and
viral infections, it can be seen that the CL response was elevated
in the capacity of phagocytes to produce ROS and in their
velocity to react to the stimulus. In other words, phagocytes in
infectious cases were activated as compared to controls, and
showed an “effective” or “fighting” functional state. Phagocytes
influenced by bacterial infections mainly produce ROS intracellu-
larly, while phagocytes influenced by viral infections produce ROS
extracellularly to a greater extent than did bacterial infections.

Results from the present study demonstrate that the level of
activation of circulating phagocytes can be a sensitive indicator of
infection. The derived CL response from a given patient supplied
us with enough information so as to place that particular case
closer to either clinical group and associate that case with a
corresponding prognosis, while enabling us to differentiate the
etiologies in a rapid and sensitive manner. The method is time-
saving, easy to perform and can be commercially available, thus,
having predictive diagnostic value and could be implemented in
various medical institutions as an adjunct to clinical decision
making after further investigation.

To find an accurate classification model that possibly can be
used by clinicians in the future, we applied three data mining
algorithms: C4.5 decision tree, SVM, and Naive Bayes Classifier.
We have also used feature selection methods to improve
the performance and choose the relevant and nonredundant
predictive features that present a biological meaning. The results
obtained on a blind set show that the decision tree C4.5
classification algorithm demonstrated the best predictive per-
formance, revealing explicitly interpretable classification
rules. Using 10-fold cross-validation, C4.5 has also reached the
highest accuracy, but it was lower than in the blind set (almost
70% predictive accuracy versus 88.9% testing accuracy in the
blind set).

Future basic molecular studies are needed to further char-
acterize the specific CL kinetic patterns generated from the
interactions of PMNs with different types of microorganisms.
Additional clinical variables can be added to the database as
features, for example, parameters form biochemical blood tests,
simple blood counts, microbiological cultures, antibodies ratios,
and so forth. We may also improve the classification accuracy by
increasing the number of features involved and applying active
learning techniques like bagging38 and boosting.39 The final
outcome of the method application to the clinical setups can
be a learning diagnostic tool that is based on various data mining
algorithms.
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