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Exploration of patterns predicting renal
damage in patients with diabetes type II
using a visual temporal analysis laboratory

Denis Klimov, Alexander Shknevsky, Yuval Shahar

ABSTRACT
....................................................................................................................................................

Objective To analyze the longitudinal data of multiple patients and to discover new temporal knowledge, we designed
and developed the Visual Temporal Analysis Laboratory (ViTA-Lab). In this study, we demonstrate several of the capabil-
ities of the ViTA-Lab framework through the exploration of renal-damage risk factors in patients with diabetes type II.
Materials and methods The ViTA-Lab framework combines data-driven temporal data mining techniques, with interac-
tive, query-driven, visual analytical capabilities, to support, in an integrated fashion, an iterative investigation of time-
oriented clinical data and of patterns discovered in them. Patterns discovered through the data mining mode can be
explored visually, and vice versa. Both analysis modes are supported by a rich underlying ontology of clinical concepts,
their relations, and their temporal properties. The knowledge enables us to apply a temporal-abstraction pre-processing
phase that abstracts in a context-sensitive manner raw time-stamped data into interval-based clinically meaningful
interpretations, increasing the results’ significance. We demonstrate our approach through the exploration of risk factors
associated with future renal damage (micro-albuminuria and macro-albuminuria) and their relationship to the hemoglo-
bin A1C (HbA1C ) and creatinine level concepts, in the longitudinal records of 22 000 patients with diabetes type II
followed for up to 5 years.
Results The iterative ViTA-Lab analysis process was highly feasible. Higher ranges of either normal albuminuria or nor-
mal creatinine values and their combination were shown to be significantly associated with future micro-albuminuria
and macro-albuminuria. The risk increased given high HbA1C levels for women in the lower range of normal albuminu-
ria, and for men in the higher range of albuminuria.
Conclusions The ViTA-Lab framework can potentially serve as a virtual laboratory for investigations of large masses of
longitudinal clinical databases, for discovery of new knowledge through interactive exploration, clustering, classification,
and prediction.
....................................................................................................................................................

Key words: Visual Analytics; data analysis; temporal data mining; knowledge discovery; temporal abstraction;
ontologies

INTRODUCTION
Effective analysis of time-oriented multivariate clinical data,
with the objective of investigating processes and predicting
their course, as is important in the case of diabetes, requires
the combined use of multiple approaches, including mining
the longitudinal clinical data to automatically discover within it
meaningful patterns, and exploring it interactively in a user-
driven fashion. In this paper, we introduce a general framework
that combines both approaches, which we refer to as the
Visual Temporal Analysis Laboratory (ViTA-Lab). We will dem-
onstrate our new framework by investigating the process of the
development of renal dysfunction in patients with diabetes
(manifested as micro-albuminuria and macro-albuminuria),
with the objective of predicting its course.

Diabetes affects more than 170 million people worldwide.
About one-third of those affected will eventually have progres-
sive deterioration of renal function.1 The first sign of renal dys-
function in patients with diabetes is micro-albuminuria (urinary
albumin excretion), affecting 20–40% of patients 10–15 years
after the onset of diabetes type II, and 30–60% of patients with
type I diabetes.2 Macro-albuminuria (overt nephropathy) is
present in 20–40% of patients 15–20 years after the diabetes
onset. Early detection of nephropathy, or of patients at high risk
for it, is important for improving the outcome of diabetes.

The ViTA-Lab framework combines computational data-
driven interval-based temporal data mining (TDM) techniques,
with interactive, user-driven visual analytical capabilities for a
knowledge-based investigation of time-oriented clinical data.
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The concurrent application of both ends of the analytical spec-
trum (ie, goal-driven visual analysis and data-driven TDM) sup-
ports an iterative process for the discovery and exploration of
new, meaningful temporal patterns, in longitudinal, multivariate
clinical data, integrating the best of each of the two worlds:

• Interactive visual-exploration systems provide users with an
overview of the data, enabling them to explore the visualized
data to answer user-initiated queries; they are user friendly
and focus on concepts that are highly promising for mean-
ingful knowledge discovery. However, the user must know
what to look for, and which questions to ask. If a query
about a key association has not been asked, a potentially
important pattern might be missed. Thus, query-driven
methods are precise, in the sense of producing mostly sig-
nificant answers, but are often incomplete.

• Pure computational data mining (DM) methods (in particular,
TDM methods) are automated, computationally valid, and
complete (ie, they discover all temporal patterns that can be
found in the data); but most of them are not interactive, are
intended only for a ‘super-user’ with a significant experi-
ence, and do not allow an effective exploration of the
(typically too numerous) computed output, much of which is
irrelevant. As a result, some significant insights might be
missed. Thus, data-driven methods are complete, but their
precision is low, in the sense that most discovered patterns
are of low significance.

Therefore, the ViTA-Lab framework combines both types
of analysis; that is, query driven and data driven. The combina-
tion of visual and analytical capabilities of data analysis has
been referred to as visual analytics (VA).3,4 Thus, one might
refer to our approach as a special, time-oriented type of a VA
system.

To significantly enhance the capabilities of a VA system, we
propose to first pre-process the input raw, time-stamped data,
such as hemoglobin values at particular times, using relevant,
context-sensitive, domain-specific knowledge, to produce a set
of clinically meaningful summarizations and interpretations,
such as a 3-week period of moderate anemia in the context of
a 17-year old man, known as temporal abstractions (TAs). In
general, TA is the aggregation of a time series into a succinct,
symbolic, typically interval-based representation, suitable for a
human decision-maker, or for DM. To abstract the raw data,
one can use prior domain-specific clinical knowledge, or can
proceed using various computational methods.5 In our studies,
we usually apply the knowledge-based temporal-abstraction
(KBTA) method,6 which uses domain-specific temporal-
abstraction knowledge to compute TAs. The KBTA method
is applied by an enhanced version of the IDAN7 temporal
mediator, which mediates between decision-support applica-
tions and a time-oriented clinical database. When the knowl-
edge necessary to specify abstractions is not available, we
apply static generalized discretization methods, such as
equal-width discretization and equal-frequency discretization,
or more complex methods geared specifically for temporal

discretization, such as Symbolic Aggregate approXimation
(SAX)8 and Persist.9

The KBTA method and the generic computational discretiza-
tion methods underlying our work are domain independent,
since knowledge-based interpretation (when domain-specific
knowledge is provided) and generic abstraction methods can
be applied in any medical (or non-medical) domain. Examples
of previous applications of this highly general ontology include
domains such as oncology,10 diabetes,11,12 monitoring child-
ren’s growth,13 and prenatal monitoring,14 and non-medical
domains, such as information security.15,16 Thus, the ViTA-Lab
framework is domain independent and can be used to analyze
any type of longitudinal data.

To facilitate the introduction of the semantics and function-
ality of the ViTA-Lab framework, we will present in this study,
in detail, a case, in which, given the records of 22 000 anony-
mous patients with type II diabetes followed sporadically over
5 years at our university’s academic medical center, we
explored the association between several potential risk factors
and future renal injury.

BACKGROUND AND SIGNIFICANCE
Visual analytics in the medical domain
Previously, visual exploration systems in medical domains
focused mostly on the visualization of raw longitudinal data for
individual17,18 or multiple19,20 patient records, as reviewed by
Chittaro21 and recently by Rind et al.22 Information-visualization
methods have often focused on the development of innovative
interfaces, graphical metaphors, and exploration capabilities,
rather than on the discovery of actual new knowledge, as noted
by Aigner et al.23 Furthermore, most VA studies focus on repre-
sentation and analysis of static data, such as text, networks,
and sparse quantitative data, while the temporal aspect of VA
is less studied, due to its complexity, as noted by Aigner24 in
the context of medical applications.

Recent visual exploration systems include additional capa-
bilities for sophisticated interactive exploration of multiple-
patients’ data.25,26,27 However, most VA systems focus on raw
data, such as a time series of laboratory test results, rather
than on its interpretations. They include neither an underlying
domain-specific knowledge base that formally represents the
explored concepts and the relationships among them, nor any
computational mechanisms that could capitalize on such
knowledge to produce derived concepts (interpretations) for
visualization and exploration; and they do not support an itera-
tive exploration of discovered knowledge, for example, apply a
pattern, which was just discovered in a group of patients, to
another patient population.

Several recent studies focus on the analysis of temporal
event sequences; examples include EventFlow28 for individual
patients, LifeFlow,29 OutFlow,30,31 CareFlow32 for multiple
patients, and an advanced framework, Frequence,33 which
also provides capabilities for frequent pattern mining. Although
these systems provide advanced visual capabilities for aggre-
gation of multiple sequences, such as care processes, their
main focus is on exploration, while the ViTA-Lab framework

RESEARCH
AND

APPLICATIONS

Klimov D, et al. J Am Med Inform Assoc 2015;22:275–289. doi:10.1136/amiajnl-2014-002927, Research and Applications

276



focuses on the discovery of new knowledge, with further reuse
of the discovered knowledge to perform further analysis on the
patients’ data. Moreover, these systems mostly support
sequences ordered only by the ‘after’ temporal relation, that is,
event B occurs after event A. However, real interval-based clin-
ical data can be much more complex; for example, treatment
by two medications might proceed in parallel, both periods
overlapping a period of exacerbation of the patient’s clinical
state. Thus, more sophisticated DM algorithms that support
relations such as ‘overlaps’, ‘during’, and all of Allen’s34 other
temporal relations are required.

Assessing the risk for future renal damage in patients with
diabetes
Several studies have focused on prediction of abnormal
levels of albuminuria, using DM computational meth-
ods.35,36,37,38,39,40 However, they usually do not exploit domain
knowledge: the DM algorithms are applied to raw, time-
stamped data; they lack an iterative application: discovered
knowledge cannot be reused for further analysis; and they lack
visual exploration capabilities: the results of the mining process
cannot be easily explored by a dedicated interface.

METHODS: THE VITA-LAB FRAMEWORK
Application of the ViTA-Lab framework in different clinical
domains
To apply the ViTA-Lab analytical framework in a new domain,
we need to perform (once) two steps:

1. Knowledge acquisition. The knowledge provided by the
domain expert is graphically specified by a dedicated
knowledge-acquisition tool, called Gesher.41 Although one
of the major sources for the definition of medical concepts
in our framework is textual clinical guidelines, we are not
applying an automated process for extraction of temporal
relations from text, as for example proposed by Tao et al42

or by Kaiser and Miksch,43 since several of the properties
required by the KBTA ontology are usually not represented
in the text (eg, the validity-persistence time of a laboratory
measurement). The Gesher tool supports the specification
of knowledge concepts by multiple standardized vocabula-
ries, including UMLS, LOINC, Rx-NORM, and CPT. The
vocabularies’ codes serve the user in the next step, which
we refer to as the mapping step—mapping the knowledge
base to the local data base (DB).

2. Mapping the knowledge to the local data. Although the
ViTA-Lab framework suggests a generic format for data
records, in some cases we need to use an additional map-
ping component to create a link between the records in the
local DB and knowledge concepts to analyze the data by
the ViTA-Lab tools. The link between the necessary records
in the local DB and knowledge concepts is established by
using the vocabularies’ codes as specified in the raw-data
leaves of the knowledge base.44 Some mapping tools such
as KDOM45 support the generic data models, for example
vMR, for the knowledge-data mapping.

The main interfaces of the ViTA-Lab framework
The ViTA-Lab framework includes three main visual interfaces,
as shown in figure 1.

1. The main visualization and exploration interface (denoted
by ‘1’ in figure 1) provides an interactive overview of the
raw longitudinal concepts and of the TAs for individual and
multiple patients. The left panel of the interface includes a
knowledge-based browser showing the domain’s ontology,
in this case in the diabetes domain; and a graphical widget
for selection of the patients by providing an ID, in the case
of individual patients, or by providing the name of a group
of patients previously selected according to a set of a dem-
ographic and knowledge constraints.46 Clicking on a con-
cept in the browser’s ontology tree for the selected group
of patients shows either the values of a raw time-stamped
concept, or the distribution, for each time granule of a
derived TA. For instance, the top panel of the visualization
interface shows a scatter diagram over time (the horizontal
axis) of the blood creatinine values (the vertical axis) for a
group of male patients who were selected (in another inter-
face, not shown) for having their first albuminuria measure-
ment being ‘Normal’ (denoted as ‘male_FirstNormo’). Each
point represents a specific measurement of one patient. In
addition, the maximal, minimal, and mean values among
the patients are computed according to the temporal granu-
larity (eg, month) in which the user currently chooses to
explore the data; the granularity can be interactively modi-
fied. The second panel from the top shows the visualization
of the glucose-state TAs for the same group of patients.
TAs for multiple patients are displayed as a distribution of
the values of the abstract concept of the patients at the cur-
rent temporal granularity. For the visualization, we use a
modified version of the bar chart visualization technique.
The modification includes providing separate [0. . .100%]
scales for each of the TAs (eg, for the levels of the glucose-
state abstraction), which is useful for discovering trends in
the distribution. Several visualization operators enable the
user to explore the data of raw and abstract concepts at
any temporal granularity, including a relative time line
which refers, as its zero point, to some key event such as
intervention. The distributions of the abstractions are com-
puted on-the-fly during the exploration. The full description
of the VISITORS framework and its displays is outside of
the scope of the current paper, and can be found
elsewhere.47

2. The Temporal Association Chart (TAC) (denoted by ‘2’) ena-
bles the user to visually explore probabilistic temporal asso-
ciations among the distributions of multiple different raw
and, in particular, abstract concepts at different times.
Usually a TAC includes two or more different concepts
explored using the main visualization interface; thus, the
input for the TAC is the group of patients and list of con-
cepts (elements of the TAC) selected within the same or a
different time window panel. The distributions of values for
each concept are computed within the selected time
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period. The corresponding data values for each patient
between two consecutive elements are linked. Several links
involving the same pair of values for multiple patients (eg,
the probability of having the Moderate_Anemia value of the
hemoglobin-state concept, given the low value of the
white-blood-cell-state concept) are aggregated into a tem-
poral association rule that denotes the probability of having
the value of the second concept, given the value of the first
concept (ie, confidence), and the overall frequency of that
combination (ie, support). Each rule represents a set of
patients who have had this particular combination of values
for the two concepts, at the same time or at different times,
depending on the time period(s) in which the user is inter-
ested. (The exploration example in the Results section dem-
onstrates several of the probabilistic and statistical values
computed for each link). The order between the concepts
appearing in a TAC can be changed to analyze the associa-
tions between the different concepts of the TAC. For user
convenience, the left panel shows the color legend for each

concept in TAC. The full description of the TAC functionality
and analysis capabilities is outside the scope of this paper,
and can be found elsewhere.48 The semantics of the width
and color of the association links are explained in the cap-
tion to figure 4. An enhanced version of TAC enables the
user to explore the associations between two concepts at
arbitrary temporal granularities.49 Examples of using
enhanced TACs include exploring adverse drugs events
within a pharmacovigilance project, or assessing the out-
comes of the application of a particular clinical guideline.
The enhanced version also provides a method to display
various statistical measures of the specific association over
time, such as whether the association strength increases,
or whether the number of patients involved decreases over
time.

3. To support the exploration of numerous temporal patterns
that can be discovered by the data-driven computational
process, we have designed and developed a dedicated
interface, called the Patterns Explorer (denoted by ‘3’). Its

Figure 1: A typical set of screens from the Visual Temporal Analysis Laboratory (ViTA-Lab) for analysis and exploration of
the time-oriented data of multiple patients. (1) The main visualization and exploration interface provides an interactive over-
view of the raw longitudinal concepts, and of the distribution of the derived temporal abstractions for multiple patients, at
any temporal granularity. (2) The Temporal Association Chart (TAC) enables the user to visually discover probabilistic tem-
poral associations among the distributions of multiple different concepts at different times. (3) The Patterns Explorer dis-
plays frequent temporal patterns in the data and supports their exploration.
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underlying semantics are based on a version of the
KarmaLego algorithm for the discovery of frequent temporal
patterns.50,51 The discovered output temporal patterns are
represented in corresponding panels (see figure 2), each
pattern being displayed in a specific panel. The color of the
same type of component in a pattern is the same across all
patterns and is represented in the legend on the left side in
the Patterns Explorer. To focus on most relevant patterns
from a large number of discovered patterns, we use filter-
ing mechanisms based on regular expressions; for exam-
ple, find all frequent patterns that include a specific pair of
interval-based concepts with a specific temporal relation
between them.34 The basic symbol in the regular expres-
sion can include a concept, for example, HbA1C-state, or a
concept and value, for example, HbA1C-state¼ ‘High’, one
of Allen’s seven basic temporal relations to specify the
interrelationship between pattern components, and a wild-
card to specify exactly one symbol (‘?’) or any number of
symbols (‘*’) in a pattern. In addition, we provide two addi-
tional temporal constraints over components of patterns,
either ‘start by’ or ‘end with’. For example, in the use case
described below, we looked for patterns ending in micro-
albuminuria or macro-albuminuria.

The ViTA-Lab framework enables users to explore the longi-
tudinal data of multiple patients, using the Visual Information
Mantra51 and the enhanced Visual Analytics Mantra.3 Typically,
the first step in an analytical process is the overview of the
patients’ data to better understand overall trends, allowing
users to zoom into or zoom out of specific time periods,

interesting concepts and group of patients; thus, in that step,
users usually use the main visualization interface.

Then, users can apply the TAC module to selected concepts
and patients to better understand the relationship between the
distributions of various concepts over time, or they can apply
the pure DM functions to discover frequent patterns within the
overall population or a specific sub-group of patients. Note that
the DM step can be applied as the first step, but that is often
ineffective, due to the very large number of discovered patterns
(applied on all of the population and for all possible concepts).

In the TAC interface, the user is able to filter the various
associations discovered between pairs of concept-value distri-
butions, by statistical values (eg, by requiring a minimal level of
support), by selection of a specific value in the concepts dis-
played in a TAC. This is, in fact, how we have explored the
relationship between various levels of normal albuminuria val-
ues in the first year, and micro-albuminuria in the fifth year of
follow up of the same group of patients with diabetes.
Furthermore, the user is also able to apply a DM process to the
selected patients and/or concepts to understand what addi-
tional patterns characterize the selected patients.

To sum up, we are emphasizing in our methodology the
importance of an iterative process of data analysis, in which both
analysis types, [visual] query driven and data driven, are inte-
grated into one comprehensive virtual laboratory for time-oriented
data analysis and exploration—the ViTA-Lab framework.

We now demonstrate the working process and the capabil-
ities of the ViTA-Lab framework through a specific case study,
exploration and prediction of renal dysfunction in patients with
diabetes.

Figure 2: A graphical representation of a pattern in the Pattern Explorer whose informal definition is ‘for 6% (a Vertical
Support (VS) of 0.06) of the male patients, an episode of Normal Creatinine-State overlaps an episode of Normal HbA1C-
State, which is followed by an episode of a Moderately-High value of HbA1C State’. Each component of a pattern (a pair of
concept and value) is represented by a horizontal line, the lines being ordered in the panel according to the start time point
of each component (the earliest interval is the first from the left), maintaining, in a proportional fashion, the mean duration
(across all pattern instances) of each component and of the gaps among components. Thus, the user can recognize visu-
ally, in a very simple manner, the meaning of a discovered temporal pattern, that is, which components exist in pattern,
and what temporal relations such as before, after, or overlaps, hold between them. This pattern is valid for 6% of the
patients, as shown by the level of VS (ie, across all patients) in the part of the panel denoted by ‘1’. The temporal relations
between the pattern’s components are shown in the part of the panel denoted by ‘2’. Selection of a pair of components
and a relation from the list will highlight the selected components. In addition, the mean duration of each component, and
the mean gap between components, are computed and shown (in the part denoted by ‘3’). HbA1C, hemoglobin A1C.
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MATERIALS
In the current study, we explored the data of a group of 22 160
anonymous patients with diabetes (the total number of raw
data records is close to 12 million) from our local academic
medical center, who had been followed (albeit sporadically) for
at least 5 years. Our focus here is on the investigation of factors
associated with changes in renal function (mostly focusing on
the level of albuminuria, or secretion of protein in the urine),
exploring its predictive risk factors, and whether there are dif-
ferences in the behavior of that concept over time between
male and female patients.

A knowledge base, including the ranges of albuminuria for
women and men (see figure 3), HbA1C (see table 1), and crea-
tinine levels (see table 2) was specified by a medical domain
expert in the Gesher knowledge acquisition tool.

However, during the analysis we found that the expert’s
suggested value ranges for creatinine-state ‘Normal’ level
(<1.2 mg/dL for men and <1.0 mg/dL for women) did not lead
to any significant associations or predictive patterns. Thus, we
created by discretization (by using the TD4C classification-
driven temporal-discretization method53) three sub-ranges of
the ‘Normal’ range. The ranges for creatinine state for male
and female patients are represented in table 2. For similar rea-
sons, we have added the Normo-Low and Normo-High sub-
ranges within the normal (0–30 lg albumin/mg creatinine)
albuminuria values.

RESULTS
In this section, we present the results of performing a visual
analysis of renal dysfunction in patients with diabetes using the
ViTA-Lab framework.

A general overview of the albuminuria-state concept for
male and female patients over a period of 5 years
We will start our iterative exploration of the renal-injury compli-
cation in the diabetes domain by using the query-driven visual
interface.

Figure 4 presents an overview of the albuminuria-state
value distribution over time (from 2004 to 2008) for a group of
11 105 male patients (cumulatively, ie, not all of the patients
have data for each year), using a TAC. In this interface we can
see an overview (the first step in the visual information mantra)
and an analysis of temporal associations (the first step of the
VA mantra). Note that the values shown in the visualization for
each year need not necessarily exist throughout the year;
rather, they represent, or characterize, the overall abstractions
that can be derived for each of the relevant patients during that
year. The semantics of the width and color of the association
links are explained in the caption to figure 4.

Figure 3: The OR-based (disjunction) derivation tree for the albuminuria-state abstraction, for male and female patients,
displayed as a two-level abstraction function, in which the top level uses the definitions of the bottom level.
ACR¼ albumin/creatinine ratio (lg albumin/mg creatinine). Note that the derivation tree allows for computation of the
Albuminuria values in two different ways, depending on available input in the local database.

Table 1: The HbA1C-state abstract concept
levels and the corresponding values of the
HbA1C raw concept

HbA1C values HbA1C-state levels

<7 Normal

7–9 Moderately-High

9–10.5 High

>10.5 Very-High

HbA1C, hemoglobin A1C.
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Three main ‘temporal clusters’ or ‘temporal pathways’ can
be identified visually in figure 4.

1. From 2004 to 2008 the portion of patients with ‘Normo-
Low’ value of the albuminuria-state concept is going up
from 31% in 2004 to 53% in 2008. Although the overall
data do not necessarily represent the same group of
patients at each point in time (originally, the clinical meas-
ures were sampled for somewhat different patients within
the overall patient group, each year), the TACs display only
patients who have had values throughout the whole period.
The overall trend seems to be towards an increase in the
portion of patients with lower albuminuria levels (denoted
by ‘3’), perhaps signifying improved management of
patients with diabetes.

2. Similarly, we can identify each year, over the 5 years, a
group of about 700 patients with a ‘Micro’ value of the
albuminuria-state concept (denoted by ‘4’). (Note that these
patients are not necessarily the same ones every year; the
confidence measure displays the probability of the same
patient having the same value from year i to year iþ1).

3. Finally, we focus on a group of approximately 300 patients
each year who have the ‘Macro’ values of the albuminuria-
state concept (denoted by ‘5’). Although the typical support
value for staying in that state from one year to the next is
low (less than 3% of the patients had macro-albuminuria in
year i and in year iþ1), the confidence (ie, the conditional
probability) of maintaining that state is around 50%; that is,
once a patient has had a ‘Macro’ level of the albuminuria-
state concept, their probability of either staying at that level,
or of improving with respect to that measure, is around
50%. Not surprisingly, given this high persistence, the lift
(relative risk) measure from one year to the next for having
a ‘Macro’ value in the next year, given a ‘Macro’ value of
the albuminuria-state concept in the previous year, is very
high, denoting a high relative risk (5.2–6.3 times, vs the
expected neutral risk of 1).

4. Similar pathways could be displayed for female patients
(not shown here due to lack of space).

However, the view using the complete absolute time line
(ie, from 2004 to 2008) cannot answer the question regarding
the factors predicting a worsening of the renal function, since
only a small group of patients have had their data consistently
measured across all of these years. To examine all of the suffi-
ciently frequent temporal patterns, we will now apply a purely
data-driven, computational temporal DM method.

Differences in progression of albuminuria states between
male and female patients
The ViTA-Lab DM engine was applied separately for men (2356
patients) and women (2540 patients) who have had albuminu-
ria, creatinine, and HbA1C raw data values measured over up
to 5 years of therapy.

The resulting discovered frequent (above a given threshold)
patterns, consisting of any two consecutive measurements
with a maximal time gap between them of not more than
1 year, over all of the 5 years, are represented in figure 5.

As we can see, in addition to mostly similar values of sup-
port between male and female patients, the time gaps between
the different albuminuria values for the same patterns are also
mostly similar. For example, the mean time gap denoting a
worsening from a ‘Normo-Low’ to a ‘Micro’ value of albuminu-
ria-state is 10.4 months for men (pattern denoted by ‘1a’) and
10.24 months for women (pattern denoted by ‘2a’). Similar gap
periods can also be noted in the case of the rest of the albumi-
nuria pair-of-value patterns.

The temporal-gap similarity might occur randomly, but
might also represent a real similarity between men and women
with respect to the patterns denoting a worsening of the albu-
minuria levels. Although an additional, more detailed analysis
is required, it is clear that within a few minutes one can obtain
preliminary intuitions and a hypothesis to test by further
investigations.

We then examined the possibility of using the DM engine for
predicting the clinically interesting micro/macro-albuminuria
state(s), which are evidence for renal damage, in the fifth year
of follow-up, based on temporal patterns that are discovered
from state abstractions derived from the raw values of

Table 2: The creatinine-state abstract concept levels for male (left) and female (right) patients, and the
corresponding values of the creatinine raw concept

Creatinine values Creatinine-state male levels Creatinine values Creatinine-state female levels

<0.8 Low <0.56 Low

0.8–0.9 Normo-Low 0.56–0.7 Normo-Low

0.9–1.1 Normo-High 0.7–0.8 Normo-High

1.1–1.4 Normo-Severe 0.8–1.1 Normo-Severe

1.4–2.0 High 1.1–2.0 High

2.0–4.0 Very-High 2.0–4.0 Very-High

>4.0 Severe >4.0 Severe
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Figure 4: Temporal associations of abstracted albuminuria levels over 5 years, for 11 105 male patients. The distribution of
the four albuminuria levels (the color-based legend of values appears on the left side), that is, the relative proportion of
patients who have had each albuminuria-state in each year of the follow-up, is represented within the specific time interval
(represented on the bottom). In this case, we chose an annual (1 year) temporal granularity view, that is, we selected the
start and end times of each frame so as to represent the absolute time periods of five consecutive years. Thus, the annual
albuminuria-state for 1537 (29.59%) of the patients during 2004 was summarized as ‘Micro’ (see the yellow tooltip
denoted by ‘1’). The red links between two values of different adjacent distributions represent a group of patients who
have had both of the values, and thus represent an association over time between these values. The deeper the shade (the
hue) of the link’s color, the higher the level of confidence in the relationship. That is, a darker shade of red indicates a
higher confidence level in the future (right) value, given the current (left) value. The width of the link corresponds to the
level of support, that is, the number of subjects having this particular value combination for these two time windows;
broader links represent an association with higher support. By hovering with the mouse over an edge, the user will see
additional statistical information, such as the lift (relative risk) and the statistical proportion test and its significance (see
yellow tooltip denoted by ‘2’). In this case, the tooltip represents the relation between the ‘Normo-Low’ values of the albu-
minuria-state concept between 2004 and 2005 years: 6.12% of the patients in the relevant patient group had this particu-
lar combination of values (ie, support¼ 0.612), and 42.26% of the patients with ‘Normo-Low’ albuminuria-state values
during the 2004 year also had ‘Normo-Low’ albuminuria-state values during 2005 (ie, confidence¼ 0.4226). This temporal
association was valid for 680 patients, with a lift (a relative risk) of 1.48 (ie, patients are more likely than expected just by
the prior probability, to stay within the ‘Normo-Low’ albuminuria range from one year to the next). A proportion test that
compares the confidence of the association (42.26%) with the prior probability of the albuminuria-state having the value
‘Normo-Low’ in the year 2005 (28.58%), using the actual patient numbers, was significant with p<0.05 (‘True’). Thus, this
is a significant, non-random temporal association. The three main ‘temporal clusters’ denoted as ‘3’, ‘4’, and ‘5’ are
described in the text.
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albuminuria, HbA1C, and gender, in the first 1, 2, 3, or 4 years
of follow-up.

The results (see table 3) show a clear trend of increasing
predictive capabilities, as the duration of the period for collect-
ing input data before the fifth year increases, up to using data
from all of the previous 4 years, at which time the positive pre-
dictive value for micro/macro-albuminuria is 72.5%. Thus, the
relative risk, given these features, increases by more than two-
fold versus the prior probability (30.2%) of this interesting
class.

However, since the relevant features (patterns) can appear
anywhere in the patient’s temporal course, it is not necessarily
clear (especially for clinical purposes) what is the relative risk
for each patient after every year, starting from the beginning of
the follow-up period for these patients.

Furthermore, it is also not clear from the TDM results what
is the relative importance of each risk factor that was just dis-
covered (eg, does each of the two quantitative risk factors have
the same importance for men as for women?).

Thus, having identified at this point some of the risk factors,
using the data-driven DM engine, in the next scenario we will

examine the effect of integrating the albuminuria, HbA1C, and
gender values. We will do that by switching back, within the
ViTA-Lab framework, to the interactive, query-driven, visual
mining capabilities to now ask even more specific queries
regarding temporal associations across particular years of
follow-up and specific risk factors.

Focusing on query-driven exploration
In the previous DM step, we found frequent patterns that are
composed of various HbA1C-state and albuminuria-state val-
ues (see figure 5, panels f and g).

To continue our iterative analytical scenario, we would like
to examine now what are the specific annual transition proba-
bility values, given different levels of HbA1C, creatinine, and
albuminuria-state values (including the two normal sub-
ranges), into a value indicating a progressively deteriorating
renal state (micro-albuminuria). We would also like to examine
these transition probabilities for both male and female groups
of patients. In particular, we would like to focus on the specific
case of the association between the quantitative risk factors in
the first year, and the target albuminuria-state values in the

Figure 5: Frequent patterns of changes in albuminuria states for male patients (denoted by ‘1’) and female patients
(denoted by ‘2’): (a) worsening over a year, from a ‘Normo-Low’ level of albuminuria-state to a ‘Micro’ value; the pattern is
valid for 9% of the male patients and 15% of the female patients); (b) worsening from ‘Normo-High’ to ‘Micro’; the pattern
is valid for 22% of the male patients and 22% of the female patients; (c) a stable Micro-Micro pattern; (d) a worsening of
the renal state, from ‘Micro’ to ‘Macro’ albuminuria; the pattern is valid for 10% of the male patients and 9% of the female
patients; (e) a ‘Macro’-‘Macro’ stable pattern; (f and g) combinations of micro-albuminuria and various values of HbA1C-
state. The legend panel (denoted by 3) represents the color scheme of the pattern’s components. HbA1C, hemoglobin A1C.
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fifth year of follow-up, for each gender. That is, can we predict
micro-albuminuria 4 years ahead of time? Do the predictive
factors vary between men and women?

Three different TACs were generated (separately for male
and female patients, six charts in all) to examine the transition
probabilities: albuminuria-state and HbA1C-state values during
the first year to albuminuria-state ‘Micro’ value during the fifth
year; similarly we examined the combination of albuminuria-
state and creatinine-state values during the first year to
albuminuria-state ‘Micro’ value during the fifth year; and finally,
the combination of values of albuminuria-state, HbA1C-state,
and creatinine-state during the first year to the ‘Micro’
albuminuria-state value during the fifth year. The selection cri-
teria included having 5 years of data, and having as the earliest
level of albuminuria-state either ‘Normo-Low’ or ‘Normo-High’.

Due to the lack of space, the corresponding screenshots
regarding HbA1C are represented in appendix A. We shall now
summarize the results of the analysis.

The association between HbA1C-state in the first year and
micro-albuminuria in the fifth year
Table 4 summarizes the transition-probability values into a
micro-albuminuria state in the fifth year of follow-up, resulting
from our interactive visual exploration of the temporal
pathways starting with either the ‘Normo-Low’ or ‘Normo-High’
albuminuria-state values in the first year.

A proportion test demonstrated that given a ‘Normo-High’
value of the albuminuria-state, there is a significant difference
between men who had a ‘Normal’ HbA1C-state value com-
pared with men who had a ‘High’ value of the HbA1C-state:
Z¼ 1.612, p<0.05, but this difference did not exist for male
patients who had a ‘Normo-Low’ value of the albuminuria-state
during the first year.

However, in the case of female patients, there is significant
difference, given a ‘Normo-Low’ value of the albuminuria-state,
between having a ‘Normal’ HbA1C-state value and a ‘High’
value of the HbA1C-state: Z¼ 1.672, p<0.05. However, this

Table 3: The positive predictive value (PPV) of temporal patterns using the albuminuria-state values,
HbA1C-state values, and gender, when the underlying raw data were measured continuously over two
or more years, for the existence of either of the two classes of albuminuria-state values in year 5, and
the corresponding area under the ROC curve (AUC)

Target classes (prevalence) PPV, given the
first year

PPV, given the
first 2 years

PPV, given the
first 3 years

PPV, given the
first 4 years

‘Normo-Low’/ ‘Normo-High’
Albuminuria-state values (69.8%)

70.3% 74.6% 78.7% 82.3%

‘Micro’/‘Macro’ albuminuria-state
values (30.2%)

53.8% 57.3% 64.1% 72.5%

AUC 0.558 0.677 0.753 0.815

HbA1C, hemoglobin A1C.

Table 4: Transition-probability values into a micro-albuminuria state in the fifth year with the effect of
HbA1C

Year 1 albuminuria-state
value

Year 1 HbA1C-state
value

Probability of
micro-albuminuria in
year 5 for female
patients (%)

Probability of
micro-albuminuria
in year 5 for male
patients (%)

Normo-Low Normal 6.33* 3.93

Normo-Low High 11.63* 9.68

Normo-High Normal 16.54 13.79*

Normo-High High 15.73 21.62*

*Denotes a significant difference between the proportion of patients who have the ‘Normal’ HbA1C-state value, and the proportion of patients
who have the ‘High’ HbA1C-state value, for the same albuminuria-state value.

HbA1C, hemoglobin A1C.
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difference did not exist for female patients who had a ‘Normo-
High’ value of the albuminuria-state during the first year.

It is interesting to note a proportion test does not show any
significant difference in the portion of men versus women who
display almost all of the four combinations of values of the
albuminuria-state and creatinine-state, except for having the
combination of a ‘Normo-Low’ value of the albuminuria-state
and a ‘Normal’ HbA1C-state value: Z¼ 2.446, p<0.05.

To sum up. A brief exploration, exploiting the temporal pat-
terns provided by the data-driven TDM engine, augmented by
some additional user-driven visual analysis, makes it clear that
‘High’ HbA1C levels might be a significant risk factor, in the
case of male patients, for progressing into a micro-albuminuria
state in the fifth year. This risk exists for patients who had in
the first year albuminuria values that are usually considered by
clinicians as being within the normal range.

The association between first year creatinine-state and fifth
year micro-albuminuria
Table 5 summarizes the transition-probability values into a
micro-albuminuria state in the fifth year of follow-up starting
with the two ‘Normal’ albuminuria-state values in the first year.

Recall that the three normal-range values, ‘Normo-Low’,
‘Normo-High’, and ‘Normo-Severe’ are usually considered by
physicians as ‘Normal’ values of creatinine.

For either male or female patients who had the ‘Normo-
High’ value of the albuminuria-state during the first year, a
proportion test did not show a difference in the proportion of
transitions into a micro-albuminuria state in the fifth year
between any pair of creatinine-state values, including the two
extremes.

However, given a ‘Normo-Low’ value of the albuminuria-
state, there was a significant difference in both female and
male patients between having a ‘Normo-Severe’ value com-
pared with having a ‘High’ value of the creatinine-state:
Z¼ 2.809, p<0.005 and Z¼ 2.108, p<0.05, for female and
male patients, respectively. Furthermore, in the case of female
patients there is also a significant difference between having a
‘Normo-Low’ and ‘Normo-Severe’ creatinine-state value:
Z¼ 2.054, p<0.05.

Interestingly, a proportion test did not show any significant
difference in the portion of male versus females patients who
display any of the eight combinations of values of albuminuria-
state and creatinine-state.

CONCLUSIONS
We have presented an advanced, iterative ViTA-Lab framework,
integrating data-driven (the DM engine, augmented by the
Pattern Explorer interface) and user-driven (a visual, interactive
query-driven) analysis of time-oriented multivariate clinical
data. Both methods capitalize on a KBTA pre-processing
phase.

We have demonstrated the benefits of such a framework by
visually exploring a database of 22 000 patients with diabetes.
We have shown how an iterative query-driven/data-driven
visual analytical process can provide quick intuitions, and even
result in actual answers to important clinical questions.

Examples of such results include the discovery of typical
temporal pathways representing the progression of several
renal damage markers in patients with diabetes over time; the
assessments of the differences in the relative risk for future
micro-albuminuria, given several potentially predictive factors,

Table 5: Transition probabilities into a micro-albuminuria state in the fifth year, given the creatinine
state

Year 1 albuminuria-state
value

Year 1 creatinine-state
value

Probability of
micro-albuminuria
in year 5 for female
patients (%)

Probability of
micro-albuminuria
in year 5 for male
patients (%)

Normo-Low Normo-Low 5.09* 7.98

Normo-Low Normo-High 9.22 5.90

Normo-Low Normo-Severe 9.84*† 10.13†

Normo-Low High 28.57† 17.65†

Normo-High Normo-Low 14.66 14.93

Normo-High Normo-High 13.82 18.96

Normo-High Normo-Severe 20.27 24.00

Normo-High High 32.14 29.73

*Denotes the significant difference between the proportion of patients who have the ‘Normo-Low’ creatinine-state value, and the proportion of
patients who have the ‘Normo-Severe’ creatinine-state value, for the same albuminuria-state value.

†Denotes the significant difference between the proportion of patients who have the ‘Normo-Severe’ creatinine-state value, and the proportion
of patients who have the ‘High’ creatinine-state value, for the same albuminuria-state value.
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among the two genders; the increasing, over 5 years of follow-
up, positive predictive value of the temporal patterns discov-
ered in a data-driven fashion within the patients’ longitudinal
data, whose components included the albuminuria-state,
HbA1C-state, and creatinine-state values; and the observation
of an increased relative risk for renal damage in the fifth year
of follow-up, given the higher ranges of seemingly normal albu-
minuria and normal creatinine raw values, or higher than nor-
mal HbA1C-state values, starting even from the very first year
of follow-up.

We have only briefly explored the diabetes nephropathy
domain; additional potentially relevant concepts might comple-
ment our analysis, such as electrolytes, lipid values, etc.

Due to the generality of our approach, which only requires
access to a relevant domain-specific temporal-abstraction
ontology to interpret time-stamped raw data and exploit them
for analysis purposes, we can also apply the same integrated-
analysis approach to multiple additional clinical time-oriented
domains. Indeed, we had previously created and used several
domain-specific ontologies in multiple clinical domains, such
as oncology, diabetes, monitoring children’s growth, prenatal
monitoring,10–15 and even in non-medical domains, such as in
the information security domain, for example when interpreting
the time-oriented data of electronic devices to detect potential
malware and to analyze the data of multiple devices.15,16

These ontologies and the abstractions generated by applying
them to data in these domains can support an integrated
query-driven/data-driven temporal DM process similar to the
one demonstrated in the current study.

Thus, we suggest that the ViTA-Lab framework can poten-
tially serve as a virtual laboratory for investigations of large
masses of longitudinal clinical databases, for the discovery of
new knowledge through interactive exploration, clustering,
classification, and prediction.
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APPENDIX A THE ASSOCIATION BETWEEN
HBA1C-STATE IN THE FIRST YEAR AND
MICRO-ALBUMINURIA IN THE FIFTH YEAR
Exploration of several different temporal pathways. Shown
are transition probabilities for male (left panels 1, 2) and
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female (right panels 3, 4) patients, given the ‘Normo-High’
value of albuminuria-state, and either the ‘High’ (two top
panels) or the ‘Normal’ (two bottom panels) values of the
HbA1C-state, both characterizing the patients during the first
year, into a micro-albuminuria value of the albuminuria-state
concept, during the fifth year of follow-up. The tooltips
denoted by ‘1’ to ‘4’ show the probability of ending in the
‘Micro’ value of the albuminuria-state concept in the fifth year
for each of the four possible starting conditions. While the
transition probability for male patients is affected by the
HbA1C-state value (14.17% vs 31.71%), it does not seem to

be significantly affected by it in the case of female patients
(16.54% vs 15.73%).

In order to create the displayed Temporal Association
Charts (TACs), we first selected the ‘Normo-High’ value in the
albuminuria-state concept (the first element from the left in
TAC); thus, irrelevant patients are filtered out. In the second
step, we selected the ‘High’ value of the HbA1C-state concept
(the second element from the left in TAC) to get the top two
panels for male and female patients respectively. The bottom
two panels are obtained similarly by selection of the ‘Normal’
value of the HbA1C-state concept.
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